JPS634733A - Fault detecting and eliminating method for optical communication system - Google Patents

Fault detecting and eliminating method for optical communication system

Info

Publication number
JPS634733A
JPS634733A JP61146987A JP14698786A JPS634733A JP S634733 A JPS634733 A JP S634733A JP 61146987 A JP61146987 A JP 61146987A JP 14698786 A JP14698786 A JP 14698786A JP S634733 A JPS634733 A JP S634733A
Authority
JP
Japan
Prior art keywords
optical
node
signal
conversion block
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61146987A
Other languages
Japanese (ja)
Other versions
JPH0720128B2 (en
Inventor
Yutaka Matsuda
裕 松田
Teruhisa Inoue
照久 井上
Yuusaku Himono
桧物 雄作
Kei Inoue
圭 井上
Shoji Hara
昇司 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61146987A priority Critical patent/JPH0720128B2/en
Publication of JPS634733A publication Critical patent/JPS634733A/en
Publication of JPH0720128B2 publication Critical patent/JPH0720128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To surely execute the discrimination whether or not its own station node is faulty by stopping power supply to an electrooptic conversion block for a period different from each node if a fault signal takes place consecutively in an optical transmission line so as to keep the transmission signal output of all nodes at a no signal until the fault detection for all the nodes is finished. CONSTITUTION:In detecting the occurrence of a fault signal in an optical transmission line 4 consecutively for the 1st prescribed time T0, a control section 10 stops the power supply to the elecrooptic conversion block 12b for the 2nd prescribed time Ti specific to the said node and keeps the transmission signal output at no signal while supervising the signal state of the line 4 and restarts the power suply to the block 12b. Then the section 10 discriminates the presence of the occurrence of the faulty signal in the line 4 just after the restart to execute the fault detection of the said node and restarts the transmission output after the 3rd prescribed time T1 sufficient for the compression of the fault detection to all the other nodes N1-Nn while the transmission signal output is kept to no signal if the fault of the said node is not detected.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、複数のノードがスターカプラを有する光伝
送路によって接続される光通信システムの障害検知・除
去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fault detection and removal method for an optical communication system in which a plurality of nodes are connected by an optical transmission path having a star coupler.

(従来の技術及びその問題点) 従来、複数のノードを、例えばパンシブスターカプラを
有する光伝送路によって接続し、ノード間でデータの交
換をするスター型光通信システムが知られている。第5
図は従来の光通信システムの全体構成を示し、複数のノ
ード1.2a〜2Cがパフシブスターカプラ3を介し光
伝送路4で互いに接続されている。従来の光通信システ
ムではこれらの複数のノード1,2a〜2Cの内、特定
のノードlが監視局となり、常時光伝送路4の信号状態
を監視して故障したノードの電源を遮断し、ネットワー
クから故障したノードを除去するようにしてシステム全
体が通信不能となる事態を回避している。より具体的に
は、監視局のノード1は、第6図に示すように、ノード
1の固有の制御を司る中央制御部10と、ノード間のデ
ータ通信の制御を司る通信制御部11と、光フアイバケ
ーブルからなる光伝送路4に接続され、該光伝送路から
入力する光信号を電気信号に変換する光・電気変換ブロ
ック12a及び通信制御部11からの電気信号を光信号
に変換して他ノードへの伝送信号を前記光伝送路4に出
力する電気・光変換ブロック12bからなる光送受信部
12と、電源13と、及び中央制御部IOにより作動制
御される電源スィッチ14とで構成され、中央制御部1
0、通信制御部11及び光送受信部12の光・電気変換
ブロック12aは電rA13から直接給電線15を介し
て給電され、光送受信部12の電気・光変換ブロック1
2bは電tA13から給電線16及び電源スィッチ14
を介して給電される。
(Prior Art and its Problems) Conventionally, a star type optical communication system is known in which a plurality of nodes are connected by, for example, an optical transmission path having a pensive star coupler, and data is exchanged between the nodes. Fifth
The figure shows the overall configuration of a conventional optical communication system, in which a plurality of nodes 1.2a to 2C are connected to each other by an optical transmission line 4 via a puffy star coupler 3. In the conventional optical communication system, a specific node l among these plurality of nodes 1, 2a to 2C acts as a monitoring station, constantly monitors the signal state of the optical transmission line 4, shuts off the power of a failed node, and maintains the network. By removing the failed node from the network, a situation where the entire system becomes unable to communicate is avoided. More specifically, as shown in FIG. 6, the monitoring station node 1 includes a central control unit 10 that controls specific control of the node 1, a communication control unit 11 that controls data communication between nodes, An optical/electrical conversion block 12a is connected to an optical transmission line 4 made of an optical fiber cable and converts an optical signal input from the optical transmission line into an electrical signal, and an optical/electrical conversion block 12a converts an electrical signal from the communication control unit 11 into an optical signal. It is composed of an optical transmitting/receiving section 12 consisting of an electrical/optical conversion block 12b that outputs a transmission signal to another node to the optical transmission line 4, a power source 13, and a power switch 14 whose operation is controlled by the central control section IO. , central control unit 1
0, the optical/electrical conversion block 12a of the communication control unit 11 and the optical transceiver 12 is supplied with power from the electric rA 13 directly via the power supply line 15, and the optical/electrical conversion block 1 of the optical transceiver 12 is
2b is the power supply line 16 and the power switch 14 from the electric tA13
Powered via.

