JPS6344892A - Ester exchange reaction of fats and oils - Google Patents

Ester exchange reaction of fats and oils

Info

Publication number
JPS6344892A
JPS6344892A JP61190007A JP19000786A JPS6344892A JP S6344892 A JPS6344892 A JP S6344892A JP 61190007 A JP61190007 A JP 61190007A JP 19000786 A JP19000786 A JP 19000786A JP S6344892 A JPS6344892 A JP S6344892A
Authority
JP
Japan
Prior art keywords
reaction
oils
fats
lipase
transesterification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61190007A
Other languages
Japanese (ja)
Other versions
JPH0338837B2 (en
Inventor
Kazuhiro Nakamura
和広 中村
Hideki Yokomichi
秀季 横道
Kouichi Okisaka
浩一 沖坂
Tsutomu Nishide
勤 西出
Yoshiharu Kawahara
河原 義治
Seiji Nomura
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP61190007A priority Critical patent/JPS6344892A/en
Priority to EP87111327A priority patent/EP0257388A3/en
Priority to PH35634A priority patent/PH23724A/en
Priority to MYPI87001277A priority patent/MY102463A/en
Publication of JPS6344892A publication Critical patent/JPS6344892A/en
Publication of JPH0338837B2 publication Critical patent/JPH0338837B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/08Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils with fatty acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

PURPOSE:To make it possible to carry out only ester exchange efficiency and economically, by using a lipase agent having thermostability at >= enough temperature to fuse a reaction substrate but not a solvent and removing water from the reaction system in the reaction. CONSTITUTION:In carrying out ester exchange reaction of fats and oils by using an enzyme preparation containing lipase, 5-100pts.wt. based on 100pts.wt. fats and adds of an enzyme preparation (e.g. immobilized enzyme) containing a lipase (lipase produced from a thermostable strain of Rhizopus, Pseudomonus, Mucor, etc.) having thermostability at >= enough temperature to fuse a reaction substrate is used, but no solvent is used and water is removed from the reaction system. Consequently, hydrolysis of fats and oils are suppressed and only ester exchange can be efficiently and economically effected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリパーゼ(脂質分解酵素)を用いる油脂類のエ
ステル交換反応方法に関する。更に詳しくは、基質とす
る油脂及び脂肪酸を融解させるのに必要な温度での十分
な耐熱性を有するリパーゼを含む酵素製剤を用いた油脂
類のエステル交換反応方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for transesterification of oils and fats using lipase (lipid degrading enzyme). More specifically, the present invention relates to a method for transesterification of fats and oils using an enzyme preparation containing a lipase that has sufficient heat resistance at temperatures necessary to melt fats and oils and fatty acids as substrates.

油脂類のエステル交換反応は、マーガリン、ショートニ
ング等の食用加工油脂の製造において、水素添加と並ぶ
重要な加工技術である。  −〔従来の技術〕 油脂類のエステル交換反応は、従来より化学的な方法に
より行われてきた。即ちアルカリ金属、アルカリ金属ア
ルコラード、アルカリ金属水酸化物等のアルカリ性物質
や、各種金属塩類を触媒として用いる方法により行われ
てきた。
Transesterification of oils and fats is an important processing technology along with hydrogenation in the production of edible processed oils and fats such as margarine and shortening. - [Prior Art] Transesterification of oils and fats has conventionally been carried out by chemical methods. That is, it has been carried out by a method using an alkaline substance such as an alkali metal, an alkali metal alcoholade, an alkali metal hydroxide, or various metal salts as a catalyst.

しかしながら、この方法においては、油脂中の脂肪酸の
配置に関しては、無差別分布の法則に従った再配列が起
こるため、得られる油脂に結合する脂肪酸の位置につい
ては特異性が全く認められない。
However, in this method, rearrangement of fatty acids in fats and oils occurs according to the law of indiscriminate distribution, so no specificity is observed in the positions of fatty acids that bind to the fats and oils obtained.

即ち、・従来の化学的方法ではグリセリドの結合脂肪酸
の位置につ□いて非選択的である。この性質は、通常の
マーガリン、ショートニング等の食用加工油脂の製造を
目的とする場合に於いては、油脂の物理的性質″を改良
できる効果をもたらすことがある。しかしながら、特有
のグリセリド組成を有する油脂の製造を目的とする場合
には、こうした従来の非選択的な方法ではなし得なかっ
た。ここでいう特有のグリセリド組成とは、例えば天然
のカカオ脂のように、大部分のグリセリドが対称構造を
有する様な場合である。
That is: - Conventional chemical methods are non-selective regarding the position of bound fatty acids in glycerides. This property may have the effect of improving the physical properties of fats and oils when the purpose is to produce edible processed fats and oils such as ordinary margarine and shortening. However, they have a unique glyceride composition. When the purpose is to produce fats and oils, this cannot be achieved using conventional non-selective methods.The unique glyceride composition referred to here means that most of the glycerides are symmetrical, such as in natural cocoa butter. This is a case where it has a structure.

最近、こうした油脂の製造を意図する場合に、従来の非
選択的な化学的方法にかえて、油脂のエステル交換を位
置選択的に行わしめる方法が開発されてきている。
Recently, when it is intended to produce such fats and oils, a method for regioselectively transesterifying fats and oils has been developed in place of the conventional non-selective chemical method.

即ち、本来、油脂を加水分解する酵素であるリパーゼを
用いて油脂のエステル交換を位置選択的に行わしめよう
とするものである(特開昭52−104506号公報)
。この方法に従えば、リパーゼを活性化させるため、反
応系中に水分が存在する事を必須の条件としている。こ
の水分量は、0.2〜1.0%と少量ではあるが、リパ
ーゼ本来の性質により、油脂の加水分解が必然的に起こ
り、ジグリセリドの副生による交換脂の収率の低下を避
けることが出来ない。    □更に、副生成物を低減
させる目的で、水分含量を0.1%以下に低下させて反
応させる試みも提案されているが、水分量の低下は実質
的に反応速度の低下をきたし、実用上は得策ではない(
特開昭55−71797号公報)。
That is, it is an attempt to regioselectively transesterify fats and oils using lipase, which is an enzyme that originally hydrolyzes fats and oils (Japanese Patent Application Laid-Open No. 104506/1983).
. According to this method, the presence of water in the reaction system is an essential condition for activating lipase. Although this water content is small at 0.2 to 1.0%, due to the inherent properties of lipase, hydrolysis of fats and oils will inevitably occur, and a decrease in the yield of exchange fat due to the by-product of diglyceride can be avoided. I can't. □Furthermore, in order to reduce by-products, it has been proposed to conduct the reaction by lowering the water content to 0.1% or less, but reducing the water content will substantially reduce the reaction rate, making it impractical. The above is not a good idea (
JP-A-55-71797).

更にエステル交換速度を増大させる方法として、反応工
程を分解と合成の二段階に分けて行う方法の提案もある
が(特開昭60−19495号公報、特開昭60−20
3196号公報)、反応の制御、特に分解工程の制御に
難点がある。該方法では、ジグリセリドに着目した点は
興味あるが、分解工程でジグリセリドのみを選択的に得
る事は技術的に困難を要し、可及的にモノグリセリド、
グリセリンへの分解を生じると同一時に、未分解のトリ
グリセリドがなお多く残存する。更に、ジグリセリドの
非酵素的転移により生ずる1、3−ジグリセリドの存在
により、第二段の合成工程での目的とするエステル交換
物の収量の低下が避けられなく、特に温度が高くなるほ
どこの悪影響が大きい。また第二段の合成反応速度は通
常のエステル交換速度に比して十分であるとは言えない
。こうした観点から工程操作の複雑化は避けられないも
のと判断される。
Furthermore, as a method to increase the rate of transesterification, there have been proposals for a method in which the reaction process is divided into two stages, decomposition and synthesis (Japanese Patent Application Laid-Open No. 60-19495, Japanese Patent Application Laid-open No. 60-20).
3196), there are difficulties in controlling the reaction, especially in controlling the decomposition process. Although this method is interesting in that it focuses on diglycerides, it is technically difficult to selectively obtain only diglycerides in the decomposition process, and monoglycerides, monoglycerides,
At the same time as decomposition to glycerin occurs, more triglycerides remain undegraded. Furthermore, the presence of 1,3-diglyceride produced by non-enzymatic transfer of diglyceride inevitably reduces the yield of the desired transesterified product in the second stage synthesis step, and this adverse effect becomes particularly pronounced as the temperature increases. big. Furthermore, the second stage synthesis reaction rate cannot be said to be sufficient compared to the usual transesterification rate. From this perspective, it is judged that complication of process operations is unavoidable.

また、従来の酵素剤では耐熱性が不十分であり、特に高
融点の反応基質を反応させる場合には、基質を溶解させ
るため溶剤の使用が必要であった。こうした点を解決す
る手段として、最近、耐熱性を有する酵素製剤の開発が
進められているが(特開昭60−98984号公報)、
50℃以上という酵素反応としては比較的高い温度にて
無溶剤での反応を行うと、酵素製剤の持つ水分が反応系
に放出され易く、ジグリセリドの副生が多くなり収率が
低下するという欠点を有していた。
In addition, conventional enzyme preparations have insufficient heat resistance, and in particular when reacting a reaction substrate with a high melting point, it is necessary to use a solvent to dissolve the substrate. As a means to solve these problems, the development of heat-resistant enzyme preparations has recently been progressing (Japanese Patent Application Laid-Open No. 60-98984).
If the reaction is carried out without a solvent at a relatively high temperature for an enzyme reaction of 50°C or higher, the water contained in the enzyme preparation is likely to be released into the reaction system, resulting in an increase in the by-product of diglyceride and a decrease in yield. It had

以上の様に、リパーゼによる油脂類のエステル交換反応
は、前述の化学的な方法に比べ特徴的かつ有利な点を持
つ反面、未だ解決せねばならない多くの問題点があり、
工業的に実施するには、これらを解決する必要がある。
As mentioned above, while the transesterification reaction of oils and fats using lipase has unique and advantageous points compared to the chemical methods mentioned above, there are still many problems that need to be solved.
These problems need to be solved for industrial implementation.

〔発明が解決しようとする問題点〕  ′産業上の経済
的な面からみると溶剤の使用は、生産性低下及びエネル
ギー損失が大きく、耐熱性を有するリパーゼ製剤の使用
により反応を無溶剤で行うことが望まれる。
[Problems to be solved by the invention] ``From an industrial economic perspective, the use of solvents causes a decrease in productivity and a large loss of energy, so it is possible to carry out the reaction without using a solvent by using a heat-resistant lipase preparation. It is hoped that

一方、こうした反応を触媒するために必要な酵素の価格
は未だに非常に高価であり、該反応の工業化に当たって
は、使用する酵素の量を低減するか、或いは回収して繰
り返し使用することが前提となる。
On the other hand, the cost of the enzymes required to catalyze these reactions is still very high, and industrialization of these reactions requires reducing the amount of enzymes used or recovering and repeatedly using them. Become.

ここで、酵素剤中の水分量低減の試みは実質的に反応速
度の低下をまねき、反応装置の巨大化及び生産効率の低
下をきたすものであり、また回収再使用にあたっても、
酵素の経時的な劣化は避けることが出来ず、一定重量の
酵素から生産可能なエステル交換物の量はおのずと限界
がある。このように、従来の技術では工業的な面での反
応速度とジグリセリドの抑制及び経済的な面での酵素の
耐久性の両立を計ったものは未だ認められない。
Attempts to reduce the amount of water in enzyme preparations actually lead to a reduction in the reaction rate, making the reaction equipment larger and reducing production efficiency.
Deterioration of enzymes over time cannot be avoided, and there is a natural limit to the amount of transesterified product that can be produced from a given weight of enzyme. As described above, no conventional technology has yet been found that achieves both the reaction rate and suppression of diglycerides from an industrial perspective, and the durability of enzymes from an economic perspective.

〔問題点を解決するための手段〕[Means for solving problems]

かかる実状において、本発明者らは、油脂の加水分解を
抑制し、エステル交換のみを効率よくかつ経済的に行わ
しめる方法について鋭意検討し、上記5問題点を解決す
る目的で、リパーゼを含有する酵素製剤(以後、リパー
ゼ剤と略称する)によるエステル交換方法と、リパーゼ
の持つ特徴について種々検討した結果、リパーゼ剤の有
効な使用方法を見い出し本発明の完成に至った。
Under these circumstances, the present inventors have diligently studied methods for suppressing the hydrolysis of fats and oils and performing only transesterification efficiently and economically, and in order to solve the above five problems, the present inventors have developed a method for suppressing the hydrolysis of oils and fats and for the purpose of solving the above five problems. As a result of various studies on the transesterification method using an enzyme preparation (hereinafter abbreviated as a lipase agent) and the characteristics of lipase, an effective method for using a lipase agent was discovered and the present invention was completed.

即ち、本発明は、リパーゼ剤を用いて油脂類のエステル
交換反応を行う方法において、反応基質を融解させるの
に十分な温度以上での耐熱性を有するリパーゼ剤を用い
、溶剤を使用することなく、かつ反応時に反応系内から
水分を除去することを特徴とする油脂類のエステル交換
反応方法に係わるものである。
That is, the present invention is a method for transesterifying oils and fats using a lipase agent, which uses a lipase agent that has heat resistance above a temperature sufficient to melt the reaction substrate, and without using a solvent. The present invention relates to a transesterification reaction method for oils and fats, which is characterized in that water is removed from the reaction system during the reaction.

本発明において油脂類のエステル交換反応とは、油脂と
脂肪酸又は脂肪酸エステルとのエステル交換反応、又は
油脂相互のエステル交換反応、更に脂肪酸エステルと脂
肪酸のエステル交換反応、脂肪酸エステル相互のエステ
ル交換反応を含むものである。
In the present invention, the transesterification reaction of oils and fats refers to the transesterification reaction between fats and oils and fatty acids or fatty acid esters, the transesterification reaction between fats and oils, the transesterification reaction between fatty acid esters and fatty acids, and the transesterification reaction between fatty acid esters. It includes.

リパーゼが加水分解のみならず逆反応である合成反応を
も触媒することは、岩井、辻坂等の先駆的研究により明
らかとなっている(M、Iwai。
Pioneering research by Iwai, Tsujisaka et al. has revealed that lipase catalyzes not only hydrolysis but also the reverse synthesis reaction (M, Iwai).

Y、Tsujisaka、 J、Fukumoto+ 
J、Gen、Appl、Microbiol。
Y, Tsujisaka, J, Fukumoto+
J, Gen, Appl, Microbiol.

10、13. (1964)参照)。10, 13. (1964)).

本発明者らはこの実験事実をもとに油脂類のエステル交
換反応について酵素化学及び反応工学の立場から解析を
行った結果、ジグリセリドと酵素の複合体が反応に関与
しており、エステル交換速度が次式で表されることを見
い出した。
Based on this experimental fact, the present inventors analyzed the transesterification reaction of oils and fats from the perspective of enzyme chemistry and reaction engineering, and found that a complex of diglyceride and enzyme is involved in the reaction, and the transesterification rate is was found to be expressed by the following formula.

V=k [E−DG]  [FA] ここでkは総括反応速度定数、[FA]は脂肪酸濃度、
[E−DG]はジグリセリド・酵素複合体濃度を表す。
V=k [E-DG] [FA] where k is the overall reaction rate constant, [FA] is the fatty acid concentration,
[E-DG] represents the diglyceride/enzyme complex concentration.

kは反応系内の水分と酵素濃度に大きく依存するが、水
分量の増加のみでは遊離のジグリセリドの増加のみを助
長する結果となり、実質的なエステル交換反応速度の増
加は認められない。
Although k largely depends on the water content and enzyme concentration in the reaction system, increasing the water content only promotes an increase in free diglyceride, and no substantial increase in the transesterification rate is observed.

一方、酵素濃度の増加は反応系内の遊離のジグリセリド
の増加を抑制し、上記の速度式から9        
   /”%M 明らかなようにエステル交換反応速度の増加を可能なら
しめる。しかし単にリパーゼ剤の増加のみでは、該剤中
に含まれる水分が容易に反応系内に放出される結果とな
り、ジグリセリドの抑制は困難である。
On the other hand, an increase in enzyme concentration suppresses the increase in free diglyceride in the reaction system, and from the above rate equation, 9
/”%M Obviously, it makes it possible to increase the rate of transesterification reaction. However, simply increasing the amount of lipase agent results in the water contained in the agent being easily released into the reaction system, which leads to an increase in the rate of the transesterification reaction. Suppression is difficult.

本発明者らは、リパーゼの持つ合成能力が水分によって
異なり、低水分下では副反応の分解を伴うことなくエス
テル交換を効率的に行うことができることに着目し、本
発明の完成に至ったのである。
The present inventors focused on the fact that the synthetic ability of lipase varies depending on the moisture content, and that transesterification can be carried out efficiently without decomposition of side reactions under low moisture conditions, and this led to the completion of the present invention. be.

本発明は、具体的には次の様である。Specifically, the present invention is as follows.

即ち、脂質分解活性を有するリパーゼ剤を用いて油脂類
のエステル交換反応を行うにあたり、上記反応基質混合
物100部(重量基準、以下同じ)に対しリパーゼ剤を
好ましくは5〜100部用い、反応の最初から又は反応
途中に反応系内から継続的に脱水することにより、複雑
な反応工程を要することなく一段の反応により大幅な時
間の短縮が可能となり、かつ基質の加水分解による目的
成分の収率低下をきたすことなく、さらにリパーゼ剤の
エステル交換活性の低下を抑制し、回収使用回数を可及
的に増大させる事ができる。
That is, when performing a transesterification reaction of oils and fats using a lipase agent having lipolytic activity, preferably 5 to 100 parts of the lipase agent is used per 100 parts (by weight, the same applies hereinafter) of the above reaction substrate mixture, and the By continuously dehydrating the reaction system from the beginning or during the reaction, it is possible to significantly shorten the time by performing a single reaction without requiring complicated reaction steps, and to increase the yield of the target component by hydrolysis of the substrate. It is possible to further suppress a decrease in the transesterification activity of the lipase agent without causing a decrease, and to increase the number of times of recovery and use as much as possible.

本発明において、反応器の形式は特に限定されるもので
はなく、通常の攪拌式回分反応器または充填塔型循環反
応器等が脱水効率の点から効果的である。また、流下式
または流動床式の連続型反応器を用いる事もできる。
In the present invention, the type of reactor is not particularly limited, and a conventional stirring type batch reactor or packed column type circulation reactor is effective from the viewpoint of dehydration efficiency. Further, a continuous reactor of a falling type or a fluidized bed type can also be used.

