JPS634925A - Quality discrimination monitoring of injection molded form - Google Patents

Quality discrimination monitoring of injection molded form

Info

Publication number
JPS634925A
JPS634925A JP14872086A JP14872086A JPS634925A JP S634925 A JPS634925 A JP S634925A JP 14872086 A JP14872086 A JP 14872086A JP 14872086 A JP14872086 A JP 14872086A JP S634925 A JPS634925 A JP S634925A
Authority
JP
Japan
Prior art keywords
pressure
mold
resin
temperature
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14872086A
Other languages
Japanese (ja)
Other versions
JPH0788030B2 (en
Inventor
Tetsuo Fukushima
哲夫 福島
Katsue Kenmochi
剣持 加津衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14872086A priority Critical patent/JPH0788030B2/en
Publication of JPS634925A publication Critical patent/JPS634925A/en
Publication of JPH0788030B2 publication Critical patent/JPH0788030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To permit an easy and correct detection of the quality of an injection molded form, by a method wherein at least two physical data among the physical data of a molder and the physical data of molten resin in a mold are detected to operate a relation with the molded condition of a product. CONSTITUTION:When molten resin, which is reserved at the tip end of an injection screw for an injection molder under a condition shown by a point F in a diagram, is filled into the cavity of a mold at a temperature as it is and a pressure in the mold is 600 kg/cm<2>, then the condition of the resin is changed to the point G in the diagram. In this case, the specific volume of the resin becomes 1.15 cm<3>/g. The resin in the mold is cooled and the condition thereof is shown by the point H in the diagram, thercafter, the specific volume is changed as the temperature thereof is reduced under a condition that the pressure is 1 kg/cm<2>, a molded form is unloaded from the mold at a temperature lower than a glass transition point I, then the resin takes the condition J of a normal temperature finally and the specific volume thereof becomes 1.095S cm<3>/g. In this case, a difference between the specific volumes at the point G and the point J is developed as the volumetric shrinkage of the molded form, therefore, the molded form smaller than the size of the cavity may be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、射出成形品の良否検出方法、特に良品と不良
品との判別を容易にかつ的確に行なうことができる射出
成形品の良否判別モニタリング方法に関するものである
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for detecting the quality of injection molded products, particularly a monitoring method for determining quality of injection molded products that can easily and accurately distinguish between non-defective products and defective products. It is related to.

従来の技術 近年、成形品に要求される寸法精度は厳しくなりつつあ
り、反面、成形加工の自動化、無人化も要望されている
ところから、成形品の的確な自動良否判別が、射出成形
機に求められる傾向にある。
Conventional technology In recent years, the dimensional accuracy required for molded products has become stricter, and on the other hand, automation and unmanned molding processes are also desired. It tends to be in demand.

以下、図面を参照しながら上述した従来の良否判別方法
の一例について説明する。第12図は、特開昭69−7
1836号で提案されている良否判別方法によるスクリ
ュ位置に対する射出圧力を示したもので、曲線1は正常
なもの、曲線2およ3″″−′ び3は異常なものを示している。ここでスクリュのスト
ローク中に比較開始位置と比較終了位置を決めこの区間
内にあるときのみ圧力を監視するものであり、圧力上限
値をHlとすることで曲線2および3の成形品は不良と
して判別することが可能である。
An example of the conventional pass/fail determination method described above will be described below with reference to the drawings. Figure 12 is JP-A-69-7
This figure shows the injection pressure with respect to the screw position according to the pass/fail determination method proposed in No. 1836, in which curve 1 shows the normal one, and curves 2, 3''-' and 3 show the abnormal ones. Here, the comparison start position and comparison end position are determined during the stroke of the screw, and the pressure is monitored only when it is within this interval. By setting the upper pressure limit to Hl, the molded products of curves 2 and 3 are treated as defective. It is possible to determine.

また、特開昭59−194822号に示されるように、
射出成形時の充填工程における金型内圧の変化曲線を一
旦記憶装置に記憶させ、良品が得られた時のショットデ
ータを基準値とするとともに、基準値を設定後の検出値
と前記基準値とを比較してその偏差又はその絶対値を射
出工程中の任意に定めた複数区域内に累積し同累積デー
タが前記複数区域における許容値を越えたとき警報を発
するようにする方法も提案されている。
In addition, as shown in Japanese Patent Application Laid-Open No. 59-194822,
The change curve of mold internal pressure during the filling process during injection molding is temporarily stored in a storage device, and the shot data when a good product is obtained is used as a reference value, and the detected value after setting the reference value and the reference value are A method has also been proposed in which the deviation or its absolute value is accumulated in multiple arbitrarily determined areas during the injection process, and an alarm is issued when the accumulated data exceeds the allowable value in the multiple areas. There is.

発明が解決しようとする問題点 しかしながら上記のような構成では、成形品を良品と判
定する限界条件幅を決定する場合、製品特性(例えば寸
法)を成形上の1つの条件との関係でしか見ず、その1
つの条件が製品特性とじて表れ切らないし、それらの相
関が明確でないため、適正な条件を見出すのが難かしい
Problems to be Solved by the Invention However, with the above configuration, when determining the range of critical conditions for determining a molded product as a non-defective product, product characteristics (for example, dimensions) are only viewed in relation to one molding condition. Part 1
It is difficult to find appropriate conditions because the two conditions are not fully expressed as product characteristics and the correlation between them is not clear.

また適正な限界条件幅が設定されていないと、例えば限
界条件幅が小さすぎる場合には良品であっても不良品と
判定されたり、限界条件幅が太きすぎると良品の中に不
良品がまぎれ込んだりすることになる。
In addition, if an appropriate limit condition width is not set, for example, if the limit condition width is too small, even a good product may be determined to be defective, and if the limit condition width is too wide, some good products may be defective. You will end up getting mixed up.

