JPS6351623A - Realtime manufacturing, analyzing and evaluating device for crystal - Google Patents

Realtime manufacturing, analyzing and evaluating device for crystal

Info

Publication number
JPS6351623A
JPS6351623A JP19609186A JP19609186A JPS6351623A JP S6351623 A JPS6351623 A JP S6351623A JP 19609186 A JP19609186 A JP 19609186A JP 19609186 A JP19609186 A JP 19609186A JP S6351623 A JPS6351623 A JP S6351623A
Authority
JP
Japan
Prior art keywords
sample
laser
state
diffraction
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19609186A
Other languages
Japanese (ja)
Inventor
Tsutomu Kawamura
力 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19609186A priority Critical patent/JPS6351623A/en
Publication of JPS6351623A publication Critical patent/JPS6351623A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a realtime and simple observation of the process of crystal growth while thermal and atmospheric environment is being changed by a method wherein a diffraction X-ray generator, a laser to be used for heatiang, an oscillator, an optical fiber, a temperature sensor, a gas jetting machine and the like, all of which can be commercially available, are used in the title device. CONSTITUTION:Nd:YAG laser is led to a beam condensing lens 3 by an optical glass fiber 2 from a laser oscilating device 1, and the diameter, which is variable, of the laser beam spot on a sample 4 is set in the range of 0.5-10 mm. Also, the temperature of the sample is measured by an infrared ray temperature sensor 5, the result of which is fed back to the laser oscilating device 1, and it is controlled at the preset temperature. Oxygen, nitrogen, aqueous vapor, ammonia gas and the like are jetted out toward the sample 4, and the sample 4 is brought into the state wherein it is confined in the gas stream. At that time, the air in the neighborhood of the sample is removed, and the sample 4 is in the state that it does not come in contact with the air while it is under experiment. Also, the state of chemical change of the sample caused by heating can be observed by a pattern observing device 9 together with the change in diffraction X-ray irradiation device 8 which is made incident on the sample 4 from an X-ray irradiation device 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は単結晶および多結晶材料の高温における挙動の
追求や、新材料の探索に用いるリアルタイム結晶製作・
解析評価装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to real-time crystal production and use for investigating the behavior of single-crystalline and polycrystalline materials at high temperatures, and for searching for new materials.
Regarding analysis and evaluation equipment.

〔従来の技術〕[Conventional technology]

単結晶および多結晶材料を高温に加へする過程や、それ
らの材料の製作過程等をリアルタイムにX線回折により
評価する従来の装置には、以下にのべるような大きな制
約や欠点があった。たとえば、付加すべき加熱装置が大
体積のため、収集できるデータが室温の場合に比べて著
しく制限されたり、高温保持用の耐熱容器がないために
、最高設定温度が低く抑えられたり、あるいは、測温の
困難さのために、温度制御が不可能であるといった欠点
である。また、特に、空気中以外での実験は大きな制約
を受けていた。何故ならば、試料雰囲気を真空にしたり
、試料室に各種の不活性ガスや反応ガスを導入したりす
ると、そのために、装置の大型化が避けられなくなり、
また、それ等のガス回路系の複雑さのために、肝心のデ
ータの収集が著しく制約されたりするからである。これ
等原因のために、従来の装置では、f@便にリアルタイ
ムに材料探索を行うことはできなかった。
Conventional equipment that evaluates the process of subjecting single-crystalline and polycrystalline materials to high temperatures, the manufacturing process of these materials, etc. using X-ray diffraction in real time has the following major limitations and drawbacks. For example, due to the large volume of the heating device that must be added, the data that can be collected is significantly limited compared to the case at room temperature, or the maximum set temperature is kept low because there is no heat-resistant container for maintaining high temperatures, or The disadvantage is that temperature control is impossible due to the difficulty of temperature measurement. Additionally, experiments in environments other than air were subject to significant restrictions. This is because if you make the sample atmosphere a vacuum or introduce various inert gases or reactive gases into the sample chamber, it becomes inevitable that the equipment becomes larger.
In addition, the complexity of such gas circuit systems significantly limits the collection of essential data. Due to these reasons, it has not been possible to search for materials in real time using conventional devices.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が提供するリアルタイム結晶製作・解析装置とは
、簡便に材料探索を行うためのものである。もっとも、
大がかりにこれを行おうとすると、MBE(分子線エピ
タキシー装置)(ジャーナル・オブ・ツ゛アキューム・
サイエンス・テクノロジー(J、 Vac。
The real-time crystal production/analysis device provided by the present invention is for easily searching for materials. However,
If you try to do this on a large scale, MBE (molecular beam epitaxy equipment) (Journal of
Science and Technology (J, Vac.