一方、他のノード2a〜2cは、第7図に示すように、
各ノード2a  (2b、2c)の固有の制j′nを司
る中央制御部10°と、ノード間のデータ通信の制御を
司る通信制御部11’と、前記光伝送路4に接続され、
伝送信号の電気・光変換及び光・電気変換を行う、第6
図の光送受信部12と類似の光送受信部12°と、電源
13’と、及び電源スィッチ14°とで構成され、中央
制御部10゛は電源13°から給電線15°を介して直
接給電され、通信制御部11’及び光送受信部12′は
電源スィッチ14’及び給電線16’を介して給電され
る。そして、各ノード2a  (2b、2c)の電源ス
ィッチ14°は電源スイツチ制御線5a(5b、  5
 c)を介して監視局ノード1の中央制御部lOの出力
側に夫々接続され、監視局ノードlの中央制御部10に
より夫々作動制御される。
On the other hand, the other nodes 2a to 2c, as shown in FIG.
A central control unit 10° that controls the unique control of each node 2a (2b, 2c), a communication control unit 11' that controls data communication between nodes, and a central control unit 11' that is connected to the optical transmission line 4,
The sixth section performs electrical-to-optical conversion and optical-to-electrical conversion of transmission signals.
It is composed of an optical transmitter/receiver 12° similar to the optical transmitter/receiver 12 shown in the figure, a power supply 13', and a power switch 14°, and the central control unit 10' is directly supplied with power from the power supply 13° via a power supply line 15°. The communication control section 11' and the optical transmitting/receiving section 12' are supplied with power via a power switch 14' and a power supply line 16'. The power switch 14° of each node 2a (2b, 2c) is connected to the power switch control line 5a (5b, 5
c) are respectively connected to the output side of the central control unit 10 of the monitoring station node 1, and their operation is controlled by the central control unit 10 of the monitoring station node 1.

監視局ノードlの中央制御部lOは、光送受信部12の
光・電気変換ブロック12a及び通信制御部11を介し
て入力する光伝送路4の信号状態を常に監視しており、
光伝送路4が連続光、同期のとれない不規則な発光等の
異常信号で充満され、ノード間の通信ができない状態に
あると判定した場合、中央制御部lOはTi源スイッチ
制御線5a〜5C及び18にスイッチ切換信号を順次出
力し、監視局ノードl以外のノード2a〜2cの各通信
制御部11“及び光送受信部12°の給電を一定時間に
亘って順次遮断した後、自局の光送受信部12の電気・
光変換ブロック12bの給電も一定時間に亘って遮断す
る。そして、この給電遮断した間の光伝送路4の信号状
態に異常がなくなれば、当該給電を遮断したノードが障
害ノードであると認定して、当該ノードの給電を停止し
た状態に保持し、該故障ノードをシステムから除去して
光伝送路4から異常信号を取り除き、システムを再び通
信可能状態に復帰させている。
The central control unit IO of the monitoring station node 1 constantly monitors the signal state of the optical transmission line 4 that is input via the optical-to-electrical conversion block 12a of the optical transmitting and receiving unit 12 and the communication control unit 11,
If it is determined that the optical transmission line 4 is filled with abnormal signals such as continuous light or irregular light emission that cannot be synchronized, and communication between nodes is not possible, the central control unit 1O switches the Ti source switch control lines 5a to 5C and 18, and sequentially cut off the power supply to each communication control unit 11'' and optical transmitting/receiving unit 12° of nodes 2a to 2c other than the monitoring station node 1 for a certain period of time, the own station Electricity of the optical transmitter/receiver 12
The power supply to the optical conversion block 12b is also interrupted for a certain period of time. If there is no abnormality in the signal state of the optical transmission line 4 while the power supply was cut off, the node that cut off the power supply is recognized as the faulty node, and the power supply to the node is maintained in a stopped state. The faulty node is removed from the system, the abnormal signal is removed from the optical transmission line 4, and the system is returned to a communicable state.

斯かる従来の光通信システムでは各ノードに設けた電源
スイッチ14.14’の他に監視局ノードと他ノード間
に夫々電源スイッチ制?lIl綿5a〜5Cを配線する
必要があるという問題がある。
In such a conventional optical communication system, in addition to the power switch 14, 14' provided at each node, there is also a power switch system between the monitoring station node and other nodes. There is a problem in that it is necessary to wire the lIl cottons 5a to 5C.

第8図は、別の従来公知の光通信システムを示し、第8
図に示すノード構成は第7図のものと類似するが、各ノ
ードに異常検知回路18が備わっている点で第7図のも
のと異なる。即ち、第8図に示す光通信システムでは、
電源スィッチ14’の作動制御を各ノードに備えた異常
検出回路18が行い、該異常検出回路18は光送受信部
】2゛の電気・光変換ブロックに接続され、常に自局の
電気・光変換ブロックの連続発光等の異常を監視し、自
局の電気・光変換ブロックに異常が発生したなら、自局
の電源スィッチ14°を切り換え作動させて、自局の通
信制御部11’及び光送受信部12’の給電を停止させ
るようにして、各々のノードがその異常時に自身で異常
を検知しシステムから離脱するものである。
FIG. 8 shows another conventionally known optical communication system.
The node configuration shown in the figure is similar to that in FIG. 7, but differs from that in FIG. 7 in that each node is provided with an abnormality detection circuit 18. That is, in the optical communication system shown in FIG.
The operation of the power switch 14' is controlled by an abnormality detection circuit 18 provided in each node. Monitor abnormalities such as continuous light emission of the block, and if an abnormality occurs in the electrical/optical conversion block of the local station, switch the power switch 14° of the local station and activate the communication control unit 11' of the local station and optical transmission/reception. By stopping the power supply to the section 12', each node detects the abnormality by itself and leaves the system when the abnormality occurs.