問題点を解決するための手段 上記問題点を解決するために、本発明の良否判別モニタ
リング方法は、金型中に外部より樹脂を注入充填する成
形方法において、成形品品質に影響を与える成形機の圧
力、速度、温度2時間の物理量、金型内の溶融樹脂の圧
力、速度、温度の物理量の中から少なくとも2つの物理
量を検出してそれらと製品の成形状態との関係を演算す
ることにより、品質に大きく影響を及ぼす現象の発生の
度合いのランク分けを行ない、モニタリングすることを
特徴とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the quality determination monitoring method of the present invention is applied to a molding method in which resin is injected and filled from the outside into a mold. By detecting at least two physical quantities from among the physical quantities of pressure, velocity, and temperature of This method is characterized by ranking and monitoring the degree of occurrence of phenomena that greatly affect quality.

第2の発明としては、さらに前記モニタリングにおいて
良品のランクの設定値と照合することに5 ′−ジ より良否判別を行なうことを特徴とするものである。
A second aspect of the invention is further characterized in that in the monitoring, a quality determination is made based on 5'-ji by comparing it with a set value of a rank of non-defective products.

作  用 本発明は上記した構成により、成形の各ショット毎の品
質に大きく影響を及ぼす現状の発生の度合い(特に寸法
)が、成形品品質に影響を与える成形機の圧力、速度、
温度1時間の物理量、金型内の溶融樹脂の圧力、速度、
温度の物理量のうち少なくとも2つの物理量を検出して
それらと成品の成形状態との関係を演算した結果に基づ
き、より実際に即した状態でランク分けされてモニタリ
ングされるので、成形品の寸法公差をもとに、成形品を
良品と判定する限界条件幅を容易に、かつ確実に設定す
ることができる。
Effect The present invention has the above-described configuration, so that the degree of occurrence of the current situation (especially dimensions), which greatly affects the quality of each shot of molding, is controlled by the pressure, speed, and
Physical quantities of temperature for 1 hour, pressure and speed of molten resin in the mold,
Based on the results of detecting at least two of the physical quantities of temperature and calculating the relationship between them and the molding state of the product, the dimensional tolerance of the molded product can be monitored based on rankings that more closely match the actual situation. Based on this, it is possible to easily and reliably set the limit condition range for determining a molded product as being non-defective.

また、そのようにランクして良品のランクの設定値と照
合することにより、過不足ない適正な限界条件幅に基づ
いて良品の判別を適確に行うことができる。
In addition, by ranking the products in this way and comparing them with the set value of the rank of non-defective products, it is possible to accurately determine non-defective products based on an appropriate limit condition width that is neither too much nor too little.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

6″−ジ 第1図は本発明の良否判別方法により良否判別を行なう
装置の一実施例であり、その射出ユニット、金型、およ
び制御システムを示したシステム構成図である。この射
出ユニットは一般の射出成形機同様に射出スクリュー1
と加熱シリンダ2の間にホンパー3から樹脂材料を供給
し、モータ4の回転をギヤ5とギヤ6で射出スクリュー
1に伝達し、スクリュー溝に沿って樹脂材料を前方に送
りながら混線溶融し、射出スクリュー1の前方に溶融し
た樹脂を貯える。この時方向切換弁7はソレノイド7a
が励磁され、制御バルブ8で設定した圧力の圧油が射出
シリンダe内の空間に満たされており、射出スクリュー
1前方に貯えられた樹脂に生ずる圧力で射出スクリュー
1を押す力が射出ラム11を圧油が押す力に対して大き
くなると、射出スクリュー1は回転しながら後退し、溶
融した樹脂が貯えられる。尚、12はポンプである。
6''-FIG. 1 is a system configuration diagram showing an injection unit, a mold, and a control system of an embodiment of an apparatus for determining pass/fail by the pass/fail determination method of the present invention. Injection screw 1 like a general injection molding machine
A resin material is supplied from a pumper 3 between the pump and the heating cylinder 2, and the rotation of the motor 4 is transmitted to the injection screw 1 by gears 5 and 6, and the resin material is mixed and melted while being fed forward along the screw groove. Molten resin is stored in front of the injection screw 1. At this time, the directional control valve 7 is operated by the solenoid 7a.
is excited, and the space inside the injection cylinder e is filled with pressure oil at the pressure set by the control valve 8, and the force that pushes the injection screw 1 due to the pressure generated in the resin stored in front of the injection screw 1 is applied to the injection ram 11. When the pushing force of the pressure oil increases, the injection screw 1 moves backward while rotating, and the molten resin is stored. Note that 12 is a pump.

然る後、金型13の固定型14と可動型16を型締機構
(図示せず)により閉じて、制御バルブ8で大きな圧力
を設定し相応の流量を許す開度にす7″−″ れば空間1oに高圧の圧油が満たされ、射出ラム11に
大きな力が作用し、射出スクリュー1が前進し、溶融し
た樹脂が、金型内のスプルー16゜キャビティー17に
充填される。本発明では、上記、射出ラム11と射出ス
クリュー1とを合わせて射出駆動体を表現する。上記構
成および動作は一般の射出成形機に共通するものである
が、本発明のこの実施例では、可動型16にキャピテイ
17にのぞんだ先端を有する圧力検出ビン18と、その
端部に当接する圧カドランスジューサ19、およヒ同じ
キャビティ17の更にゲートから遠くの位置にキャビテ
ィ17にのぞんだ先端を有する圧力検出ビン2oと、そ
れに当接する圧カドランスジューサ21が設けられてい
る。この圧力検出ビン18.20と圧カドランスジュー
サ19,21の組み合わせ、もしくは、ピエゾ式の圧力
のトランスジューサのように直接金型に取付けるものを
含めて圧力信号変換手段と本発明では呼ぶ。上記圧カド
ランスジューサ19.21から得られる電気信号を圧力
値として意味のある電気的な信号とするものが圧力検出
器22であり、この圧力検出器22から送られる2つの
圧力信号は圧力差を比較する圧力比較器23と、両方が
同一の圧力値に達する時間を計測するタイマー24とに
送られ、それぞれの圧力差1時間差を演算器26に送る
After that, the fixed mold 14 and movable mold 16 of the mold 13 are closed by a mold clamping mechanism (not shown), and a large pressure is set with the control valve 8 to open the valve 7'' to allow a suitable flow rate. If so, the space 1o is filled with high-pressure oil, a large force acts on the injection ram 11, the injection screw 1 moves forward, and the molten resin fills the sprue 16° cavity 17 in the mold. In the present invention, the above injection ram 11 and injection screw 1 together represent an injection drive body. The above configuration and operation are common to general injection molding machines, but in this embodiment of the present invention, the movable mold 16 is equipped with a pressure detection bottle 18 having a tip extending into the cavity 17, and a pressure detection bottle 18 that comes into contact with the end of the pressure detection bottle 18. A pressure detection bottle 2o having a tip extending into the cavity 17 is provided in the same cavity 17 at a position farther from the gate as well as a pressure detection bottle 2o and a pressure detection bottle 2o that comes into contact with the pressure detection bottle 2o. In the present invention, a combination of the pressure detection bottle 18, 20 and the pressure quadrature transducer 19, 21, or a piezo type pressure transducer that is directly attached to the mold, is referred to as a pressure signal conversion means. The pressure detector 22 converts the electrical signals obtained from the pressure transducers 19 and 21 into meaningful electrical signals as pressure values, and the two pressure signals sent from the pressure detector 22 are A pressure comparator 23 compares the pressure values, and a timer 24 measures the time until both reach the same pressure value, and a one-hour difference between the pressures is sent to a calculator 26.

演算器26では、上記圧力差1時間差と、記憶装置26
に貯えられている成形条件、樹脂材料物性データ、成形
品形状データ等をもとに演算して、成形品の寸法を求め
ランク分けを行なった後に良否の判別を行ない、指令器
27に信号を与える。
The computing unit 26 stores the 1 hour difference in pressure and the storage device 26.
Based on the molding conditions, resin material physical property data, molded product shape data, etc. stored in give.

指令器27は受は取った信号を、反転シュータ−28を
制御する電流に換算して、反転シュータ−28に送る。
The command unit 27 converts the received signal into a current for controlling the reversing shooter 28 and sends it to the reversing shooter 28.

また、同時に表示装置には、各ショット毎の寸法の算出
結果とランク分けを行なった区間の番号を表示する。
At the same time, the display device displays the calculation result of the dimensions of each shot and the number of the section in which the ranking has been performed.

上記構成と金型内の圧力信号変換器の位置と材料物性デ
ータとの関連でどのような動作をするか、次に述べる。
The following describes how it operates in relation to the above configuration, the position of the pressure signal transducer in the mold, and material property data.

第2図は本発明の良否判別方法を適用できる金型の一例
の断面図であり、29は固定側取付板、9ベージ 3oはスプルーブツシュ、31はスプルーブツシュ30
に設けられたスプルー孔、32はランナーストリッパー
プレート、33は固定側型板、34はスプルー孔31と
接続するランナー、35はランナー34にのぞいた圧力
検出ビン、36は圧カドランスジューサ、37は圧力検
出ビン36より後で樹脂が流れる位置に設けられた圧力
検出ビン、38は圧カドランスジューサ、39はランナ
ー34とつながるゲート、40はゲートとつながるキャ
ビティ、41は可動側型板、42は突出ビン、43はス
ペーサ、44.45はエジェクタープレート、46は可
動側取付板である。
FIG. 2 is a sectional view of an example of a mold to which the quality determination method of the present invention can be applied, in which 29 is a fixed side mounting plate, 9 pages 3o are sprue bushes, and 31 is a sprue bush 30.
32 is a runner stripper plate, 33 is a fixed side mold plate, 34 is a runner connected to the sprue hole 31, 35 is a pressure detection bottle seen in the runner 34, 36 is a pressure-quadrant juicer, 37 is a A pressure detection bottle is provided at a position where the resin flows after the pressure detection bottle 36, 38 is a pressure fluid transducer, 39 is a gate connected to the runner 34, 40 is a cavity connected to the gate, 41 is a movable side template, and 42 is a 43 is a spacer, 44 and 45 are ejector plates, and 46 is a movable side mounting plate.

この金型で成形した時の圧力信号は第3図のようになる
。横軸に時間tを、タテ軸に圧力Pをとると圧カドラン
スジューサ36からの信号を圧力検出器22で増幅した
値は曲線Aで圧カドランスジューサ38からの信号を増
幅した値は曲線Bで描かれる。t、はゲートまで樹脂が
充填した時点であり、せまいゲートを通過するため急激
に圧力が上昇する。その後も圧力値は上昇し、キャビテ
10” イに樹脂が充填完了した時点t2 でも急に圧力が上昇
する。t2までを充填工程、t2以降を保圧工程と呼び
、ともに射出工程の中に含まれる。圧力比較器23は曲
線Aと曲線Bの信号を受け、曲線Bで僅かに圧力上昇を
感じた瞬間の曲線Aの圧力値を読み取り、圧力差ΔPを
信号化して演算器に送る。タイマー24は、曲線Aが僅
かに立ち上った時点(即ち圧力検出ビン36に樹脂が触
れた時点)から曲線Bが僅かに立ち上った時点(同様に
圧力検出ビン37に樹脂が触れた時点)までの時間Δt
を計測し演算器25に送る。記憶装置26には、圧力検
出ビン36から圧力検出ビン37までのランナーの長さ
11断面の半径rがインプットされており、この圧力差
422時間Δt。
The pressure signal when molded with this mold is as shown in Figure 3. When time t is plotted on the horizontal axis and pressure P is plotted on the vertical axis, the value obtained by amplifying the signal from the pressure-quadrant juicer 36 by the pressure detector 22 is curve A, and the value obtained by amplifying the signal from the pressure-quadrant juicer 38 is shown by curve A. Depicted by B. t is the time point when the resin is filled up to the gate, and the pressure increases rapidly as the resin passes through the narrow gate. After that, the pressure value continues to rise, and even at time t2, when filling of the resin into the cavity 10'' is completed, the pressure suddenly rises.The period up to t2 is called the filling process, and the period after t2 is called the pressure holding process, and both are included in the injection process. The pressure comparator 23 receives the signals of curve A and curve B, reads the pressure value of curve A at the moment when a slight pressure increase is felt on curve B, converts the pressure difference ΔP into a signal, and sends it to the calculator.Timer 24 is the time from the point at which curve A slightly rises (that is, the point at which the resin touches the pressure detection bottle 36) to the point at which the curve B slightly rises (the point at which the resin touches the pressure detection bottle 37) Δt
is measured and sent to the computing unit 25. The radius r of the cross section of the length 11 of the runner from the pressure detection bin 36 to the pressure detection bin 37 is input into the storage device 26, and this pressure difference 422 hours Δt.

ランナー長l、ランナー断面半径rをもとに、演算器2
6はこのランナー部を通過した樹脂の粘度と、その時の
せん断速度を演算する。即ち、粘度は式(1)に従い、
せん断速度は式(2)に従う。
Based on the runner length l and the runner cross-sectional radius r, the calculator 2
6 calculates the viscosity of the resin that has passed through this runner section and the shear rate at that time. That is, the viscosity is according to formula (1),
The shear rate follows equation (2).

11  ”  ’ 47? せん断速度j−− r・Δを 一方、記憶装置26に、第4図に示すような成形する材
料の粘度と温度とせん断速度の関係をイングツトしてお
けば、例えば、粘度がη1で、その時のせん断速度がj
、と与えられれば、第4図に示すように樹脂温度が20
0℃であることがわかる。毎ショットごとに圧力差ΔP
と時間Δtを検出して、結果として毎ショットのランナ
ー部を通過する温度が検出できる。ここでPmaxは保
圧工程における最大圧力値を示すものである。
11 "' 47? On the other hand, if the relationship between the viscosity, temperature, and shear rate of the material to be molded as shown in FIG. 4 is stored in the storage device 26, for example, the viscosity is η1, and the shear rate at that time is j
, the resin temperature is 20 as shown in Figure 4.
It can be seen that the temperature is 0°C. Pressure difference ΔP for each shot
and the time Δt, and as a result, the temperature passing through the runner portion of each shot can be detected. Here, Pmax indicates the maximum pressure value in the pressure holding process.

また記憶装置26に、第4図に示すような、成形する樹
脂材料のPVT特性を記憶しておけば、成形品重量、ひ
いては成形品の寸法を推定することが可能となる。
Furthermore, if the PVT characteristics of the resin material to be molded are stored in the storage device 26 as shown in FIG. 4, it becomes possible to estimate the weight of the molded product and, by extension, the dimensions of the molded product.

M6図は、非結晶性樹脂の比容積の圧力と温度との関係
をグラフ化したもので、圧力をパラメータとして、温度
と比容積の関係が示されている。
Diagram M6 is a graph showing the relationship between the specific volume of the amorphous resin and the pressure and temperature, and shows the relationship between the temperature and the specific volume using pressure as a parameter.

射出成形機の射出スクリュー先端に貯えられた溶融樹脂
の状態は例えば点F(つ1シ樹脂温度200℃。
The state of the molten resin stored at the tip of the injection screw of an injection molding machine is, for example, point F (resin temperature 200°C).

比容積1 、3cr/Vfl 、圧力I H/cat)
で示されるとする。
Specific volume 1, 3cr/Vfl, pressure IH/cat)
Suppose that it is shown as

そのままの温度で、金型キャビティに充填され、型内圧
力が600 #/crA だとすると点Gの状態をとる
。この時、比容積は1.15cIVg  となる。この
比容積の逆数(すなわち密度)とキャビティの容積とを
掛けたものが成形品重量である。金型内の樹脂は冷却さ
れ、点Hの状態(すなわち、樹脂温度126℃、圧力1
 ky/cril  、比容積1.16)を示し、この
後は圧力1 #/crlの状態で、温度低下とともに比
容積が変化し、ガラス転移点■より低い温度で成形品は
型から取シ出され、最終的には常温の状態■(圧力1 
#/cr;f  、温度26℃、比容積1.09esc
rtfyy>になる。この時、点Gと点Iの比容積の差
が成形品の体積収縮となって現われ、キャビティ寸法よ
り小さい成形品となる。
If the mold cavity is filled at the same temperature and the pressure inside the mold is 600 #/crA, the state at point G will be taken. At this time, the specific volume is 1.15cIVg. The weight of the molded product is obtained by multiplying the reciprocal of this specific volume (ie, density) by the volume of the cavity. The resin in the mold is cooled to a state at point H (i.e. resin temperature 126°C, pressure 1
ky/cril, specific volume 1.16), and after this, the specific volume changes as the temperature decreases at a pressure of 1 #/crl, and the molded product is removed from the mold at a temperature lower than the glass transition point. and finally at room temperature (pressure 1
#/cr;f, temperature 26℃, specific volume 1.09esc
rtfyy>. At this time, the difference in specific volume between points G and I appears as volumetric shrinkage of the molded product, resulting in a molded product smaller than the cavity dimension.

実際に寸法を求める場合は、既に得られた溶融樹脂温度
Tmと、ピーク圧力として検出した5P−Pmax を
用いて、以下の溶融状態でのPVT関係式により、溶融
樹脂の比容積Vを求める。
When actually determining the dimensions, the specific volume V of the molten resin is determined by the following PVT relational expression in the molten state using the already obtained molten resin temperature Tm and 5P-Pmax detected as the peak pressure.

13″−′ V−に1.十に2.、T+に6.−P、T2ここで V
−比容積CcrV9) T−溶融樹脂温度(℃) P−充填完了後のピーク圧(bar) Kls−に8s−材料定数 この比容積V(7/g)  とキャビティーの容積v 
(d )より成形品の重量Wを得ることができる。
13''-' 1. to 2. to V-, 6.-P to T+, T2 where V
- Specific volume CcrV9) T - Melt resin temperature (°C) P - Peak pressure after completion of filling (bar) Kls - 8s - Material constant This specific volume V (7/g) and cavity volume v
The weight W of the molded article can be obtained from (d).

W=v・1/′v   ・・・・・・・・・・・・・・
・・・・・・・・・(2)次に、常温TGと、大気圧P
Gを用いて、以下のガラス状態でのPVT関係式より、
ガラス状態・・・・・・・・・・・・・・・・・・・・
・・・・(3)ここで vG−ガラス状態での比容積(
d/g)TG−常温(℃) PG−大気圧(bar) ここで得られた比容積vGと溶融時の比容積■との差が
成形品の体積収縮となって現われる。す14” なわち収縮後の体積VGは、ガラス状態での比容積■G
と既に求めた重量Wから vG:W@VG       ・・・・・・中・・・・
(4)として求められる。この場合の体積収縮率をαと
すると、aは a = V G/V         ・・・・・・・
・・・・・・・・(6)で表現できる。直方体の成形体
が3次元の方向に一様に収縮すると仮定すると、ある−
辺の寸法l′は、キャビティーの寸法をlとすると、4
′−3f″□1(6) として求められる。ただし前記に1s−に88.v、l
および(1)〜(6)式は、記憶装置内にメモリーされ
ているものである。
W=v・1/′v・・・・・・・・・・・・・・・
・・・・・・・・・(2) Next, the room temperature TG and the atmospheric pressure P
Using G, from the following PVT relational expression in the glass state,
Glass condition・・・・・・・・・・・・・・・・・・
...(3) Here, vG - specific volume in glass state (
d/g) TG - Normal temperature (°C) PG - Atmospheric pressure (bar) The difference between the specific volume vG obtained here and the specific volume (■) at the time of melting appears as volumetric shrinkage of the molded article. 14" In other words, the volume after contraction VG is the specific volume in the glass state ■G
From the already calculated weight W, vG: W@VG ......middle...
(4). If the volumetric shrinkage rate in this case is α, then a = V G/V ・・・・・・・・・
・・・・・・・・・It can be expressed as (6). Assuming that the rectangular parallelepiped molded body contracts uniformly in three-dimensional directions, there is a -
The side dimension l' is 4, where the cavity dimension is l.
'-3f''□1(6) However, in the above, 1s- is 88.v, l
and equations (1) to (6) are stored in the storage device.

良否判別を行なう場合は、前記の方法で数ショット成形
した場合の平均寸法l′を求め、そのデータを基本デー
タ4゜とし、loを適当な区間数mに分割する。loO
値を中心として、子方向に487m だけ大きい区間を
+1.487m より大きく2・lO//m より小さ
い区間を+2として順次、+20程度1で区間のナンバ
リングを行ない、マ16−シ イナス方向も同様に一20程度までのナンノ(リングを
行なって、クラス分けの区間の設定を行なうloを設定
した後は、各ショットの寸法をアウトプットするととも
に、ナンバリングを行なった区間のどこに属するのかも
同時にアウトプットする。
When making a quality judgment, the average dimension l' of several shots molded using the above method is determined, the data is taken as basic data 4°, and lo is divided into an appropriate number of sections m. loO
With the value as the center, sections larger by 487m in the child direction are +1.487m, sections larger than 2・lO//m are +2, and sections are numbered sequentially by 1 around +20, and the same goes for the minus direction. After setting the nanno (ring) to about 120 and setting the classification section, it outputs the dimensions of each shot and also outputs which part of the numbered section it belongs to. do.

そして、記憶装置に入力されている寸法規格との比較を
して良否判別をする。この良否判別を行なう場合の、成
形サイクルタイムに対応する。各物理量の検出と演算の
流れを第6図のフローチ+ −トに示している。
Then, it is compared with the dimensional standards input into the storage device to determine whether it is good or bad. This corresponds to the molding cycle time when performing this quality determination. The flow chart of FIG. 6 shows the flow of detection and calculation of each physical quantity.

具体的な良否判別の例を以下に説明する。第7図には、
成形した成形品の形状を示している。47はゲートであ
りaが検出する寸法である。
A specific example of quality determination will be described below. In Figure 7,
It shows the shape of the molded product. 47 is a gate, and a is the size to be detected.

このとき10ショット程度の平均寸法が9.89であっ
たところからl。=9 、89wLとし、区間分割数を
m = 10 、 OOQ  として、プラス方法マイ
ナス方法にそれぞれ20区間を設定した、表1に区間の
範囲と区間番号を示す。
At this time, the average size of about 10 shots was 9.89, so 1. = 9, 89 wL, the number of section divisions is m = 10, OOQ, and 20 sections are set for each of the plus method and the minus method.Table 1 shows the section ranges and section numbers.

第1表 区間分割数m=10,000区間幅t。/m= 0.0
0098917” 成形を1000ショット行ない、そのとき、どの区間に
判別されたかを集計した結果を第8図に示す。バラツキ
はプラス方向、マイナス方向それぞれ、設定区間の11
番目までにはいっている。分割する区間数mは、成形品
形状等により、適正な数に決定されねばならないが、成
形品の寸法バラツキの分布が、プラス方向、マイナス方
向それぞれ、゛10区間分程度に納まるようにすれば良
好な結果が得られた。第9図は、成形後のサンプル全数
を実際に寸法測定したときの寸法のバラツキを示したも
のであり、この分布は前記、判別装置による判別結果と
若干の相違がある。その原因は、判別装置の感度による
ものと考えられるところから、両者の相違の解析を行な
った結果、ある規則性をもって差が生じていることが判
明した。
Table 1 Number of section divisions m = 10,000 section width t. /m=0.0
0098917'' Molding was performed for 1000 shots, and the results of which sections were determined at that time are shown in Figure 8.The variations are in the positive direction and negative direction, respectively, in 11 of the set sections.
I'm up to number one. The number m of sections to be divided must be determined to be an appropriate number depending on the shape of the molded product, etc., but if the distribution of dimensional variations in the molded product is within about 10 sections in each of the positive and negative directions. Good results were obtained. FIG. 9 shows the variation in dimensions when all the samples after molding were actually measured, and this distribution is slightly different from the discrimination results by the discrimination device described above. The reason for this is thought to be the sensitivity of the discrimination device, and as a result of analyzing the differences between the two, it was found that the differences occur with a certain regularity.

第10図は、前記判別結果と実際に寸法測定した結果に
差が生じることの原因を示すためのグラフであるが、こ
のように判別を行なう場合、実際の寸法の属するランク
が、nである場合その寸法をnとして判断する場合が6
0係、n+1のランク18” ’ として判断する場合が4o% r n+2のランクとし
て判断する場合が9%、n+1のランクとして判断する
場合が1係程度あるものと考えられる。
FIG. 10 is a graph showing the cause of the difference between the above discrimination result and the result of actual dimension measurement. When discrimination is performed in this way, the rank to which the actual dimension belongs is n. If the size is determined as n, then 6
It is thought that there are 4% r cases where the rank is determined to be 0, n+1 rank is 18''', 9% are determined to be the rank n+2, and about 1% are determined to be the rank n+1.

すなわち、判別を行なう際には、この感度を充分把握し
ておく必要がある。
That is, when making a discrimination, it is necessary to fully understand this sensitivity.

以上の結果から、判別の際の誤差が(n+1)あること
が判明したため製品規格に対して片側3区間分だけ、良
品として判別する範囲を狭くする必要がある。
From the above results, it has been found that there is an error (n+1) in the determination, so it is necessary to narrow the range for determining a good product by three sections on one side with respect to the product standard.

第11図は実際に、製品規格に対して片側3区間分づつ
、良品として判別する区間を狭くして良否判別を行なっ
た後、不良品として判別された成形品の中にどの程度の
良品が含まれているか、また良品の中での実際の寸法の
分布はどうなっているかを示したものである。この場合
、真の不良率0.25%に対して、良否判別装置で不良
と判別したのは4.296%であり、良品の4.o4e
%が不良と判断されているが、良品中に不良品が入る確
率は0%でアシ、無検査で次工程へ流すことができる。
Figure 11 shows how many non-defective products were found among the molded products that were determined to be defective after the product standard was narrowed down by three sections on each side to determine pass/fail. It shows whether it is included and what the actual size distribution is among non-defective products. In this case, compared to the true defective rate of 0.25%, the pass/fail discriminator judged 4.296% as defective, which is 4.296% for non-defective products. o4e
% are determined to be defective, but the probability that a defective product will be found among non-defective products is 0%, so it can be passed on to the next process without inspection.

19” ’ 1だ、ランク分けしてモニタリングする品質としては、
樹脂温度と流速、あるいは樹脂温度とレイノズル数を基
に演算を行なって求めるフローマークの発生の度合や、
樹脂温度とピーク圧力を基に演算を行なって求めるパリ
、ショートショットがあり、本判別方法は、成形品の寸
法のみでなく、広い範囲のモニタリング、および良否判
別を行なうことができる。
19"' 1. As for the quality to be ranked and monitored,
The degree of occurrence of flow marks, which is determined by calculations based on resin temperature and flow velocity, or resin temperature and Raynozzle number,
There is Paris and short shot, which are calculated based on the resin temperature and peak pressure, and this judgment method can monitor not only the dimensions of the molded product but also a wide range and determine whether it is good or bad.

発明の効果 本発明は前記構成および作用を有するので次のような効
果を得ることができる。
Effects of the Invention Since the present invention has the configuration and operation described above, the following effects can be obtained.

■ サンプリングデータから各ショットの品質の推定が
成形機や金型内の成形に関与する少なくとも2つ以上の
物理量と成形状態との関係の演算値に基づき実際に即し
て行えるため、的確な良否判別ができ、無検査で次工程
に流すことができる。
■ The quality of each shot can be estimated from sampling data based on the calculated values of the relationship between the molding state and at least two physical quantities involved in molding in the molding machine or mold, allowing accurate quality estimation. It can be identified and passed on to the next process without inspection.

■ 成形品の寸法公差にあわせて、良否判別の幅を設定
することができるので、良否判別条件設定が容易である
■ Since the width of the pass/fail judgment can be set according to the dimensional tolerance of the molded product, it is easy to set the pass/fail judgment conditions.

■ 成形後に、他の部品と嵌合全行なうような場合他の
部品の寸法バラツキを考慮して、寸法によって等級分け
をしておくことにより、スムーズな嵌合が実現できる。
■ When fully fitting other parts after molding, smooth fitting can be achieved by taking into account the dimensional variations of other parts and grading them according to size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における良否判別方法で、良
否判別を行なう装置のシステム構成図、第2図は第1図
のシステムに適用可能な金型の一例の断面図、第3図は
第2図の圧カドランスジューサで得られる圧力信号のグ
ラフ、第4図は樹脂の粘度と温度とせん断速度の関係の
一例を示したグラフ、第6図は樹脂の比容積と温度と圧
力との関係を示したグラフ、第6図は本発明一実施例の
良否判定のフローチャート図、第7図は良否判別の実験
を行なった成形品の斜視図、第8図は成形を1000シ
ョット行なった際に判断装置によシフラス分けを行なっ
た結果のヒストグラム図、第9図は前記1000シヨツ
トの寸法を実測した結果のヒストグラム図、第10図は
クラス分けを行なう場合に生ずる誤差の程度を示したヒ
ストグラ21″−′ ム図、第11図は本発明の一実施例の判別装置により、
良品、不良品として判別された成形品の実際の寸法の分
布図、第12図は従来の良否判別方法のスクリュー位置
と圧力の関係を示した線図である。 1・・・・・射出スクリュー、13・・・・・・金型、
18゜2o・・・・・圧力検出ビン、22・・・・・圧
力検出器、19.21・・・・・・圧カドランスジュー
サ、25・・・・・・演算器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
−−11とZ2リュー f9.21−−− q  l−7ンスシz−j第8図 1−ン六(τ+m) 第9図 す3k<mJ n±f−−−4[1% 第11図 0、I25%  Q023%    95704%  
 2.023%  0.126Z第12図 □スクリエ位I
Figure 1 shows a system configuration diagram of an apparatus for determining quality according to an embodiment of the present invention, and Figure 2 is a sectional view of an example of a mold applicable to the system shown in Figure 1. Figure 2 is a graph of the pressure signal obtained with the pressure quadrangle juicer, Figure 4 is a graph showing an example of the relationship between resin viscosity, temperature, and shear rate, and Figure 6 is the resin specific volume, temperature, and pressure. Figure 6 is a flowchart of the quality determination in one embodiment of the present invention, Figure 7 is a perspective view of the molded product on which the quality determination experiment was conducted, and Figure 8 is the result of 1000 shots of molding. Figure 9 is a histogram diagram of the results of actually measuring the dimensions of the 1000 shots, and Figure 10 shows the degree of error that occurs when classifying. The histogram 21″-′ shown in FIG.
FIG. 12, which is a distribution diagram of the actual dimensions of molded products determined as good or defective, is a diagram showing the relationship between screw position and pressure in the conventional pass/fail determination method. 1...Injection screw, 13...Mold,
18゜2o...Pressure detection bottle, 22...Pressure detector, 19.21...Pressure quadrangle juicer, 25...Calculator. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
--11 and Z2 Liu f9.21 --- q l-7 scene z-j Figure 8 1-6 (τ+m) Figure 9 3k<mJ n±f---4 [1% Figure 11 0, I25% Q023% 95704%
2.023% 0.126Z Fig. 12 □ Screen position I

Claims (2)

【特許請求の範囲】[Claims] (1)金型中に外部より樹脂を注入充填する成形方法に
おいて、成形品品質に影響を与える成形機の圧力、速度
、温度、時間の物理量、金型内の溶融樹脂の圧力、速度
、温度の物理量の中から少なくとも2つの物理量を検出
してそれらと製品の成形状態との関係を演算することに
より、品質に大きく影響を及ぼす現象の発生の度合いを
数値化してランク分けを行ないモニタリングすることを
特徴とする射出成形品の良否判別モニタリング方法。
(1) In a molding method in which resin is injected into a mold from the outside, the physical quantities of the pressure, speed, temperature, and time of the molding machine that affect the quality of the molded product, and the pressure, speed, and temperature of the molten resin in the mold By detecting at least two physical quantities from among the physical quantities and calculating the relationship between them and the molding state of the product, the degree of occurrence of phenomena that significantly affect quality is quantified, ranked, and monitored. A monitoring method for determining the quality of injection molded products.
(2)金型中に外部より樹脂を注入充填する成形方法に
おいて、成形品品質に影響を与える成形機の圧力、速度
、温度、時間の物理量や、金型内の溶融樹脂の圧力、速
度、温度の物理量の中から少なくとも2つの物理量を検
出してそれらと製品の成形状態との関係を演算すること
により、品質に大きく影響を及ぼす現象の発生の度合い
を数値化してランク分けを行ないモニタリングして、良
品のランクの設定値と照合することにより良否判別を行
なうことを特徴とする射出成形品の良否判別モニタリン
グ方法。
(2) In a molding method in which resin is injected into a mold from the outside, physical quantities such as the pressure, speed, temperature, and time of the molding machine that affect the quality of the molded product, as well as the pressure and speed of the molten resin in the mold, By detecting at least two of the physical quantities of temperature and calculating the relationship between them and the molding state of the product, we quantify and rank the degree of occurrence of phenomena that significantly affect quality for monitoring. A monitoring method for determining the quality of an injection molded product, characterized in that the quality is determined by comparing it with a set value of the rank of a non-defective product.
JP14872086A 1986-06-25 1986-06-25 Method for monitoring the quality of injection molded products Expired - Lifetime JPH0788030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14872086A JPH0788030B2 (en) 1986-06-25 1986-06-25 Method for monitoring the quality of injection molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14872086A JPH0788030B2 (en) 1986-06-25 1986-06-25 Method for monitoring the quality of injection molded products

Publications (2)

Publication Number Publication Date
JPS634925A true JPS634925A (en) 1988-01-09
JPH0788030B2 JPH0788030B2 (en) 1995-09-27

Family

ID=15459090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14872086A Expired - Lifetime JPH0788030B2 (en) 1986-06-25 1986-06-25 Method for monitoring the quality of injection molded products

Country Status (1)

Country Link
JP (1) JPH0788030B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208114A (en) * 1988-02-16 1989-08-22 Toyota Motor Corp Resin temperature control device of injection molding machine
JPH0278516A (en) * 1988-06-23 1990-03-19 Fanuc Ltd Quality discriminating method of molded product in injection molding machine
JPH03266621A (en) * 1990-03-16 1991-11-27 Toyo Mach & Metal Co Ltd Injection molding machine
WO1991018729A1 (en) * 1990-06-01 1991-12-12 Fanuc Ltd Method of determining acceptability of products of injection molding machine
JPH047123U (en) * 1990-05-09 1992-01-22
JPH04173316A (en) * 1990-11-07 1992-06-22 Matsushita Electric Ind Co Ltd Non-defective molded product distinguishing method for injection molding machine
JPH05177682A (en) * 1991-12-28 1993-07-20 Nissei Plastics Ind Co Controller for molding machine
JPH07256711A (en) * 1994-03-22 1995-10-09 Japan Steel Works Ltd:The Method and apparatus for estimating resin pressure in injection mold
US7117050B2 (en) 2002-11-08 2006-10-03 Toshiba Kikai Kabushiki Kaisha Management supporting apparatus, management supporting system, management supporting method, management supporting program, and a recording medium with the program recorded therein
WO2021215222A1 (en) * 2020-04-24 2021-10-28 株式会社ジェイテクト Molding system, anomaly prediction device, anomaly prediction method, program, and trained model
JP2023022904A (en) * 2021-08-04 2023-02-16 株式会社笠原成形所 Injection molding machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208114A (en) * 1988-02-16 1989-08-22 Toyota Motor Corp Resin temperature control device of injection molding machine
JPH0278516A (en) * 1988-06-23 1990-03-19 Fanuc Ltd Quality discriminating method of molded product in injection molding machine
JPH03266621A (en) * 1990-03-16 1991-11-27 Toyo Mach & Metal Co Ltd Injection molding machine
JPH047123U (en) * 1990-05-09 1992-01-22
WO1991018729A1 (en) * 1990-06-01 1991-12-12 Fanuc Ltd Method of determining acceptability of products of injection molding machine
US5283018A (en) * 1990-06-01 1994-02-01 Fanuc Ltd. Product acceptance/rejection judgement method for an injection molding machine
JPH04173316A (en) * 1990-11-07 1992-06-22 Matsushita Electric Ind Co Ltd Non-defective molded product distinguishing method for injection molding machine
JPH05177682A (en) * 1991-12-28 1993-07-20 Nissei Plastics Ind Co Controller for molding machine
JPH07256711A (en) * 1994-03-22 1995-10-09 Japan Steel Works Ltd:The Method and apparatus for estimating resin pressure in injection mold
US7117050B2 (en) 2002-11-08 2006-10-03 Toshiba Kikai Kabushiki Kaisha Management supporting apparatus, management supporting system, management supporting method, management supporting program, and a recording medium with the program recorded therein
WO2021215222A1 (en) * 2020-04-24 2021-10-28 株式会社ジェイテクト Molding system, anomaly prediction device, anomaly prediction method, program, and trained model
JP2023022904A (en) * 2021-08-04 2023-02-16 株式会社笠原成形所 Injection molding machine

Also Published As

Publication number Publication date
JPH0788030B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
EP1439046B1 (en) Automated molding technology for thermoplastic injection molding
Agrawal et al. Injection‐molding process control—A review
CN109501185A (en) Injection molding process on-line monitoring method
CN102642286A (en) Fully-electric ultra-high speed injection molding PVT (Pressure Volume Temperature) online measurement and control method
JPS634925A (en) Quality discrimination monitoring of injection molded form
JP2018171863A (en) Injection molding machine, and information processing apparatus for injection molding
US4850217A (en) Adaptive process control for injection molding
EP0594846A1 (en) Method of determining load in injection molding machine
JPH03268912A (en) Evaluation device and evaluation method for molding in injection molding machine
JP2006341540A (en) Injection controlling method of injection molding machine
JPH0322286B2 (en)
JP3439308B2 (en) Prediction method of pressure loss in mold cavity and injection molding machine using it
TWI588006B (en) Injection molding machine clamping force setting method and system
US20060110489A1 (en) Apparatus for measuring separation of mold parts
JPS62144916A (en) Monitoring process for resin molding and its device
JPS60107315A (en) Measuring method of injection pressure
TW202031456A (en) Injection quality control method of injection molding machine and system thereof comprising an injection molding machine and a quality calculation module for monitoring injection quality and providing instant alarms
Chen et al. Pressure-based methodology for online monitoring of melt quality during injection molding process
Pontes et al. Assessment of the ejection force in tubular injection moldings
Nunn et al. Adaptive process control for injection molding
CN113927855B (en) Injection molding cavity pressure rotation mode prediction method based on gray correlation analysis
JPS6246615A (en) Injection molding and device thereof
CN117841316A (en) In-mold polymer flow state detection method based on filling process pressure integration
AU738181B2 (en) Automated molding technology for thermoplastic injection molding
JPS63114618A (en) Method for detecting operating state of injection molder