Sci、 Technol、、6 (1969)、54
5.)に、その例を見るように、超高真空や大型物理分
析装置との結合を必要とする。しかしながら、材料探索
や新材料発見の殆どの場合には、該材料固有の性質を明
らかにすることが、第一段階の目的であるから、徒らに
、装置の大型化や、雰囲気のきびしい制御等は本来不要
である。
Sci, Technol, 6 (1969), 54
5. ), as shown in the example above, requires coupling with an ultra-high vacuum or large-scale physical analysis equipment. However, in most cases of material exploration and new material discovery, the purpose of the first stage is to clarify the unique properties of the material, so it is unnecessary to increase the size of the equipment and to strictly control the atmosphere. etc. are essentially unnecessary.

本発明の目的は、市販の回折用X線発生装置。The object of the present invention is to provide a commercially available X-ray generator for diffraction.

加熱用レーザ・発振装置、光ファイバー、温度センサー
、ガス噴(2)器等を備えた系を用いて上記目的を簡便
、迅速かつ十分な経済性をもって果せる装置を提供する
ことにある。
The object of the present invention is to provide a device that can accomplish the above objectives simply, quickly, and with sufficient economy using a system equipped with a heating laser/oscillator, optical fiber, temperature sensor, gas jet (2), and the like.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は試料表面にレーザビームを照射して加熱するレ
ーザ発振装置と、試料を含む一定範囲に真空又は特定の
ガス雰囲気を形成する装置と、試料にX線を入射するX
線照射装置と、試料の表面状態の回折X線パターンを観
測する装置とを有することを特徴とするリアルタイム結
晶製作・解析評価装置である。
The present invention consists of a laser oscillation device that heats a sample surface by irradiating it with a laser beam, a device that forms a vacuum or a specific gas atmosphere in a certain area including the sample, and an X-ray device that injects X-rays into the sample.
This is a real-time crystal production/analysis/evaluation device characterized by having a radiation irradiation device and a device for observing the diffraction X-ray pattern of the surface state of a sample.

〔作用〕[Effect]

第1図は本発明の構成概念図である。先ず、Nd:YA
Gレーザがレーザ発振装置1から、光ガラス・ファイバ
ー2によって、集光レンズ3まで導かれた後、被検査試
料4上に焦点が結ばれ、該試料4が加熱される。該試料
4上のレーザ・ビーム・スポットの直径は、0.5m乃
至10+no+の範囲で可変である。一方、赤外線温度
センサー5により、試料温度が測温され、結果はレーザ
・発振装置1にフィード・バックされ、予め設定された
温度に制御される。ラウェ法X線回折のように試料が静
止している場合には、その安定度は±10℃程度である
FIG. 1 is a conceptual diagram of the structure of the present invention. First, Nd:YA
After the G laser is guided from the laser oscillation device 1 to the condenser lens 3 by the optical glass fiber 2, it is focused on the sample to be inspected 4, and the sample 4 is heated. The diameter of the laser beam spot on the sample 4 is variable in the range from 0.5 m to 10+no+. On the other hand, the temperature of the sample is measured by the infrared temperature sensor 5, and the result is fed back to the laser/oscillation device 1, which controls the temperature to a preset temperature. When the sample is stationary as in Laue X-ray diffraction, the stability is about ±10°C.

一方、試料4の被加熱状態は、拡大レンズ6を通してa
察できる。加熱に加えて1本発明では、さらに、雰囲気
制御が可能となる。即ち、試料4の斜上方に設置された
ノズル7からは、酸素、窒素、水蒸気、アンモニア・ガ
スその外、空気中に放出しても、発火性や引火性がなく
、また人体にとって有害でないガスが、試料4に向かっ
て噴射される。その際第1図に示す如く、噴射コーンが
十分試料4を被っている場合には、該試料4は該噴射ガ
スの気流中にあることになる。気流中にない場合は、X
線、レーザ光線、および被検査試料から発する赤外線に
対して、十分透明である耐熱ガラスで構成された豆電球
状の試料支持器(図示路)中に封じ込む、この際、該支
持器内は真空に保たれるか、または、任意のガスにより
封じこまれる。
On the other hand, the heated state of the sample 4 can be seen through the magnifying lens 6.
I can understand it. In addition to heating, the present invention further allows for atmospheric control. In other words, from the nozzle 7 installed diagonally above the sample 4, oxygen, nitrogen, water vapor, ammonia gas, and other gases are not ignitable or flammable, and are not harmful to the human body even if released into the air. is injected toward the sample 4. In this case, as shown in FIG. 1, if the injection cone sufficiently covers the sample 4, the sample 4 will be in the air stream of the injection gas. If not in the airflow, X
The sample is enclosed in a miniature bulb-shaped sample support (the path shown in the figure) made of heat-resistant glass that is sufficiently transparent to radiation, laser beams, and infrared rays emitted from the sample to be inspected. Maintained under vacuum or enclosed by any gas.

前者の場合、試料は空気中に曝されたまま上下あるいは
、左右からガスを高速で噴射され、試料4はガス流中で
閉じ込められた状態になる。その際。
In the former case, gas is injected from above and below or from the left and right at high speed while the sample is exposed to air, and the sample 4 becomes trapped in the gas flow. that time.

試料近辺の空気は排除されて、実験中に該試料4は空気
に接触しない状態となる。また、該試料の加熱による化
学変化の様子は、同時にX線照射装置8から試料4に入
射されるX線の回折X線パターンの変化をパターン1e
ti!11装置9にて’in 5itu’に観測するこ
とができる。また、被加熱試料の急冷時の化学変化を観
測したい場合には、レーザ・ビームの照射を止めると同
時に、先に述べたノズルから水蒸気を噴出させてやれば
よい。
The air near the sample is removed so that the sample 4 does not come into contact with air during the experiment. Furthermore, the state of the chemical change due to heating of the sample is determined by the change in the diffraction X-ray pattern of the X-rays incident on the sample 4 from the X-ray irradiation device 8 at the same time.
Ti! It can be observed 'in 5 itu' with No. 11 equipment 9. Furthermore, if it is desired to observe chemical changes during rapid cooling of a heated sample, water vapor may be ejected from the aforementioned nozzle at the same time as stopping the laser beam irradiation.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

GaAsウェー八を試へとして前述の方法により局部加
熱したところ、GaAs酸化膜が表面に形成された。そ
の際、水蒸気ガスをノズルから吹き付けたところ、酸化
膜の形成が著しく促進された。この酸化膜の結晶状態は
直ちにX線回折パターンの変化として捉えることができ
た。
When a GaAs wafer was locally heated using the method described above, a GaAs oxide film was formed on the surface. At that time, when water vapor gas was sprayed from a nozzle, the formation of an oxide film was significantly promoted. The crystalline state of this oxide film could be immediately detected as a change in the X-ray diffraction pattern.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、従来困難とされていた結
晶製作のプロセスおよび結果を熱的ならびに雰囲気的環
境を変化させながら、リアルタイムに、しかも極めて簡
便に観測でき、したがって材料探索に大きく貢献できる
効果を有するものである。
As described above, according to the present invention, the process and results of crystal production, which were conventionally considered difficult, can be observed in real time and extremely easily while changing the thermal and atmospheric environment, thus greatly contributing to material exploration. It has the effect that it can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概念を示す装置および試料の配置図で
ある。
FIG. 1 is a layout diagram of an apparatus and a sample showing the concept of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)試料表面にレーザビームを照射して加熱するレー
ザ発振装置と、試料を含む一定範囲に真空又は特定のガ
ス雰囲気を形成する装置と、試料にX線を入射するX線
照射装置と、試料の表面状態の回折X線パターンを観測
する装置とを有することを特徴とするリアルタイム結晶
製作・解析評価装置。
(1) A laser oscillation device that irradiates the sample surface with a laser beam to heat it, a device that forms a vacuum or a specific gas atmosphere in a certain area including the sample, and an X-ray irradiation device that injects X-rays into the sample; 1. A real-time crystal production/analysis/evaluation device comprising: a device for observing a diffraction X-ray pattern of a surface state of a sample.
JP19609186A 1986-08-20 1986-08-20 Realtime manufacturing, analyzing and evaluating device for crystal Pending JPS6351623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19609186A JPS6351623A (en) 1986-08-20 1986-08-20 Realtime manufacturing, analyzing and evaluating device for crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19609186A JPS6351623A (en) 1986-08-20 1986-08-20 Realtime manufacturing, analyzing and evaluating device for crystal

Publications (1)

Publication Number Publication Date
JPS6351623A true JPS6351623A (en) 1988-03-04

Family

ID=16352061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19609186A Pending JPS6351623A (en) 1986-08-20 1986-08-20 Realtime manufacturing, analyzing and evaluating device for crystal

Country Status (1)

Country Link
JP (1) JPS6351623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057763A2 (en) * 2000-10-19 2002-07-25 Structural Genomix, Inc. Apparatus and method for identification of crystals by in-situ x-ray diffraction
KR20030000411A (en) * 2001-06-25 2003-01-06 주식회사 에셀텍 Tft-lcd repair method using nd:yag laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057763A2 (en) * 2000-10-19 2002-07-25 Structural Genomix, Inc. Apparatus and method for identification of crystals by in-situ x-ray diffraction
WO2002057763A3 (en) * 2000-10-19 2003-01-23 Structural Genomix Inc Apparatus and method for identification of crystals by in-situ x-ray diffraction
KR20030000411A (en) * 2001-06-25 2003-01-06 주식회사 에셀텍 Tft-lcd repair method using nd:yag laser

Similar Documents

Publication Publication Date Title
JPH0669027B2 (en) Method for forming thin film on semiconductor wafer
CH654711GA3 (en) Process and apparatus for metallising fibres
CA2537190C (en) Method for measuring gaseous species by derivation
US5096739A (en) Ultrafine fiber composites and method of making the same
JPS6351623A (en) Realtime manufacturing, analyzing and evaluating device for crystal
EP0472083A1 (en) Method of forming oxide superconducting thin film
RU2185931C1 (en) Method and apparatus for producing superfine powders of complex composition and mixture compositions
Tanimoto et al. Laser plasma generation from a deuterium ice pellet freely falling within a superconducting magnetic bottle
JP3099539B2 (en) Manufacturing method of artificial diamond powder
Kawakami et al. Tungsten microcone arrays grown using nanosecond pulsed-Nd: YAG laser in a low-pressure He-gas atmosphere
JP2000202384A (en) Foreign matter removal and foreign matter removal apparatus
JPS5961919A (en) Manufacture of thin film
JPH0547636B2 (en)
JPS63226866A (en) Vacuum device
JPS6245306B2 (en)
JPS6395101A (en) Production of ultrafine particle
CN115406915A (en) Method for preparing sample and apparatus for preparing sample
Kwok et al. Synthesis of Carbon Nanotubes on a Moving Substrate by Laser-Induced Chemical Vapor Deposition
JPH03287760A (en) Production of thin film with large area
SU1226206A1 (en) Arrangement for atomizing solid samples
Gerasimenko et al. Modification of CNT arrays morphology by nanosecond laser treatment
JPH04175204A (en) Production of oxide superconductor by physical vacuum deposition method
CN1266107A (en) Apparatus for preparing diamond-like film
Kawaguchi et al. Interaction of wide band gap single crystals with 248 nm excimer laser irradiation. VI. The influence of thermal pretreatment on laser desorption of positive ions from a water-containing ionic crystal (CaHPO 4⋅ 2H 2 O)
Jandeleit et al. Investigation of laser-induced ablation processes and production of microstructures by picosecond laser pulses