この光通信システムは第5図乃至第7図に示すシステム
のような監視局ノードと他ノード間に配線される電源ス
イツチ制御線が不要であるが、各々のノードに自局の電
気・光変換ブロックを作動状態を常に監視し、光伝送路
内の異常信号を検出して自局の電源をオフにする異常検
知回路が必要になり、各々のノードにこのような異常検
知回路を設けるとシステムが高価なものになってしまう
という問題がある。
This optical communication system does not require power switch control lines wired between the monitoring station node and other nodes like the systems shown in Figures 5 to 7, but each node has its own electrical/optical converter. An abnormality detection circuit that constantly monitors the operating status of the block, detects an abnormal signal in the optical transmission line, and turns off the power of its own station is required.If such an abnormality detection circuit is provided at each node, the system The problem is that it becomes expensive.

本発明は斯かる問題点を解決するためになされたもので
、複数のノードがパフシブスターカプラを有する光伝送
路で接続される光通信システムにおいて、電気・光変換
ブロックの連続発光、同期の取れない不規則な発光等の
異常信号により、システム全体が通信不能となることを
安価且つ確実に回避し得る光通信システムの障害検知・
除去方法を提供することを目的とする。
The present invention has been made to solve such problems, and is intended to improve continuous light emission and synchronization of electrical-to-optical conversion blocks in an optical communication system in which multiple nodes are connected by an optical transmission path having a puffy star coupler. Fault detection and detection for optical communication systems that can inexpensively and reliably prevent the entire system from becoming unable to communicate due to abnormal signals such as irregular light emission that cannot be detected.
The purpose is to provide a removal method.

(問題点を解決するための手段) 上述の目的を達成するために本発明に依れば、スターカ
プラを有する光伝送路に接続される複数のノードの各ノ
ードが、当l亥ノードに固有の;ν制御を司る中央制御
部と、ノード間のデータ通信の制御を司る通信制御部と
、前記光伝送路から入力する光信号を電気信号に変換す
る光・電気変換ブロック及び電気信号を光信号に変換し
て他ノードへの伝送信号を光伝送路に出力する電気・光
変換ブロックからなる光送受信部とから構成される光通
信システムの障害検知・除去方法において、各ノードに
前記光・電気変換ブロックに給電する第1の給電経路と
、前記電気・光変換ブロックに給電する第2の給電経路
と、該第2の給電経路途中に前記中央制御部及び通信制
御部のいずれか一方の制御部により切り換え制御される
スイッチ手段とを夫々設け、各ノードの前記一方の制御
部は、前記光伝送路中に異常信号が第1の所定時間継続
して発生したことを検知したとき、前記スイッチ手段に
切り換え作動させて前記電気・光変換ブロックへの給電
を当該ノードに固有の第2の所定時間だけ停止した後、
当該ノードの光・電気変換ブロンクを介して前記光伝送
路の信号状態を監視しながら、且つ伝送信号出力を無信
号に保持して前記電気・光変換ブロックへの給電を再開
し、該給電の再開直後に前記光伝送路中の異常信号の発
生の有無を判別して当該ノードの障害検知を実行し、当
該ノードの障害が検知されない場合には伝送信号出力を
無信号に保持したまま他の総てのノードの障害検知が完
了するに充分な第3の所定時間の経過を待った後、伝送
信号の出力を再開し、当該ノードの障害が検知された場
合には前記電気・光変換ブロックへの給電を再度停止し
て以後当該電気・光変換ブロックの給電停止状態を保持
することを特徴とする光通信システムの障害検知・除去
方法が提供される。
(Means for Solving the Problems) According to the present invention, in order to achieve the above-mentioned object, each node of a plurality of nodes connected to an optical transmission line having a star coupler is unique to the current node. ; a central control unit that controls ν control, a communication control unit that controls data communication between nodes, an optical-to-electrical conversion block that converts optical signals input from the optical transmission line into electrical signals, and In a method for detecting and removing a fault in an optical communication system comprising an optical transmitting/receiving unit consisting of an electrical/optical conversion block that converts the signal to be transmitted to another node and outputs the signal to be transmitted to another node onto an optical transmission path, each node is provided with the optical A first power supply route that supplies power to the electrical conversion block, a second power supply route that supplies power to the electrical/optical conversion block, and one of the central control unit and the communication control unit in the middle of the second power supply route. switch means that are switched and controlled by a control section, and when the one control section of each node detects that an abnormal signal has continuously occurred in the optical transmission path for a first predetermined period of time, After switching and operating the switch means to stop power supply to the electrical/optical conversion block for a second predetermined time specific to the node,
While monitoring the signal state of the optical transmission line via the optical-to-electrical conversion block of the node, and by keeping the transmission signal output at no signal, restarting the power supply to the electric-to-optical conversion block, and restarting the power supply. Immediately after restarting, it determines whether or not an abnormal signal has occurred in the optical transmission path to detect a failure in the node, and if no failure is detected in the node, the transmission signal output is maintained at no signal and other nodes are detected. After waiting for the elapse of a third predetermined time period that is sufficient to complete failure detection of all nodes, output of the transmission signal is resumed, and if a failure of the node is detected, the transmission signal is transmitted to the electrical-to-optical conversion block. Provided is a method for detecting and removing a fault in an optical communication system, which comprises stopping the power supply to the electrical-to-optical conversion block again and thereafter maintaining the power supply stopped state to the electrical-to-optical conversion block.

(作用) 各ノードの中央制御部及び通信制御部のいずれか一方の
制御部により、光送受信部の光・電気変換ブロックを介
して光伝送路から入力する光信号状態を常に監視し、光
伝送路中に連続光、同期の取れない不規則な発光等の異
常信号が第1の所定時間継続して発生したことを検知し
たとき、各ノード毎に異なる値に予め設定されている固
有の第2の所定時間だけ電気・光変換ブロックへの給電
を停止し、その後に自局ノードの障害検知を実施するこ
とにより、又、総てのノードの障害検知が終了する第3
の所定時間が経過するまではいずれのノードも伝送信号
出力を無信号に保持することにより、自局ノードが異常
であるか否かの判別を誤診することなく確実に実行出来
ることを可能にし、自局ノードの異常が検知された場合
には自局の光送受信部の光・電気変換ブロックへの給電
停止状態を保持してシステムから離脱し、このように前
記一方の制御部で実行される障害検知・除去プログラム
によってソフト的にシステムの障害を検知し、これを除
去することにより、特別な異常検知回路を別途設けるこ
となく、システム全体の通信不能事態を安価且つ確実に
回避することを可能にする。
(Function) The control unit of either the central control unit or the communication control unit of each node constantly monitors the state of the optical signal input from the optical transmission path via the optical/electrical conversion block of the optical transmitter/receiver, and transmits the optical signal. When it is detected that an abnormal signal such as continuous light or irregular light that cannot be synchronized has occurred continuously for a first predetermined period of time, a unique signal that is preset to a different value for each node is detected. By stopping the power supply to the electric/optical conversion block for a predetermined period of time in step 2, and then detecting the failure of the own node, the third
By keeping the transmitted signal output at no signal until the predetermined time period has elapsed, it is possible to reliably determine whether or not the own node is abnormal without misdiagnosing it. When an abnormality is detected in the local node, the power supply to the optical-to-electrical conversion block of the optical transmitter/receiver of the local node is maintained in a stopped state, and the node leaves the system, and is executed in this way by one of the control units. By detecting and removing system failures through software using a failure detection/removal program, it is possible to inexpensively and reliably avoid communication failures in the entire system without the need for a separate special abnormality detection circuit. Make it.

(実施例) 以下本発明の一実施例を第1図乃至第4図を参照して説
明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

先ず、第2図は本発明方法を実施する光通信システムの
各ノードの接続関係を示し、第1のノードN1から第n
のノードNnまでn個のノードがパッシブスターカプラ
3を介して放射状に光伝送路4により接続されている。
First, FIG. 2 shows the connection relationship of each node of an optical communication system implementing the method of the present invention, from the first node N1 to the nth node.
n nodes are connected radially through passive star couplers 3 by optical transmission lines 4 up to node Nn.

そして、本発明方法を実施する光通信システムは特定の
ノードを監視局ノードとすることなく、各ノードは基本
的には第3図に示すように構成される。第3図に示すノ
ード構成は前述した第6図のノード構成に類似し、中央
制御部lOの出力側からの電源スイツチ制御線18が自
局の電源スィッチ14にのみに接続される点だけが異な
るだけであって、他は第6図の構成と同じように構成さ
れるので、第6図に対応するものには同じ符号を付して
詳細な説明を省略する。
In an optical communication system implementing the method of the present invention, each node is basically configured as shown in FIG. 3 without using a specific node as a monitoring station node. The node configuration shown in FIG. 3 is similar to the node configuration shown in FIG. 6 described above, except that the power switch control line 18 from the output side of the central control unit 1O is connected only to the power switch 14 of the local station. The only difference is that the other components are the same as those in FIG. 6, so the same reference numerals are given to the components corresponding to those in FIG. 6, and detailed explanation thereof will be omitted.

次に、第1図及び第4図を参照して各ノードN1〜Nn
が実施する障害検知及び除去手順を説明する。各ノード
N1〜Nnの中央制御部10は光送受信部12の光・電
気変換ブロック12a及び通信制御部11を介して光伝
送路4の信号状態を監視しており、光伝送路4中に連続
光、同期の取れない不規則な発光等の異常信号が発生し
、この異常信号が光伝送路4を占有してノード間の通信
を不能にする障害が発生したか否かを判別する(ステッ
プ20)。光通信システムを構成するノードの一つ(例
えば、ノードN2が故障したものと想定する)が故障し
て例えば光伝送路4に連続光を出力する事態が発生した
場合、各ノードは異常信号である連続光が第1の所定時
間To以上継続したか否かに基づいて光伝送路4に障害
が発生したか否かを判別する。ステップ20の判別が肯
定(Yes)の場合、即ち、光伝送路4中に連続光が第
1の所定時間10以上継続して発生した場合、中央制御
部10は他ノード間との通信を中断、即ち、伝送信号出
力を無信号にすると共に、電源スイツチ制御線18を介
して電源スィッチ14に切換信号を出力して該ii電源
スイツチ4にオフ作動させ光送受信部12の電気・光変
換ブロック12bへの給電を停止する(ステップ21)
Next, referring to FIG. 1 and FIG. 4, each node N1 to Nn
Describes the fault detection and removal procedures carried out by The central control unit 10 of each node N1 to Nn monitors the signal state of the optical transmission line 4 via the optical/electrical conversion block 12a of the optical transmission/reception unit 12 and the communication control unit 11. An abnormal signal such as light or irregular light emission that cannot be synchronized is generated, and it is determined whether or not a failure has occurred in which this abnormal signal occupies the optical transmission line 4 and disables communication between nodes (step 20). If one of the nodes constituting the optical communication system (for example, assume that node N2 has failed) fails and outputs continuous light to the optical transmission line 4, each node will receive an abnormal signal. It is determined whether a failure has occurred in the optical transmission line 4 based on whether a certain continuous light continues for a first predetermined time To or more. If the determination in step 20 is affirmative (Yes), that is, if continuous light continues to occur in the optical transmission line 4 for a first predetermined time period of 10 or more, the central control unit 10 interrupts communication with other nodes. That is, while making the transmission signal output non-signal, a switching signal is output to the power switch 14 via the power switch control line 18 to turn off the power switch 4, and the electrical/optical conversion block of the optical transmitter/receiver 12 is turned off. Stop power supply to 12b (step 21)
.

各ノードN1〜Nnは夫々第1図のフローチャトの手順
に従って障害検知を実行しているので、光伝送路4に障
害が生じた場合には各々のノードN1〜Nnが障害を検
知して夫々自局の電気・光変換ブロックへの給電を停止
するので、プログラムの実行タイミングの違い等を考慮
すれば、異常信号の発生時点(第4図中p1時点)から
前記所定時間To経過後少なくとも所定時間to以内(
第4図の92時点以内)に、総てのノードN1〜Nnは
電気・光変換ブロックへの給電の停止を完了させること
になり、遅くとも92時点には光伝送路4中は光信号の
無い、無信号状態になる(第4図参照)。
Since each of the nodes N1 to Nn executes failure detection according to the procedure of the flowchart shown in FIG. Since the power supply to the electrical/optical conversion block of the station is stopped, taking into consideration differences in program execution timing, etc., at least a predetermined period of time after the elapse of the predetermined time To from the time when the abnormal signal is generated (time p1 in FIG. 4). Within to (
Within time 92 in FIG. 4), all nodes N1 to Nn will complete stopping the power supply to the electrical-to-optical conversion block, and at the latest at time 92, there will be no optical signal in the optical transmission line 4. , there will be no signal (see Figure 4).

次いで、自局の給電を停止した時点から自局に予め割り
当てられている固有の時間(第2の所定時間)τiが経
過したか否かを判別しくステップ22)、経過していな
ければ経過するまで繰り返しステップ22を実行して所
定時間τiの経過を待つ。ここに、τiは第1番目のノ
ードNiに固有の所定時間であり、その値は次式で設定
される。
Next, it is determined whether or not a unique time (second predetermined time) τi assigned in advance to the own station has elapsed since the time when the power supply to the own station was stopped (step 22), and if it has not elapsed, the time elapses. Step 22 is repeatedly executed until the predetermined time τi elapses. Here, τi is a predetermined time specific to the first node Ni, and its value is set by the following equation.

τi雪ix (tl +t3 +t5)そして、tlは
前記所定時間10より大きい適宜な所定値(tl > 
to)であり、t3. t5も後述する所定時間t2.
 t4より夫々大きい適宜な所定値(t3〉t2.15
 >t4)に設定される。
τi x (tl + t3 + t5) and tl is an appropriate predetermined value larger than the predetermined time 10 (tl >
to), and t3. t5 is also a predetermined time t2, which will be described later.
Appropriate predetermined values each larger than t4 (t3>t2.15
>t4).

ステップ22における判別結果が肯定の場合、即ち自局
に固有の所定時間τiが経過すると、中央制御部10は
伝送信号出力を無信号にしたまま電源スイツチ制御線1
8に切換信号を出力して電源スィッチ14にオン作動さ
せ、電気・光変換ブロック12bへの給電を再開させる
(ステップ23)。
If the determination result in step 22 is affirmative, that is, if a predetermined time τi specific to the own station has elapsed, the central control unit 10 switches the power switch control line 1 while leaving the transmission signal output as no signal.
8 to turn on the power switch 14, thereby restarting power supply to the electrical/optical conversion block 12b (step 23).

そして、光・電気変換ブロック12aにより所定時間t
2に亘って光伝送路4の信号状態を監視し、続く所定時
間t4内で光伝送路4に異常信号が発生したか否かを判
別する(ステップ24)、所定時間L2及びt4は、ノ
イズ等の信号と区別して光伝送路4に異常信号が発生し
たか否かを誤診することなく確実に判別できるに充分な
値に設定される。
Then, for a predetermined time t, the optical/electrical conversion block 12a
The signal state of the optical transmission line 4 is monitored over two periods, and it is determined whether or not an abnormal signal has occurred on the optical transmission line 4 within the subsequent predetermined time t4 (step 24). This value is set to a value sufficient to be able to reliably determine whether or not an abnormal signal has occurred in the optical transmission line 4 without misdiagnosing it.

ステップ24の判別結果が否定(No)の場合には自局
ノードの電気・光変換ブロック12b等に異常がないこ
とを意味し、光伝送路4の障害原因が自局ノードにない
と判定し、自局ノードの電気・光変換ブロック12bに
給電したまま後述するステップ25以降のステップを実
行する。この場合、光伝送路4は無信号状態に保持され
ることになる。
If the determination result in step 24 is negative (No), it means that there is no abnormality in the electric/optical conversion block 12b, etc. of the local node, and it is determined that the cause of the failure in the optical transmission line 4 is not in the local node. , executes the steps after step 25, which will be described later, while supplying power to the electric/optical conversion block 12b of its own node. In this case, the optical transmission line 4 will be maintained in a no-signal state.

一方、故障ノードN2が前記ステップ23を実行すると
光伝送路4に異常信号S2が再び現れ(第4図falの
93時点)、前記ステップ24の判別結果が肯定となる
。この場合ノードN2の中央制御部10は前記所定時間
t2に続く所定時間t4内に電源スィッチ14にオフ作
動させて再び電気・光変換ブロック12bへの給電を停
止し、この状態を固定することにより、自局をシステム
から離脱させる。故障ノードN2の電気・光変換プロ。
On the other hand, when the faulty node N2 executes step 23, the abnormality signal S2 appears again on the optical transmission line 4 (at time 93 of fal in FIG. 4), and the determination result in step 24 becomes affirmative. In this case, the central control unit 10 of the node N2 turns off the power switch 14 within a predetermined time t4 following the predetermined time t2 to again stop the power supply to the electric/optical conversion block 12b, and fixes this state. , remove your station from the system. Electrical/optical conversion professional for failure node N2.

り12bへの給電が停止されると光伝送路4から障害信
号が排除され(第4図fatの94時点)、光伝送路4
は再び無信号状態になる。
When the power supply to the optical transmission line 12b is stopped, the fault signal is removed from the optical transmission line 4 (at time 94 in fat in Figure 4), and the optical transmission line 4
becomes no signal again.

異常の無い他ノードは前記ステップ24の判別をした後
、自局により光伝送路4の障害信号の発生を検知した時
点から第3の所定時間TIが経過したか否かを判別しく
ステップ25)、所定時間Tlの経過を待って(第4図
(alの25時点)、他ノード間との通信を再開する(
ステップ26)。総てのノードの障害検知は遅くとも時
間(n+1)x (tl+t3+t5)が経過する迄に
終わっている筈であり、前記所定時間TIはこの時間(
n+1)x (H+t3+t5)より大きい適宜な所定
値に設定される。尚、t3及びt5は前記ステップ24
及び27において説明した所定時間t2及び【4より大
きい適宜な所定値に設定されるので、各ノードが前記式
によって与えられる各ノード固有の所定時間τiの経過
後に実施する障害検知において、2以上のノードが同時
に前記ステップ23を実行して各電気・光変換ブロック
12bに給電を開始するという事態が回避され、これに
より各ノードが第1のノードN1から順番に自局ノード
の障害検知を、他ノードの障害検知と競合することなく
確実に実行することが出来ることになる。
After making the determination in step 24, the other node with no abnormality determines whether or not the third predetermined time TI has elapsed from the time when the own node detected the occurrence of the fault signal in the optical transmission line 4 (step 25). , waits for the elapse of a predetermined time Tl (point 25 in Figure 4 (al)), and resumes communication with other nodes (
Step 26). Failure detection for all nodes should be completed by the time (n+1) x (tl+t3+t5) has elapsed at the latest, and the predetermined time TI is equal to this time (
n+1)x (H+t3+t5) is set to an appropriate predetermined value. Incidentally, t3 and t5 are the same as those in step 24.
Since the predetermined times t2 and [4 explained in 27 are set to an appropriate predetermined value, two or more This avoids a situation in which the nodes execute step 23 at the same time and start supplying power to each electrical/optical conversion block 12b, and as a result, each node sequentially detects a fault in its own node starting from the first node N1, and This means that it can be executed reliably without conflicting with node failure detection.

尚、上述の実施例では電源スィッチI4を中央制御部l
Oに接続し、該中央制御部10により電源スィッチ14
の作動制御を行うものについて説明したが、本発明はこ
れに限定されず、中央制御部lOに代えて信号制御部1
1により第11Nのフローチャートに示す障害検知及び
除去に必要な制御プログラムを実行するようにして、信
号制御部11により電源スィッチ14の作動制御を行う
ようにしても良い。
In the above embodiment, the power switch I4 is connected to the central control unit l.
power switch 14 by the central control unit 10.
Although the present invention is not limited to this, the signal control unit 1 is used instead of the central control unit IO.
1 to execute a control program necessary for fault detection and removal shown in the 11N flowchart, and the signal control unit 11 may control the operation of the power switch 14.

又、上述の実施例では光送受信部12の電気・光交換ブ
ロック12bだけが電源スィッチ14によりオン・オフ
制御されたが、光・電気交換ブロック12aも電源スィ
ッチ14を介して給電するようにして、電気・光交換ブ
ロック12b及び光・電気交換ブロック12aの給電を
同時にオン・オフ制御するようにしてもよい。
Further, in the above embodiment, only the electrical/optical switching block 12b of the optical transmitter/receiver 12 was controlled on/off by the power switch 14, but the optical/electrical switching block 12a is also supplied with power via the power switch 14. , the power supply to the electrical/optical exchange block 12b and the optical/electrical exchange block 12a may be controlled to be turned on and off simultaneously.

(発明の効果) 以上詳述したように本発明の光通信システムの障害検知
・除去方法に依れば、各ノードに光・電気変換ブロック
に給電する第1の給電経路と、電気・光変換ブロックに
給電する第2の給電経路と、該第2の給電経路途中に中
央制御部及び通信制御部のいずれか一方の制御部により
切り換え制御されるスイッチ手段とを夫々設け、各ノー
ドの前記一方の制御部は、光伝送路中に異常信号が第1
の所定時間継続して発生したことを検知したとき、スイ
ッチ手段に切り換え作動させて電気・光変換ブロックへ
の給電を当該ノードに固有の第2の所定時間だけ停止し
た後、当該ノードの光・電気変換ブロックを介して光伝
送路の信号状態を監視しながら、且つ伝送信号出力を無
信号に保持して電気・光変換ブロックへの給電を再開し
、該給電の再開直後に光伝送路中の異常信号の発生の有
奥を判別して当該ノードの障害検知を実行し、当該ノ−
ドの障害が検知されない場合には伝送信号出力を無信号
に保持したまま他の総てのノードの障害検知が完了する
に充分な第3の所定時間の経過を待った後、伝送信号の
出力を再開し、当該ノードの障害が検知された場合には
電気・光変換ブロックへの給電を再度停止して以後当該
電気・光変換ブロックの給電停止状態を保持するように
したので、光信号システムの光伝送路を特定の監視局ノ
ードにより監視する場合の監視局と他のノード間に配線
するtif!Xスイッチ制御線が不要となる他、前記一
方の制御部による異常検知及び除去プログラムの実行に
よってソフト的にシステムの障害を検知し、これを除去
するので異常検知回路を特別に設ける必要もなく、故障
したノードによりシステム全体が通信不能となる事態を
確実且つ安価に回避することがきるという優れた効果を
奏する。
(Effects of the Invention) As described in detail above, according to the method for detecting and removing a fault in an optical communication system of the present invention, each node has a first power supply route that supplies power to an optical-to-electric conversion block, and a first power supply path for supplying power to an optical-to-electrical conversion block. A second power supply route for supplying power to the blocks, and a switching means that is switched and controlled by one of the central control unit and the communication control unit are provided in the middle of the second power supply route, and each node The control unit detects the first abnormal signal in the optical transmission path.
When it is detected that this has occurred continuously for a predetermined period of time, the switching means is activated to stop the power supply to the electrical/optical conversion block for a second predetermined period specific to the node, and then the optical/optical conversion block of the node is switched on and activated. While monitoring the signal state of the optical transmission line via the electrical conversion block and keeping the transmission signal output at no signal, power supply to the electrical/optical conversion block is resumed, and immediately after the power supply is resumed, the optical transmission line is restarted. detects the occurrence of an abnormal signal in the node, detects the failure of the node, and
If a failure of the node is not detected, the transmission signal output is held at no signal and the transmission signal is output after waiting for a third predetermined time period that is sufficient to complete the failure detection of all other nodes. If a failure in the relevant node is detected, the power supply to the electrical/optical conversion block is stopped again, and the power supply to the electrical/optical conversion block is maintained in the stopped state. tif! Wiring between a monitoring station and other nodes when an optical transmission path is monitored by a specific monitoring station node! In addition to eliminating the need for an X-switch control line, system failures are detected and removed by software by executing the abnormality detection and removal program by one of the control sections, so there is no need to provide a special abnormality detection circuit. This has the excellent effect of being able to reliably and inexpensively avoid a situation where the entire system becomes unable to communicate due to a failed node.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の一実施例を示し、第1図は
本発明方法による光通信システムの障害検知・除去手順
を示すフローチャト、第2図は本発明方法を実施する、
複数のノードがスターカブラを有する光伝送路で接続さ
れる光通信システムの全体構成図、第3図は第2図に示
す各ノードの内部構成を示す回路図、第4図は光伝送路
の信号状態及び各ノードの電気・光変換ブロックのオン
・オフ状態の時間変化を示すタイミングチャート、第5
図乃至第8図は従来の光通信システムの説明図で、第5
図は従来のスター型光通信システムの全体構成図、第6
図は第5図の監視局ノードlの内部構成を示す回路図、
第7図は第5図の監視局ノード以外のノードの内部構成
を示す回路図、第8図は、各々のノードに異常検知回路
を備えた、従来の別の光通信システムの各ノードの内部
構成を示す回路図である。 3・・・パッシブスターカプラ、4・・・光伝送路、1
0・・・中央制御部、11・・・通信制御部、12・・
・光送受信部、12a・・・光・電気変換ブロック、1
2b・・・電気・光変換ブロック、13・・・電源、1
4・・・isスイッチ、15・・・給電線(第1の給電
経路)、16・・・給電線(第2の給電経路)、18・
・・電源スイツチ制御線、N1〜In・・・ノード。
1 to 4 show an embodiment of the present invention, FIG. 1 is a flowchart showing a procedure for detecting and removing a fault in an optical communication system according to the method of the present invention, and FIG.
An overall configuration diagram of an optical communication system in which multiple nodes are connected by an optical transmission line having a star coupler. Figure 3 is a circuit diagram showing the internal configuration of each node shown in Figure 2. Figure 4 is a diagram of the optical transmission line. Timing chart showing time changes in signal states and on/off states of the electrical/optical conversion blocks of each node, No. 5
Figures 8 through 8 are explanatory diagrams of conventional optical communication systems.
Figure 6 shows the overall configuration of a conventional star-type optical communication system.
The figure is a circuit diagram showing the internal configuration of the monitoring station node l in FIG.
FIG. 7 is a circuit diagram showing the internal configuration of nodes other than the monitoring station node in FIG. FIG. 2 is a circuit diagram showing the configuration. 3... Passive star coupler, 4... Optical transmission line, 1
0... Central control unit, 11... Communication control unit, 12...
・Optical transmitter/receiver unit, 12a...optical/electrical conversion block, 1
2b... Electricity/light conversion block, 13... Power supply, 1
4... is switch, 15... power supply line (first power supply route), 16... power supply line (second power supply route), 18.
...Power switch control line, N1~In...Node.

Claims (1)

【特許請求の範囲】[Claims] スターカプラを有する光伝送路に接続される複数のノー
ドの各ノードが、当該ノードに固有の制御を司る中央制
御部と、ノード間のデータ通信の制御を司る通信制御部
と、前記光伝送路から入力する光信号を電気信号に変換
する光・電気変換ブロック及び電気信号を光信号に変換
して他ノードへの伝送信号を光伝送路に出力する電気・
光変換ブロックからなる光送受信部とから構成される光
通信システムの障害検知・除去方法において、各ノード
に前記光・電気変換ブロックに給電する第1の給電経路
と、前記電気・光変換ブロックに給電する第2の給電経
路と、該第2の給電経路途中に前記中央制御部及び通信
制御部のいずれか一方の制御部により切り換え制御され
るスイッチ手段とを夫々設け、各ノードの前記一方の制
御部は、前記光伝送路中に異常信号が第1の所定時間継
続して発生したことを検知したとき、前記スイッチ手段
に切り換え作動させて前記電気・光変換ブロックへの給
電を当該ノードに固有の第2の所定時間だけ停止した後
、当該ノードの光・電気変換ブロックを介して前記光伝
送路の信号状態を監視しながら、且つ伝送信号出力を無
信号に保持して前記電気・光変換ブロックへの給電を再
開し、該給電の再開直後に前記光伝送路中の異常信号の
発生の有無を判別して当該ノードの障害検知を実行し、
当該ノードの障害が検知されない場合には伝送信号出力
を無信号に保持したまま他の総てのノードの障害検知が
完了するに充分な第3の所定時間の経過を待った後、伝
送信号の出力を再開し、当該ノードの障害が検知された
場合には前記電気・光変換ブロックへの給電を再度停止
して以後当該電気・光変換ブロックの給電停止状態を保
持することを特徴とする光通信システムの障害検知・除
去方法。
Each node of a plurality of nodes connected to an optical transmission line having a star coupler includes a central control unit that controls specific control of the node, a communication control unit that controls data communication between nodes, and the optical transmission line. An optical/electrical conversion block that converts the optical signal input from
In a fault detection/removal method for an optical communication system including an optical transmitter/receiver section including an optical conversion block, each node has a first power feeding path for feeding power to the optical/electrical conversion block, and a first power feeding path for feeding power to the optical/electrical conversion block, and A second power supply route for supplying power and a switch means that is switched and controlled by one of the central control unit and the communication control unit are provided in the middle of the second power supply route, and each node When the control unit detects that an abnormal signal has continuously occurred in the optical transmission path for a first predetermined period of time, the control unit switches and operates the switch means to supply power to the electrical-to-optical conversion block to the node. After stopping for a unique second predetermined period of time, the electrical/optical signal is switched on while monitoring the signal state of the optical transmission line via the optical/electrical conversion block of the node and keeping the transmission signal output at no signal. restarting power supply to the conversion block, and immediately after restarting the power supply, detecting a failure of the node by determining whether an abnormal signal has occurred in the optical transmission path;
If a failure of the node is not detected, the transmission signal output is held at no signal and the transmission signal is output after waiting for a third predetermined time period that is sufficient to complete failure detection of all other nodes. , and if a failure of the node is detected, the power supply to the electrical/optical conversion block is stopped again, and the power supply stopped state of the electrical/optical conversion block is maintained thereafter. How to detect and remove system failures.
JP61146987A 1986-06-25 1986-06-25 Optical communication system failure detection / removal method Expired - Fee Related JPH0720128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146987A JPH0720128B2 (en) 1986-06-25 1986-06-25 Optical communication system failure detection / removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146987A JPH0720128B2 (en) 1986-06-25 1986-06-25 Optical communication system failure detection / removal method

Publications (2)

Publication Number Publication Date
JPS634733A true JPS634733A (en) 1988-01-09
JPH0720128B2 JPH0720128B2 (en) 1995-03-06

Family

ID=15420054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146987A Expired - Fee Related JPH0720128B2 (en) 1986-06-25 1986-06-25 Optical communication system failure detection / removal method

Country Status (1)

Country Link
JP (1) JPH0720128B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514358A (en) * 1991-06-27 1993-01-22 Fujikura Ltd Electrooptic conversion circuit
JP2005117294A (en) * 2003-10-07 2005-04-28 Pioneer Electronic Corp Optical transmission system
US7987032B2 (en) 2006-04-26 2011-07-26 Nissan Motor Co., Ltd. Driver feeling adjusting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332982A (en) * 2002-05-09 2003-11-21 Nec Engineering Ltd Transmission shutdown circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514358A (en) * 1991-06-27 1993-01-22 Fujikura Ltd Electrooptic conversion circuit
JP2005117294A (en) * 2003-10-07 2005-04-28 Pioneer Electronic Corp Optical transmission system
JP4584563B2 (en) * 2003-10-07 2010-11-24 パイオニア株式会社 Optical transmission system
US7987032B2 (en) 2006-04-26 2011-07-26 Nissan Motor Co., Ltd. Driver feeling adjusting apparatus

Also Published As

Publication number Publication date
JPH0720128B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
JPH0630516B2 (en) Automatic obstacle elimination method
JP4181283B2 (en) Failure detection notification method and internetwork apparatus
JPS63206045A (en) Method for detecting faulty location in ring network
JPS634733A (en) Fault detecting and eliminating method for optical communication system
JP2001339371A (en) Optical 1:1 switch device
JP5077153B2 (en) Ring network system and ring network system recovery method
JPS58170247A (en) Automatic loop back controlling system
JP2000040013A (en) Method for detecting line abnormality for duplex communication system
JPH02181547A (en) Loop-like transmission line control device
JPS60245336A (en) Circuit supervisory device switching system
JPH0430218B2 (en)
JPH01175338A (en) Method for doubling transmission system
US20220200842A1 (en) Method for network restoration when communication failure occurs in rapienet system
JPH02119439A (en) Processing method transmission/reception module for optical communication at the time of fault occurrence
JPH05145972A (en) Fault recovering system
JPS62226742A (en) Polling transmission control system
JPH0720129B2 (en) Failure detection in optical communication system and backup method when failure occurs
JPH03187531A (en) Supervisory and controlling system for satellite communication
CN114137871A (en) Bus control device, configuration method thereof and building control system
JP2000032022A (en) Optical transmission system
JPH02301343A (en) Loop transmission line controller
JPH0286238A (en) Method and equipment for data transmission
JPS61208336A (en) Data transmission method
JPH08251102A (en) Optical transmission device
JPH10313331A (en) Automatic switch system for order wire of ms-shared protection ring system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees