JPS6356702A - Digital control system - Google Patents

Digital control system

Info

Publication number
JPS6356702A
JPS6356702A JP20257086A JP20257086A JPS6356702A JP S6356702 A JPS6356702 A JP S6356702A JP 20257086 A JP20257086 A JP 20257086A JP 20257086 A JP20257086 A JP 20257086A JP S6356702 A JPS6356702 A JP S6356702A
Authority
JP
Japan
Prior art keywords
time system
control parameters
continuous
discrete
continuous time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20257086A
Other languages
Japanese (ja)
Inventor
Yutaka Yoshida
豊 吉田
Katsushi Nishimoto
西本 克史
Hidenori Sekiguchi
英紀 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20257086A priority Critical patent/JPS6356702A/en
Publication of JPS6356702A publication Critical patent/JPS6356702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of design by dividing the design of a digital control system into a design module as a general continuous system and a design module characteristic to a discrete system. CONSTITUTION:A module to be controlled is identified (1) first and analyzed as a continuous time system, and control parameters are calculated (2) as the continuous time system. Then, the control parameters of the continuous time system are substituted with control parameters of the discrete time system in a figure (3) when factors characteristic to the discrete time system such as the discrete time system on a program memory and a sampling period on a data memory are changed or in a figure (4) in other cases. Lastly, an actual operation check is made (refer to 4) and a return to a figure (1), (2) or (3) is made according to the factors and similar operation is repeated to complete the designing of a servocontrol system 6.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、ディジタル制御系を設計するに際して、サン
プリング周期や離散時間系としての制御アルゴリズム等
の離散時間系特有の設計要因を、連続時間系の一般的な
解析から分離して調整、決定するようにしたことにより
、制御対象を連続時間系として解析して連続時間系とし
ての制御パラメータを算出し、この連続時間系の制御バ
ラメークからディジタル制御系の制御パラメータを算出
し得るようにしたディジタル制御方式であって、これを
用いることにより、ディジタル制御系を物理的なイメー
ジと結びつけ易い連続時間系として設計できる。
[Detailed Description of the Invention] [Summary] When designing a digital control system, the present invention replaces design factors specific to a discrete time system, such as sampling period and control algorithm as a discrete time system, with general design factors for a continuous time system. By making adjustments and decisions separately from the analysis, the controlled object can be analyzed as a continuous time system, the control parameters as a continuous time system can be calculated, and the control parameters of the digital control system can be calculated from the control parameters of the continuous time system. This is a digital control method that allows parameters to be calculated, and by using this, a digital control system can be designed as a continuous time system that can be easily linked to a physical image.

〔産業上の利用分野〕[Industrial application field]

本発明はディジタル制御方式に関し、特にディジタル制
御系を連続時間系として設計可能ならしめたものである
The present invention relates to a digital control system, and in particular allows a digital control system to be designed as a continuous time system.

〔従来の技術〕[Conventional technology]

コストの低下、装置のコンパクト化が可能で、ゲイン調
整や制御アルゴリズムの変更が容易といった特徴を有す
ることから、最近の制御装置は従来のアナログ制御から
ディジタル制御に移りつつある。
Recent control devices are shifting from conventional analog control to digital control because it has the characteristics of lower costs, the ability to make the device more compact, and easier gain adjustment and control algorithm changes.

しかし、ディジクル制御であるために、本来連続時間系
である制御対象を、サンプリング周期で離散時間化して
設計しなければならないという煩雑さを有する。
However, since digital control is used, the control target, which is originally a continuous time system, has to be designed in a discrete time manner using a sampling period, which is complicated.

第3図に従来の制御装置の設計方法を示す。FIG. 3 shows a conventional control device design method.

従来の設計方法は、まず、制御対象のモデルの同定を行
い、連続時間系の数学モデルを立てる〔同図の21参照
〕。
In the conventional design method, first, a model of the controlled object is identified, and a continuous-time mathematical model is established [see 21 in the same figure].

次いで、サンプリング定理などからサンプリング周期を
決め、適当な離散時間化の手法を選択して、離散時間系
のモデルを作る〔同図の22参照〕。
Next, the sampling period is determined based on the sampling theorem, etc., and an appropriate method of discretization is selected to create a model of the discrete time system [see 22 in the same figure].

上記作成されたモデルについて離散時間系の解析を行い
、制御パラメータを決める(同図の23参照〕。具体的
には離散時間系のりカッチ方程式を解いて、最適フィー
ドバックゲインを求めたり、Z平面上で極配置を操作す
るなどである。
Analyze the discrete time system for the model created above and determine the control parameters (see 23 in the same figure).Specifically, solve the Norikatti equation for the discrete time system to find the optimal feedback gain, and For example, you can manipulate the pole placement with .

最後に、実際に動作チェックを行い、制御対象の同定を
やり直す場合ば同図の21へ、サンプリング周期の変更
や離散時間系モデルの変更の場合は同図の22へ、フィ
ードバックゲインの調整などの場合は同図の23へ戻り
、以下上記操作を繰り返す。
Finally, if you want to actually check the operation and re-identify the controlled object, go to 21 in the same figure. If you want to change the sampling period or change the discrete time model, go to 22 in the figure. If so, return to step 23 in the figure and repeat the above operations.

このように従来は、ディジタル制御系を設計するに際し
、制御対象の連続時間系モデルを離散時間系のモデルに
変換し、この離散時間系モデルについて解析を行なって
制御パラメータを決定していた。
Conventionally, when designing a digital control system, a continuous time model of the controlled object is converted into a discrete time model, and the discrete time model is analyzed to determine control parameters.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

制御対象は本来連続時間系で動作するものであって、連
続時間系としての解析は物理的な直感と対応するが、離
散時間系の解析は物理的な直感と結びつけにくいこと、
及び解析性自身が連続時間系の解析法に比べて一般的で
なく、設計者にとって扱いに(い等の問題がある。
The controlled object originally operates in a continuous time system, and analysis in a continuous time system corresponds to physical intuition, but analysis in a discrete time system is difficult to connect with physical intuition.
The analyticity itself is less common than continuous-time analysis methods, and there are problems for designers to handle it.

そこで本発明は、ディジクル制御系の設計を、物理的な
イメージと対応しやすい連続時間系を基本に進められる
ようにすることを目的とする。
Therefore, an object of the present invention is to enable the design of a digital control system to be carried out based on a continuous time system that easily corresponds to a physical image.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による設計方法の原理図である。 FIG. 1 is a diagram showing the principle of the design method according to the present invention.

まず、制御対象モデルの同定を行い〔同図の1参照〕、
次いで連続時間系としての解析を行って連続時間系とし
ての制御パラメータを算出する〔同図の2参照〕。
First, identify the model to be controlled [see 1 in the same figure],
Next, analysis is performed as a continuous time system to calculate control parameters as a continuous time system [see 2 in the same figure].

プログラムメモリ上の離散時間系制御アルゴリズムやデ
ータメモリ上のサンプリング周期など、離散時間系特有
の要因の変更の場合は同図の3へ、これ以外の場合は同
図の4で連続時間系の制御パラメータから、離散時間系
の制111Jパラメータへの置き換えを行う。
If you want to change the factors specific to discrete time systems, such as the discrete time control algorithm on the program memory or the sampling period on the data memory, go to 3 in the same figure. Otherwise, go to 4 in the same figure to control the continuous time system. The parameters are replaced with discrete time system 111J parameters.

最後に実際に動作チェックを行い〔同図の4参照〕、そ
の結果から要因に応じて同図の1,2゜3へ戻り、以下
同様の操作を繰り返すことによって、サーボ制御系6の
設計が完了する。
Finally, perform an actual operation check [see 4 in the same figure], and based on the results, return to steps 1, 2 and 3 in the figure depending on the factor, and repeat the same operations to determine the design of the servo control system 6. Complete.

〔作 用〕[For production]

本発明のディジタル制御方式を用いると、連続時間系と
しての一般的な解析による制御パラメータの調整と、離
散時間系特有の要因による調整に分離でき、前者の場合
、同図の1→2−4−5−1or2・・・の順に、ディ
ジタル系であることに煩わされず設計でき、また、後者
の操作は、既に前者で得られた制御パラメータを変更内
容に応じて離散時間系に変換するだけの形式的な処理で
ある。
By using the digital control method of the present invention, it is possible to separate adjustment of control parameters through general analysis for a continuous time system and adjustment due to factors specific to a discrete time system. -5-1 or 2... can be designed without worrying about the fact that it is a digital system, and the latter operation is simply a matter of converting the control parameters obtained in the former to a discrete time system according to the changes. It is a formal process.

従って全体としてみると、連続時間系の解析をもとにデ
ィジタル制御系の設計を容易に行うことができる。
Therefore, overall, it is possible to easily design a digital control system based on analysis of a continuous time system.

〔実 施 例〕〔Example〕

第2図は本発明の一実施例として、DCモータの位置決
め制御系の設計手順を示す図である。
FIG. 2 is a diagram showing a design procedure for a positioning control system for a DC motor as an embodiment of the present invention.

同図に示す如く、本実施例では、まず、DCモータのゲ
インgを同定する〔同図の11参照〕。
As shown in the figure, in this embodiment, first, the gain g of the DC motor is identified [see 11 in the figure].

次いで連続時間系の状態方程式を求め、閉ループ系極配
置をバターワースバクーンに設計する〔同図の12参照
〕。なおここで、x、は位置+X2は速度、Uはモータ
の入力電流、η1.η2はバターワース極を示す。
Next, the equation of state of the continuous time system is determined, and the closed-loop system pole arrangement is designed as Butterworth-Bakuun [see 12 in the same figure]. Here, x is the position + X2 is the speed, U is the input current of the motor, and η1. η2 indicates the Butterworth pole.

状態方程式を離散時間化し、これをディジタル制?11
1のためのアルゴリズムとしてプログラムメモリに書き
込むとともに、サンプリング周期Tについては、変更す
る場合だけデータメモリ上の値を更新する〔同図の13
参照〕。なお、X+”、Xzoは1サンプリング周期で
ある。
Is it possible to convert the equation of state into a discrete time system and convert it into a digital system? 11
1 in the program memory, and update the value in the data memory only when changing the sampling period T [13 in the same figure]
reference〕. Note that X+'' and Xzo are one sampling period.

0次ホールドの場合、連続時間系の極η直と離散時間系
の極λ、の間には、 λ(=exp  (ηi T) の関係が成り立ち、更にλ、からディジタル系のフィー
ドバックゲインf、  (i=1.2)が求まる〔同図
の14参照〕。
In the case of zero-order hold, the relationship λ(=exp (ηi T)) holds between the pole η of the continuous time system and the pole λ of the discrete time system, and furthermore, from λ, the feedback gain f of the digital system, (i=1.2) is found [see 14 in the same figure].

実際に、フィードバックu=−flxl  f、x。In fact, the feedback u=-flxl f, x.

を加えてテストし〔同図の15参照〕、ゲインgの同定
をやり直す場合は同図の11から、閉ループの帯域を変
える時は同図の12へ戻り、またサンプリング周期Tを
変更するときは同図の13から以降をやり直す。
[See 15 in the same figure]. If you want to re-identify the gain g, go to 11 in the same figure. If you want to change the closed-loop band, go back to 12 in the figure. Also, if you want to change the sampling period T, go back to 12 in the figure. Redo the steps starting from 13 in the same figure.

以上により本実施例では連続時間系の設計方法に基づい
て、DCモータの位置決め制御系を設計することができ
、離散時間系としての解析が不要化される。
As described above, in this embodiment, the positioning control system of the DC motor can be designed based on the continuous time system design method, and analysis as a discrete time system becomes unnecessary.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、ディジクル制御系の
設計を、−i的な連続系としての設計モジュールと離散
系特有の設計モジュールに分けて効率よく行うことがで
きる。また連続時間系の制御パラメータを離散時間系へ
変換する処理は形式的なものであり、全体として物理的
な直感と対応しやすい連続時間系を基本に設計を進める
ことができる。
As explained above, according to the present invention, it is possible to efficiently design a digital control system by dividing it into a -i-like continuous system design module and a discrete system-specific design module. Furthermore, the process of converting continuous time system control parameters to discrete time system is a formal process, and overall design can proceed based on the continuous time system, which is easy to correspond to physical intuition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図は上記一実施例の説明図、 第3図は従来の設計手順の原理を示す図である。 図において、lは制御対象のモデル化、2は連続時間系
としての解析、3は離散時間系特有の設計要因の変更、
4は制御パラメータの算出、5はテスト・評価、6はサ
ーボ制御装置、7はディジタル制御系設計支援ツールを
示す。 本発明の原理説明図 第17 パラメータg同定し直し 本発明一実施例の説明図 センサ、アクチュエータへ 従来の制御装置の設計手順 第3図
FIG. 1 is an explanatory diagram of the principle of the present invention, FIG. 2 is an explanatory diagram of the above embodiment, and FIG. 3 is a diagram illustrating the principle of a conventional design procedure. In the figure, l is modeling of the controlled object, 2 is analysis as a continuous time system, 3 is change of design factors specific to discrete time system,
Reference numeral 4 indicates calculation of control parameters, 5 indicates test/evaluation, 6 indicates a servo control device, and 7 indicates a digital control system design support tool. Diagram for explaining the principle of the present invention No. 17 Diagram for re-identifying the parameter g Explanation diagram for an embodiment of the present invention FIG. 3 Design procedure for conventional control devices for sensors and actuators

Claims (1)

【特許請求の範囲】[Claims] 制御対象を同定して得られた数学的モデルに従って前記
制御対象を連続時間系として解析することにより、連続
時間系としての制御パラメータを算出し、離散時間系特
有の設計要因を連続時間系の解析から分離して決定し、
前記連続時間系の制御パラメータから離散、時間系制御
パラメータを算出し、該得られた離散時間系制御パラメ
ータを用いて制御対象の動作をテストし、該テストの評
価結果に基づいて前記制御対象の同定または連続時間系
としての解析以降の操作を繰り返すことにより、ディジ
タル制御系の制御パラメータを求めるようにしたことを
特徴とするディジタル制御方式。
By analyzing the controlled object as a continuous time system according to the mathematical model obtained by identifying the controlled object, the control parameters as a continuous time system are calculated, and the design factors specific to the discrete time system are analyzed in the continuous time system. Separate and determine from
Discrete and time-based control parameters are calculated from the continuous-time control parameters, the operation of the controlled object is tested using the obtained discrete-time control parameters, and the operation of the controlled object is calculated based on the evaluation result of the test. A digital control method characterized in that control parameters of a digital control system are determined by repeating operations after identification or analysis as a continuous time system.
JP20257086A 1986-08-27 1986-08-27 Digital control system Pending JPS6356702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20257086A JPS6356702A (en) 1986-08-27 1986-08-27 Digital control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20257086A JPS6356702A (en) 1986-08-27 1986-08-27 Digital control system

Publications (1)

Publication Number Publication Date
JPS6356702A true JPS6356702A (en) 1988-03-11

Family

ID=16459686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20257086A Pending JPS6356702A (en) 1986-08-27 1986-08-27 Digital control system

Country Status (1)

Country Link
JP (1) JPS6356702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211505B1 (en) 1997-12-25 2001-04-03 Nec Corporation Method and apparatus for checking shape
US6426510B1 (en) 1998-12-07 2002-07-30 Nec Corporation Device and method for inspecting pattern shapes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211505B1 (en) 1997-12-25 2001-04-03 Nec Corporation Method and apparatus for checking shape
US6326606B2 (en) 1997-12-25 2001-12-04 Nec Corporation Method and apparatus for checking shape
US6426510B1 (en) 1998-12-07 2002-07-30 Nec Corporation Device and method for inspecting pattern shapes

Similar Documents

Publication Publication Date Title
Madoński et al. Survey on methods of increasing the efficiency of extended state disturbance observers
Martins Tuning PID controllers using the ITAE criterion
EP2102722B1 (en) Modeling of control systems with open-loop representations and factorization of components
JP4594385B2 (en) A method for generating optimal control problems for industrial processes.
CN114326596A (en) Method and apparatus for simulating machining on a machine tool using a self-learning system
Tavares et al. Flexible work cell simulator using digital twin methodology for highly complex systems in industry 4.0
El-Shafei et al. Implementation of fractional-order PID controller in an industrial distributed control system
Brugnaro et al. Adaptive robotic carving: training methods for the integration of material performances in timber manufacturing
JP4908433B2 (en) Control parameter adjustment method and control parameter adjustment program
Broenink et al. Model-driven robot-software design using integrated models and co-simulation
CN109648556B (en) Mechanical arm position cascade fractional order control method and system based on data driving
US10573034B2 (en) System and method for translation of graphics to newer format using pattern matching
JPS6356702A (en) Digital control system
Abdelbaky et al. Implementation of fractional-order PID controller using industrial DCS with experimental validation
JPH08137508A (en) Modeling device and controller
Zupančič Extension software for real-time control system design and implementation with MATLAB-SIMULINK
JPH01108602A (en) Sequence controller
Kaiser A framework for the generation of robot controllers from examples
Neumerkel et al. Real-time application of neural model predictive control for an induction servo drive
RU2217786C2 (en) Automatic system for controlling manufacturing processes
WO2023286382A1 (en) Operation display system, information processing method, and information processing program
Farahani et al. Modeling and Controller Design of Nonlinear Dynamical Systems Using Extended-Time Delay-Petri Nets Tool
JP2536066B2 (en) Fuzzy modeling control method
Jones et al. Auto-tuning of PI Smith predictor controllers using genetic algorithms
Reshetnikov et al. Intelligent Robust Control of Autonomous Robot: Quantum Self-Organization of Imperfect Knowledge Bases—Experiment