本発明で用いるリパーゼ剤としては各種担体に保持され
た耐熱性を有する固定化リパーゼ製剤が好ましい。適当
な使用量としては、油脂類100部に対して5〜100
部が好ましい。また必要以上のリパーゼ剤の存在は、反
応系のスラリー濃度の増加により作業性を損なうため好
ましくない。
As the lipase agent used in the present invention, a heat-resistant immobilized lipase preparation supported on various carriers is preferable. The appropriate amount to use is 5 to 100 parts per 100 parts of fats and oils.
part is preferred. Further, the presence of more lipase agent than necessary is not preferable because it impairs workability due to an increase in the slurry concentration in the reaction system.

本発明に用いるリパーゼ開用のリパーゼとしては、位置
選択性に優れたリゾプス(Rhizopus)属、アス
ペルギルス(Aspergilus)属、クロモバクテ
リウム(Chromobacterium )属、ムコ
ール(Mucor)属、シュードモナス(Pseudo
monus)属、脂肪酸特異性を有するジオトリケム(
Geot−richum)属、特異性を全く示さないカ
ンジダ(Candida)属等の微生物起源のリパーゼ
、及びすい臓リパーゼ等の動物リパーゼが挙げられる。
The lipases used in the present invention include Rhizopus genus, Aspergillus genus, Chromobacterium genus, Mucor genus, and Pseudomonas genus, which have excellent regioselectivity.
monus), geotrichems with fatty acid specificity (
Examples include lipases originating from microorganisms such as the genus Geot-richum, the genus Candida which shows no specificity, and animal lipases such as pancreatic lipase.

これらの内、リゾプス属、シュードモナス属、クロモバ
クテリウム属、ムコール属、又はカンジタ属の耐熱性菌
株の産出するリパーゼを用いる事が一層望ましい。
Among these, it is more preferable to use lipases produced by heat-resistant strains of the genus Rhizopus, Pseudomonas, Chromobacterium, Mucor, or Candida.

リパーゼは公知の担体に固定化して用いるのが好ましい
が、固定化担体としては、セライト、ケイソウ土、カオ
リナイト、シリカゲル、パーライト、ガラス繊維、モレ
キュラーシーブ、活性炭、炭酸カルシウム等のエステル
交換反応系に不溶性の無機担体、及びセルロースパウダ
ー、イオン交換樹脂、キトサン等の有機高分子のような
リパーゼ活性に悪影響を与えないものであれば何れも使
用できる。また、担体の形状としては、粉末状、果粒状
、繊維状、スポンジ状等種々有るが、そのいずれでも使
用できる。特に固定化により耐熱性と活性が増強される
ものであればなお望ましく、巨視的多孔性陰イオン交換
樹脂に固定化したリパーゼを用いるのが特に好ましい。
It is preferable to use lipase by immobilizing it on a known carrier, but examples of immobilizing carriers include transesterification systems such as celite, diatomaceous earth, kaolinite, silica gel, perlite, glass fiber, molecular sieve, activated carbon, and calcium carbonate. Any carrier can be used as long as it does not adversely affect the lipase activity, such as insoluble inorganic carriers and organic polymers such as cellulose powder, ion exchange resins, and chitosan. The carrier may be in various shapes such as powder, fruit, fiber, sponge, etc., and any of these can be used. In particular, it is more desirable if the heat resistance and activity are enhanced by immobilization, and it is particularly preferable to use a lipase immobilized on a macroscopically porous anion exchange resin.

本発明で用いる油脂類としては、一般的な植物性油脂、
動物性油脂もしくは加工油脂、あるいは、これらの混合
油脂が挙げられる。これらの例としては、大豆油、綿実
油、菜種油、コーン油、サフラワー油、ひまわり油、ヤ
シ油、牛脂、ラード、魚油等が挙げられる。更にエステ
ル交換反応でカカオバター代用脂の製造を目的とする場
合は、グリセリドの2位にオレイン酸を多□量に含有す
る油脂、例えば、パーム油、オリーブ油、高オレイン酸
ひまわり油、高オレイン酸すフラワー油、椿油、さざん
か油、サル脂、シア脂、イリッペ脂、コクム脂、モーラ
脂、フルワラ脂、ポルネオタロー脂、マンゴ−核油、ま
たはこれらの分別油脂を用いることができる。
The oils and fats used in the present invention include common vegetable oils,
Examples include animal fats and oils, processed fats and oils, and mixtures thereof. Examples of these include soybean oil, cottonseed oil, rapeseed oil, corn oil, safflower oil, sunflower oil, coconut oil, beef tallow, lard, fish oil, and the like. Furthermore, when the purpose is to produce a cocoa butter substitute fat by transesterification, oils and fats containing a large amount of oleic acid at the 2nd position of the glyceride, such as palm oil, olive oil, high oleic acid sunflower oil, high oleic acid It is possible to use Japanese flower oil, camellia oil, sasanqua oil, monkey butter, shea butter, illipe butter, kokum butter, mora butter, fulwara butter, porneotallow butter, mango kernel oil, or fractionated fats and oils thereof.

エステル交換はエステル類と脂肪酸、又はエステル類相
互あるいはエステル類とアルコールを反応させる事によ
って行われる。脂肪酸としでは、炭素数2〜24の直鎖
で通常自然界に存在するもの、例としてはパルミチン酸
、ステアリン酸、ベヘニン酸等の飽和脂肪酸、あるいは
オレイン酸、リノール酸、エイコサペンクエン酸等の不
飽和脂肪酸等も用いることが出来る。
Transesterification is carried out by reacting esters with fatty acids, with each other, or with alcohols. The fatty acids include straight chain fatty acids with 2 to 24 carbon atoms that normally exist in nature, such as saturated fatty acids such as palmitic acid, stearic acid, and behenic acid, and oleic acid, linoleic acid, and eicosapencitric acid. Unsaturated fatty acids and the like can also be used.

本発明における反応温度は通常の酵素反応よりもやや高
い30〜90℃で行うことができる。反応系から水分を
除去する方法としては、反応系を水蒸気圧以下の減圧と
することがよい。減圧度は特に限定されるものではない
が、3〜150mm)Igが好ましい。
The reaction temperature in the present invention can be carried out at a temperature of 30 to 90°C, which is slightly higher than that of a normal enzyme reaction. As a method for removing water from the reaction system, it is preferable to reduce the pressure of the reaction system to a water vapor pressure or lower. The degree of reduced pressure is not particularly limited, but is preferably 3 to 150 mm).

反応終了時の反応系内の水分は0.03部(基質とする
油脂類1.0部に対して)以下とする事がジグリセリド
の副生を抑制する点から望ましい。
It is desirable that the water content in the reaction system at the end of the reaction be 0.03 parts or less (based on 1.0 parts of fats and oils as a substrate) from the viewpoint of suppressing the by-product of diglyceride.

急激な脱水は反応速度の低下をきたすため、脱水速度に
ついては1.0 Xl0−’ないし1.OXl0−”g
/g基質・Hr程度が反応速度の維持の点から好ましい
が、これに限定されるものではない。
Since rapid dehydration causes a decrease in the reaction rate, the dehydration rate should be between 1.0 Xl0-' and 1.0 Xl0-'. OXl0-”g
/g substrate/Hr is preferable from the viewpoint of maintaining the reaction rate, but is not limited thereto.

また必要に応じて乾燥窒素等の不活性ガスを吹き込むこ
とによって水分を反応系外に排除することもできる。
Further, if necessary, moisture can be removed from the reaction system by blowing inert gas such as dry nitrogen.

エステル交換反応を終了した反応混合物より、脂肪酸、
少量のモノグリセリド、ジグリセリド等の部分エステル
及び未反応のアルコール等は液−液抽出、アルカリ中和
、又は真空もしくは分子蒸留等、従来の分離精製手段を
単独またはこれらを適宜組み合わせて使用することによ
り容易に除去可能であり、かくして精製されたエステル
交換物を得ることができる。
From the reaction mixture after the transesterification reaction, fatty acids,
Small amounts of partial esters such as monoglycerides and diglycerides, unreacted alcohols, etc. can be easily removed by using conventional separation and purification methods such as liquid-liquid extraction, alkali neutralization, vacuum or molecular distillation, alone or in an appropriate combination. can be removed to obtain a purified transesterified product.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、リパーゼの持つ合成活性を十分に発揮
させる為のものであり、リパーゼの合成活性が、酵素濃
度に比例し水分含量に反比例する事を有効に活用したも
のである。
The method of the present invention is for fully demonstrating the synthetic activity of lipase, and effectively utilizes the fact that the synthetic activity of lipase is proportional to the enzyme concentration and inversely proportional to the water content.

本発明の最も大きな効果としては、反応基質とする油脂
類に対して酵素使用量が十分高い場合に、副反応の加水
分解を促進する水分を、反応の初期又は反応途中から反
応系外へ除去することにより、反応速度の低下をきたす
事なく副生物の増加を抑制することができることである
The greatest effect of the present invention is that when the amount of enzyme used is sufficiently high relative to the oils and fats used as reaction substrates, water that promotes hydrolysis of side reactions can be removed from the reaction system at the beginning or during the reaction. By doing so, it is possible to suppress the increase in by-products without reducing the reaction rate.

本発明の併せ持つ効果としては、反応系内のリパーゼ剤
濃度を十分高くすることによって、酵素相互の安定化効
果が発現し、その結果経時的な酵素活性の低下が少なく
なり、反応後に回収されたリパーゼ剤の効果的再使用が
可能となり、工業的な規模での実施において酵素重量あ
たりの生産性を著しく向上させ、もって経済性を改良し
うる点が挙げられる。更に、本発明を油脂のエステル交
換に適用すれば、位置選択的なリパーゼ剤を用いること
により、例えば安価なパーム油から高価なカカオ代用脂
を効果的に製造する事ができる。
The combined effect of the present invention is that by increasing the concentration of the lipase agent in the reaction system sufficiently, a mutual stabilizing effect of the enzymes is expressed, and as a result, the decrease in enzyme activity over time is reduced, and the concentration of the lipase agent recovered after the reaction is reduced. The lipase agent can be effectively reused, and the productivity per weight of enzyme can be significantly improved in industrial scale implementation, thereby improving economic efficiency. Furthermore, if the present invention is applied to transesterification of fats and oils, by using a regioselective lipase agent, an expensive cocoa substitute fat can be effectively produced from, for example, inexpensive palm oil.

〔実施例〕〔Example〕

以下、実施例により、本発明を更に詳細に説明するが、
本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1 パーム油中融点部(沃素価30.5、ジグリセリド4.
6%)100部と市販のステアリン酸(ルナツクS□−
90、ステアリン酸純度93%、花王株式会社型)10
0部に対し、市販の耐熱性を有する固定化酵素(巨視的
多孔性陰イオン交換樹脂に固定化したムコール・マイヘ
イ(Mucor m1ehet)起源のリパーゼ、ノボ
・インダストリ・A−3社製、水分8.0%)30部を
加え、60℃150 mmWgにて5時間反応を行った
。又この時の反応初期の反応系内の水分含量は反応原料
1.0部に対し0.045部であった。反応終了後の水
分含量は0.004部となった。
Example 1 Palm oil medium melting point (iodine value 30.5, diglyceride 4.
6%) 100 parts and commercially available stearic acid (Lunatsuk S□-
90, stearic acid purity 93%, Kao Corporation type) 10
0 parts, a commercially available heat-resistant immobilized enzyme (lipase of Mucor mlehet origin immobilized on macroscopically porous anion exchange resin, manufactured by Novo Industri A-3, moisture content) 8.0%) was added thereto, and the reaction was carried out at 60° C. and 150 mmWg for 5 hours. Further, the water content in the reaction system at the initial stage of the reaction was 0.045 parts per 1.0 part of the reaction raw materials. After the reaction was completed, the water content was 0.004 part.

反応終了後に生成物を回収し、シリカゲルカラムクロマ
トグラフィー(メルク社製、117735)によりトリ
グリセリド画分を分取した(展開溶剤;n−ヘキサン:
エチルエーテル=90 : 10)。
After the reaction was completed, the product was collected, and a triglyceride fraction was collected by silica gel column chromatography (Merck, 117735) (developing solvent: n-hexane:
Ethyl ether = 90:10).

分取したトリグリセリド画分は基準油脂分析試験法の方
法に従いメチルエステルとしてガスクロマトグラフィー
によりアルキル基組成の分析を行った。反応によってト
リグリセリド中に取り込まれたステアリン酸の量から、
次式で表わされる平衡値を100%とした時の反応率を
算出しエステル交換反応の進行度を調べた。この時の反
応率は91.8%となり、十分に反応が行われた結果を
示していた。
The separated triglyceride fraction was analyzed for alkyl group composition by gas chromatography as methyl ester according to the standard oil and fat analysis method. From the amount of stearic acid incorporated into triglycerides by the reaction,
The degree of progress of the transesterification reaction was investigated by calculating the reaction rate when the equilibrium value expressed by the following formula was taken as 100%. The reaction rate at this time was 91.8%, indicating that the reaction was sufficiently performed.

反応率%(を時間&) =100X (St−3o)/
(Soo−3o)上の式において、 St:時間tにおける油脂中のステアリン酸含量So:
反応前の原料油脂中のステアリン酸含量S00 : 1
.3ランダム平衡時のステアリン酸含量を意味する。
Reaction rate % (time &) = 100X (St-3o)/
(Soo-3o) In the above formula, St: Stearic acid content in fats and oils at time t So:
Stearic acid content in raw material fat before reaction S00: 1
.. 3 Means the stearic acid content at random equilibrium.

また反応終了後の試料から、フロリジル(メルク社製、
1112518)カラムクロマトグラフィーにより脂肪
酸を除去し、逆相高速液体クロマトグラフィー(ODS
シリカ=日立ゲル113750 、溶離液=アセトン:
アセトニトリル)により、グリセリド組成を分析した。
In addition, from the sample after the completion of the reaction, Florisil (manufactured by Merck & Co., Ltd.,
1112518) column chromatography to remove fatty acids and reverse phase high performance liquid chromatography (ODS
Silica = Hitachi gel 113750, eluent = acetone:
Glyceride composition was analyzed using acetonitrile).

反応後のジグリセリド含量は4.8%に留まり、反応に
よる実質上の増加は0.2%にすぎなかった。
The diglyceride content after the reaction remained at 4.8%, and the actual increase due to the reaction was only 0.2%.

比較例1 反応を常圧下で行った以外は実施例1と全く同様にして
反応を行った。5時間後の反応率は101%と高い値を
示したが、ジグリセリドは25.1%と非常に高い値を
示し、目的とするエステル交換脂の収率は低く、品質も
不十分なものとなった。
Comparative Example 1 A reaction was carried out in exactly the same manner as in Example 1, except that the reaction was carried out under normal pressure. The reaction rate after 5 hours was as high as 101%, but the diglyceride value was very high at 25.1%, indicating that the yield of the desired transesterified fat was low and the quality was insufficient. became.

実施例2 実施例1において、反応を減圧で行う代わりに、乾燥窒
素を0.01v/v/mの流量でヘッドスペースに通気
した。実施例1と同様に分析した結果、反応率は91.
4%、ジグリセリド9.6%となり、減圧反応と同様に
十分な結果が得られた。
Example 2 In Example 1, instead of running the reaction under reduced pressure, dry nitrogen was bubbled into the headspace at a flow rate of 0.01 v/v/m. As a result of analysis in the same manner as in Example 1, the reaction rate was 91.
4%, diglyceride 9.6%, and sufficient results were obtained similar to the reduced pressure reaction.

実施例3 実施例2において、反応途中の3時間後から反応系を1
00 mmHHの減圧とした。
Example 3 In Example 2, after 3 hours during the reaction, the reaction system was
The pressure was reduced to 00 mmHH.

5時間後の反応率は96.4%、ジグリセリドは5.6
%となり、十分な効果が得られた。
The reaction rate after 5 hours was 96.4%, diglyceride was 5.6
%, and a sufficient effect was obtained.

実施例4 実施例1において、市販の耐熱性を有する固定化酵素(
巨視的多孔性陰イオン交換樹脂に固定化したムコール・
マイヘイ (Mucor m1ehei)起源のリパー
ゼ、ノボ・インダストリ・A−、S社製、水分8.0%
)を予め減圧乾燥し、水分5.5%とし、その50部を
用い、温度を70℃とした以外は実施例1と同様にして
反応を行った。
Example 4 In Example 1, a commercially available heat-resistant immobilized enzyme (
Mucor immobilized on macroscopic porous anion exchange resin
Lipase originating from Mucor m1ehei, manufactured by Novo Industri A-S, moisture 8.0%
) was previously dried under reduced pressure to have a water content of 5.5%, and 50 parts thereof were used to carry out the reaction in the same manner as in Example 1, except that the temperature was 70°C.

5時間後の反応率は98.1%となり、ジグリセリドは
4.1%と出発原料のジグリセリド含量よりも低い値を
示し、合成が行われている事が裏づけられた。
The reaction rate after 5 hours was 98.1%, and the diglyceride content was 4.1%, which was lower than the diglyceride content of the starting material, confirming that the synthesis was being carried out.

実施例5 第1図に示す反応器を用い以下に示す反応を行った。Example 5 The reaction shown below was carried out using the reactor shown in FIG.

即ち、市販の耐熱性を有する固定化酵素(巨視的多孔性
陰イオン交換樹脂に固定化したムコール・マイヘイ (
Mucor m1ehei)起源のリパーゼ、ノボ・イ
ンダストリ・A−3社製、水分8.0%)を予め減圧乾
燥し、水分6.2%とし、その30gを内容量75−の
充填塔1に充填し、パーム油中融点部100 g 、ス
テアリン酸100gの混合物を65℃にて該充填塔に循
環通液させた。このときの通液速度は、空塔速度として
0.18cm/secとした。また充填塔1の最下部に
500−の受槽3を直結し循環液を回収した。このとき
受槽3内は160 mmHgの減圧とした。5時間後の
反応率は90.2%、ジグリセリドは9.0%であった
。さらに8時間反応後まで循環を継続することにより、
反応率は96.9%迄増加し、ジグリセリドは8.1%
に低下した。
That is, a commercially available thermostable immobilized enzyme (Mucor-Mayhei immobilized on a macroscopically porous anion exchange resin) was used.
Mucor m1ehei) origin lipase, manufactured by Novo Industri A-3, water content: 8.0%) was previously dried under reduced pressure to reduce the water content to 6.2%, and 30 g of it was packed into packed tower 1 with an internal capacity of 75 cm. A mixture of 100 g of medium melting point palm oil and 100 g of stearic acid was circulated through the packed tower at 65°C. The liquid passing rate at this time was 0.18 cm/sec as a superficial velocity. Further, a 500-meter receiving tank 3 was directly connected to the bottom of the packed tower 1 to recover the circulating fluid. At this time, the pressure inside the receiving tank 3 was reduced to 160 mmHg. The reaction rate after 5 hours was 90.2%, and the diglyceride content was 9.0%. By continuing circulation until after the reaction for an additional 8 hours,
The reaction rate increased to 96.9% and the diglyceride was 8.1%.
It declined to .

尚、第1図に示す反応器において、2,2“はジャケッ
ト、4は固定翼、5は攪拌翼、6は送液ポンプ、7は流
量計、8は圧力計である。
In the reactor shown in FIG. 1, 2, 2'' is a jacket, 4 is a fixed blade, 5 is a stirring blade, 6 is a liquid feeding pump, 7 is a flow meter, and 8 is a pressure gauge.

また、本実施例の詳細な結果は第1表に示した。Further, detailed results of this example are shown in Table 1.

第1表 比較例2 受槽内を常圧とした以外は実施例5と同様にして実施し
た。5時間後の反応率は90.6%となったが、ジグリ
セリドの生成は経時的に増加し5時間後には18.0%
と非常に多い値を示した。
Table 1 Comparative Example 2 The test was carried out in the same manner as in Example 5 except that the pressure inside the receiving tank was kept at normal pressure. The reaction rate after 5 hours was 90.6%, but the production of diglyceride increased over time and reached 18.0% after 5 hours.
It showed a very high value.

この実施結果の詳細は第2表、に示した。The details of this implementation result are shown in Table 2.

第2表 以上の実施例かられかるように、耐熱性のり。Table 2 As can be seen from the above examples, it is a heat-resistant glue.

バーゼを含有する酵素製剤を用い、無溶剤反応中に脱水
することにより、エステル交換反応速度の維持と、副生
ジグリセリドの抑制の両立が可能となり、工業的な実施
が可能となる。
By using an enzyme preparation containing Base and dehydrating it during a solvent-free reaction, it is possible to maintain both the rate of the transesterification reaction and suppress the by-product diglyceride, making it possible to carry out the process on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例5で用いた反応器(充填塔を用いた外部
循環反応器)の概略を示す説明図である。 1・・・充填塔 2.2゛・・・ジャケット 3・・・受槽 4・・・固定翼 5・・・攪拌翼 6・・・送液ポンプ 7・・・流量計 8・・・圧力計 出願人代理人 古  谷     馨 第  1  図
FIG. 1 is an explanatory diagram schematically showing the reactor (external circulation reactor using a packed column) used in Example 5. 1... Packed tower 2.2゛... Jacket 3... Receiving tank 4... Fixed blade 5... Stirring blade 6... Liquid feed pump 7... Flow meter 8... Pressure gauge Applicant's agent Kaoru Furuya Figure 1

Claims (1)

【特許請求の範囲】 1、リパーゼを含有する酵素製剤を用いて油脂類のエス
テル交換反応を行う方法において、反応基質を融解させ
るのに十分な温度以上での耐熱性を有するリパーゼを含
有する酵素製剤を用い、溶剤を使用することなく、かつ
反応時に反応系内から水分を除去することを特徴とする
油脂類のエステル交換反応方法。 2、水分を除去するため反応を減圧下で行う特許請求の
範囲第1項記載の油脂類のエステル交換反応方法。 3、水分を除去するため反応系内に不活性ガスを導入す
る特許請求の範囲第1項記載の油脂類のエステル交換反
応方法。 4、耐熱性を有するリパーゼを含有する酵素製剤として
、固定化酵素を用いる特許請求の範囲第1項乃至第3項
のいずれかの項に記載の油脂類のエステル交換反応方法
。 5、固定化酵素として、巨視的多孔性陰イオン交換樹脂
に固定化したリパーゼを用いる特許請求の範囲第4項記
載の油脂類のエステル交換反応方法。 6、リパーゼが、リゾプス属、シュードモナス属、クロ
モバクテリウム属、ムコール属、又はカンジタ属の耐熱
性菌株から産生したリパーゼである特許請求の範囲第1
項又は第5項記載の油脂類のエステル交換反応方法。
[Scope of Claims] 1. An enzyme containing a lipase that has heat resistance at a temperature sufficient to melt a reaction substrate or higher in a method for transesterifying oils and fats using an enzyme preparation containing a lipase. A method for transesterification of oils and fats, which uses a preparation, does not use a solvent, and removes water from the reaction system during the reaction. 2. The method for transesterification of oils and fats according to claim 1, wherein the reaction is carried out under reduced pressure to remove water. 3. The method for transesterification of oils and fats according to claim 1, wherein an inert gas is introduced into the reaction system to remove water. 4. The method for transesterification of oils and fats according to any one of claims 1 to 3, in which an immobilized enzyme is used as the enzyme preparation containing a heat-resistant lipase. 5. The method for transesterification of oils and fats according to claim 4, which uses lipase immobilized on a macroscopically porous anion exchange resin as the immobilized enzyme. 6. Claim 1, wherein the lipase is a lipase produced from a heat-resistant strain of Rhizopus, Pseudomonas, Chromobacterium, Mucor, or Candida.
The method for transesterification of oils and fats according to item 5 or item 5.
JP61190007A 1986-08-13 1986-08-13 Ester exchange reaction of fats and oils Granted JPS6344892A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61190007A JPS6344892A (en) 1986-08-13 1986-08-13 Ester exchange reaction of fats and oils
EP87111327A EP0257388A3 (en) 1986-08-13 1987-08-05 Process for transesterifying fats
PH35634A PH23724A (en) 1986-08-13 1987-08-06 Process for transesterifying fats
MYPI87001277A MY102463A (en) 1986-08-13 1987-08-10 Process for transesterifying fats.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61190007A JPS6344892A (en) 1986-08-13 1986-08-13 Ester exchange reaction of fats and oils

Publications (2)

Publication Number Publication Date
JPS6344892A true JPS6344892A (en) 1988-02-25
JPH0338837B2 JPH0338837B2 (en) 1991-06-11

Family

ID=16250825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61190007A Granted JPS6344892A (en) 1986-08-13 1986-08-13 Ester exchange reaction of fats and oils

Country Status (4)

Country Link
EP (1) EP0257388A3 (en)
JP (1) JPS6344892A (en)
MY (1) MY102463A (en)
PH (1) PH23724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142484A (en) * 1988-11-25 1990-05-31 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Production of triglyceride in high concentration
US5311937A (en) * 1992-07-08 1994-05-17 Raito Kogyo Co., Ltd. Extractor for an injection pipe
JPH0779786A (en) * 1993-09-17 1995-03-28 Nisshin Oil Mills Ltd:The Transesterification with lipase

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775549B2 (en) * 1987-05-11 1995-08-16 鐘淵化学工業株式会社 Enzymatic reaction method in fine water system
US5093256A (en) * 1989-02-22 1992-03-03 Shen Gwo Jenn Essentially purified, thermostable and alkalophilic lipase from bacillus sp. a30-1 atcc 53841
US5166069A (en) * 1989-02-22 1992-11-24 Michigan Biotechnology Institute Bacillus sp. A30-1 ATCC no. 53841
GB2236537A (en) * 1989-09-13 1991-04-10 Unilever Plc Transesterification
WO1991006661A1 (en) * 1989-11-03 1991-05-16 Opta Food Ingredients, Inc. Lipase-catalyzed in situ generation of mono- and di-glycerides
EP0652289A1 (en) * 1993-11-05 1995-05-10 Unilever Plc Random interesterification of triglyceride fats
US6936289B2 (en) 1995-06-07 2005-08-30 Danisco A/S Method of improving the properties of a flour dough, a flour dough improving composition and improved food products
AU752215B2 (en) 1998-07-21 2002-09-12 Dupont Nutrition Biosciences Aps Foodstuff
DE60220155T2 (en) 2001-05-18 2008-02-07 Danisco A/S PROCESS FOR PREPARING DOUGH WITH AN ENZYME
US7955814B2 (en) 2003-01-17 2011-06-07 Danisco A/S Method
US20050196766A1 (en) 2003-12-24 2005-09-08 Soe Jorn B. Proteins
MXPA05007653A (en) 2003-01-17 2005-09-30 Danisco Method.
GB0716126D0 (en) 2007-08-17 2007-09-26 Danisco Process
US7906307B2 (en) 2003-12-24 2011-03-15 Danisco A/S Variant lipid acyltransferases and methods of making
US7718408B2 (en) 2003-12-24 2010-05-18 Danisco A/S Method
GB0405637D0 (en) 2004-03-12 2004-04-21 Danisco Protein
AU2005263954B2 (en) 2004-07-16 2011-04-07 Dupont Nutrition Biosciences Aps Enzymatic oil-degumming method
CN101652474B (en) 2007-01-25 2012-06-27 丹尼斯科有限公司 Production of a lipid acyltransferase from transformed bacillus licheniformis cells
EP3847895A1 (en) 2020-01-07 2021-07-14 Bunge Loders Croklaan B.V. Method of preparing a randomly interesterified fat product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127094A (en) * 1980-03-08 1981-10-05 Fuji Oil Co Ltd Enzymatic ester-exchange process
JPS578787A (en) * 1980-03-14 1982-01-18 Fuji Oil Co Ltd Esterification by enzyme
JPS5928482A (en) * 1982-08-05 1984-02-15 Asahi Denka Kogyo Kk Method for ester interchange reaction of fat or oil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571797A (en) * 1978-11-21 1980-05-30 Fuji Oil Co Ltd Manufacture of cacao butter substitute fat
DE3163939D1 (en) * 1980-03-08 1984-07-12 Fuji Oil Co Ltd Method for enzymatic interesterification of lipid and enzyme used therein
JPS58500638A (en) * 1981-05-07 1983-04-28 ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ Synthesis method of ester
EP0126416B1 (en) * 1983-05-19 1988-01-07 Asahi Denka Kogyo Kabushiki Kaisha Reaction method for transesterifying fats and oils
DK402583D0 (en) * 1983-09-05 1983-09-05 Novo Industri As PROCEDURE FOR THE MANUFACTURING OF AN IMMOBILIZED LIPASE PREPARATION AND APPLICATION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127094A (en) * 1980-03-08 1981-10-05 Fuji Oil Co Ltd Enzymatic ester-exchange process
JPS578787A (en) * 1980-03-14 1982-01-18 Fuji Oil Co Ltd Esterification by enzyme
JPS5928482A (en) * 1982-08-05 1984-02-15 Asahi Denka Kogyo Kk Method for ester interchange reaction of fat or oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142484A (en) * 1988-11-25 1990-05-31 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Production of triglyceride in high concentration
US5311937A (en) * 1992-07-08 1994-05-17 Raito Kogyo Co., Ltd. Extractor for an injection pipe
JPH0779786A (en) * 1993-09-17 1995-03-28 Nisshin Oil Mills Ltd:The Transesterification with lipase

Also Published As

Publication number Publication date
PH23724A (en) 1989-11-03
EP0257388A2 (en) 1988-03-02
EP0257388A3 (en) 1989-08-30
MY102463A (en) 1992-06-30
JPH0338837B2 (en) 1991-06-11

Similar Documents

Publication Publication Date Title
JPS6344892A (en) Ester exchange reaction of fats and oils
JP3892463B2 (en) Method for producing alkyl ester
US4268527A (en) Method for producing cacao butter substitute
US5219744A (en) Process for modifying fats and oils
CA1210409A (en) Rearrangement process
JPH0439995B2 (en)
JP5216277B2 (en) Method for producing edible fats and oils
RU2528954C2 (en) Method of producing triglyceride composition
JPH0665311B2 (en) Method for producing diglyceride
US6090598A (en) Enzymatic process for interesterification of fats and oils using distillation
US5061498A (en) Method for reforming fats and oils with enzymes
JPH0349319B2 (en)
JPS63287492A (en) Method for ester interchange reaction of fats or oils
Bilyk et al. Lipase‐catalyzed triglyceride hydrolysis in organic solvent
JP3847445B2 (en) Diglyceride production method
JP3932788B2 (en) Method for transesterification of fats and oils
JP2711391B2 (en) Method for producing reformed oil
JP4945838B2 (en) Oil and fat manufacturing method
JPH0369516B2 (en)
JPH0327199B2 (en)
JPS6253153B2 (en)
JP6194908B2 (en) Oil and fat manufacturing method
JPH012588A (en) Modified oil manufacturing method
JP2657675B2 (en) Fat / oil reforming method
JPS62201591A (en) Glycerolysis of oil and fat

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees