JPS634483Y2 - - Google Patents

Info

Publication number
JPS634483Y2
JPS634483Y2 JP12428783U JP12428783U JPS634483Y2 JP S634483 Y2 JPS634483 Y2 JP S634483Y2 JP 12428783 U JP12428783 U JP 12428783U JP 12428783 U JP12428783 U JP 12428783U JP S634483 Y2 JPS634483 Y2 JP S634483Y2
Authority
JP
Japan
Prior art keywords
solvent
gas
processing chamber
nitrogen gas
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12428783U
Other languages
Japanese (ja)
Other versions
JPS6031301U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12428783U priority Critical patent/JPS6031301U/en
Publication of JPS6031301U publication Critical patent/JPS6031301U/en
Application granted granted Critical
Publication of JPS634483Y2 publication Critical patent/JPS634483Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、塗装工程、印刷工程その他化学工
場、食品工場等の乾燥工程中に揮発する溶剤を回
収する装置に関し、爆発の危険がなく安全操業が
でき、しかも回収コストの低い装置を提供する。
[Detailed description of the invention] This invention relates to a device for recovering solvents that volatilize during painting processes, printing processes, and other drying processes in chemical factories, food factories, etc., which can be operated safely without the risk of explosion, and at a low recovery cost. Provides low cost equipment.

一般に、塗装や印刷インキの溶媒として用いる
ベンゼン、n−ヘキサン、エチレンクロライド、
THF等の溶剤は、塗装工程、乾燥工程中に多量
に揮発し、労働衛生上好ましくなく(特に、エチ
レンクロライド、四塩化炭素等の含塩素溶剤は毒
性が高い)、又、公害防止上大気に直接開放する
ことはできない。
Benzene, n-hexane, ethylene chloride, commonly used as solvents for painting and printing inks,
Solvents such as THF volatilize in large quantities during the painting and drying processes, making them unfavorable for occupational health (in particular, chlorinated solvents such as ethylene chloride and carbon tetrachloride are highly toxic), and are harmful to the atmosphere to prevent pollution. It cannot be opened directly.

従つて、溶剤蒸気は、これを回収する必要があ
るが、空気中の酸素と所定混合割合以上になると
爆発限界内に入り、爆発を起こす危険があるた
め、ガス分離装置から空気、窒素ガス及びアルゴ
ンガス等を塗装室や乾燥室に供給して、当該室内
を爆発限界以下に抑えねばならない。
Therefore, it is necessary to recover the solvent vapor, but if it exceeds a certain mixing ratio with oxygen in the air, it will fall within the explosive limit and there is a risk of causing an explosion, so air, nitrogen gas, and Argon gas, etc. must be supplied to the painting room and drying room to keep the interior of the room below the explosion limit.

本考案は、その基本構造として、例えば、第1
図及び第2図に示すものに関する。
The basic structure of the present invention includes, for example, the first
Regarding what is shown in FIG.

即ち、溶剤を蒸発させる処理室1と、ガス分離
装置2と、溶剤混合ガスを液化回収する液化装置
3から成り、ガス分離装置2から処理室1にガス
を供給して処理室1内を爆発限界以下にし、溶剤
蒸気とガスの混合気である溶剤混合ガスを液化装
置3に導いて溶剤を液化回収するように構成した
溶剤回収装置に関する。
That is, it consists of a processing chamber 1 that evaporates the solvent, a gas separation device 2, and a liquefaction device 3 that liquefies and recovers the solvent mixed gas. Gas is supplied from the gas separation device 2 to the processing chamber 1 to cause an explosion inside the processing chamber 1. The present invention relates to a solvent recovery device configured to reduce the amount of solvent below the limit and guide a solvent mixed gas, which is a mixture of solvent vapor and gas, to a liquefaction device 3 to liquefy and recover the solvent.

従来、空気を塗装室等の処理室に供給して溶剤
を回収する装置においては、爆発限界以下に混合
気を保つために、空気を大量に供給しなければな
らず、ブロワーの稼動等に多量の電力を要して溶
剤回収のコストアツプを来たすとともに、空気量
が充分でない場合は、その中に含まれる酸素量の
ために爆発の危険性も高かつた。
Conventionally, in equipment that supplies air to a processing chamber such as a painting room to recover solvent, a large amount of air must be supplied in order to keep the mixture below the explosive limit, and a large amount of air must be supplied to operate the blower. The amount of electricity required increases the cost of recovering the solvent, and if the amount of air is insufficient, there is a high risk of explosion due to the amount of oxygen contained therein.

しかも、溶剤蒸気は、多量な空気量と混合され
るので、溶剤混合ガスの単位容量当りからの溶剤
回収効率が悪く、回収ロスはさらに高くなる。
Moreover, since the solvent vapor is mixed with a large amount of air, the solvent recovery efficiency per unit volume of the solvent mixed gas is poor, and the recovery loss is further increased.

一方、窒素ガスを処理室に供給して溶剤を回収
する従来装置においては、窒素ガスの不活性な属
性により、空気に比してより少ない供給量で混合
気を爆発限界内に保つことができ、その分溶剤回
収率も高くなる。
On the other hand, in conventional equipment that supplies nitrogen gas to the processing chamber and recovers the solvent, the inert attribute of nitrogen gas makes it possible to maintain the mixture within explosive limits with a smaller supply amount compared to air. , the solvent recovery rate increases accordingly.

しかし、窒素ガス分離装置としては、液化窒素
ガスを使用しており、当該液化ガスの冷熱を利用
して溶剤蒸気を凝縮するともに、液化窒素ガスを
熱交換によつて加温し、発生した窒素ガスを処理
室に供給するように構成するので、高価な液化窒
素ガスを使用する分だけ、窒素ガスの生産費が嵩
むことになり、溶剤回収のコストは上昇する。
However, nitrogen gas separation equipment uses liquefied nitrogen gas, which uses the cold heat of the liquefied gas to condense solvent vapor, and also heats the liquefied nitrogen gas through heat exchange to generate nitrogen. Since the configuration is such that gas is supplied to the processing chamber, the cost of producing nitrogen gas increases as more expensive liquefied nitrogen gas is used, and the cost of recovering the solvent increases.

本考案は、上記問題を解消するものであり、窒
素ガスを安価に製造して、それを処理室に供給す
ることにより、安全かつ効率的な溶剤回収を可能
ならしめることを目的とする。
The present invention solves the above problems, and aims to enable safe and efficient solvent recovery by producing nitrogen gas at low cost and supplying it to a processing chamber.

本考案は、上記目的を達成するため、前記溶剤
回収装置を、例えば、第1図又は第2図に示すよ
うに構成したものである。
In order to achieve the above object, the present invention configures the solvent recovery device as shown in FIG. 1 or 2, for example.

即ち、上記ガス分離装置2を固体吸着剤5を用
いたガス吸着塔6で構成し、当該固体吸着剤5に
より空気中から窒素を分離し、窒素ガスを処理室
1に供給するようにしたものである。
That is, the gas separation device 2 is configured with a gas adsorption tower 6 using a solid adsorbent 5, and the solid adsorbent 5 separates nitrogen from the air and supplies the nitrogen gas to the processing chamber 1. It is.

従つて、本考案の構成によつて奏される効果を
以下に述べると、まず、空気を窒素ガス分離装置
に通せば、固体吸着剤が酸素を吸着し、窒素ガス
を選択的に透過するので、窒素ガスの生産費が安
く、しかも、窒素ガス分離装置の他の回収装置部
分は既存の設備をこのまま利用できるので、設備
を低く抑えることができる。
Therefore, the effects produced by the configuration of the present invention are described below. First, when air is passed through a nitrogen gas separation device, the solid adsorbent adsorbs oxygen and selectively passes nitrogen gas. Since the production cost of nitrogen gas is low, and the existing equipment can be used as is for other recovery equipment parts of the nitrogen gas separation equipment, the cost of equipment can be kept low.

また、不活性な窒素ガスは、空気と異り、より
少ない供給量で溶剤蒸気を爆発限界以下に保持で
きるので、回収作業の安全性と単位容量混合ガス
からの回収能率を向上できる。
Further, unlike air, inert nitrogen gas can maintain the solvent vapor below the explosion limit with a smaller supply amount, thereby improving the safety of recovery work and the efficiency of recovery from a unit volume of mixed gas.

従つて、溶剤回収に伴う爆発の危険性を排除し
て作業環境を安全に確保できると同時に、設備費
を抑え窒素ガスの生産費を下げて溶剤回収を安価
に実施できる。
Therefore, it is possible to eliminate the danger of explosion associated with solvent recovery and ensure a safe work environment, and at the same time, it is possible to carry out solvent recovery at low cost by reducing equipment costs and nitrogen gas production costs.

以下、本考案の実施例を図面に基き説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、溶剤回収装置の略示系統図であつ
て、塗装や乾燥等を行なう処理室1に窒素ガス分
離装置2及び液化装置3を連結して溶剤回収装置
を構成する。
FIG. 1 is a schematic system diagram of a solvent recovery device, and the solvent recovery device is constructed by connecting a nitrogen gas separation device 2 and a liquefaction device 3 to a processing chamber 1 in which painting, drying, etc. are performed.

上記窒素ガス分離装置2は、前処理装置10、
ガス吸着塔6、窒素ガス貯留槽11及び真空ポン
プ12から成り、空気取入口13の下流側に、コ
ンプレツサー14、アフタークーラー15、ドレ
ン分離器16及び乾燥器17を直列に連結して前
処理装置10を構成する。
The nitrogen gas separation device 2 includes a pretreatment device 10,
The pretreatment device consists of a gas adsorption tower 6, a nitrogen gas storage tank 11, and a vacuum pump 12, and a compressor 14, an aftercooler 15, a drain separator 16, and a dryer 17 are connected in series on the downstream side of the air intake port 13. 10.

そして、ガス吸着塔6を二基設けて、その上流
側に位置する前処理装置10及び下流側に位置す
る窒素ガス貯留槽11に対し、各々並列状に連結
する。
Two gas adsorption towers 6 are provided and connected in parallel to a pretreatment device 10 located upstream and a nitrogen gas storage tank 11 located downstream.

各ガス吸着塔6の下流側を二股状に分岐し、操
作弁18及び7を介してその一方を前処理装置1
0に接続し、その他方を真空ポンプ12に接続す
る。
The downstream side of each gas adsorption tower 6 is branched into two branches, and one of them is connected to the pretreatment device 1 via operation valves 18 and 7.
0, and the other end is connected to the vacuum pump 12.

また、ガス吸着塔6の上流側に各々操作弁19
を設けて、その下流側を合流させ、窒素ガス貯留
槽11に操作弁20を介装して接続するととも
に、操作弁20の上流側から支流を分岐して操作
弁21を介して大気に開放可能に構成する。
Further, each operation valve 19 is provided on the upstream side of the gas adsorption tower 6.
are connected to the nitrogen gas storage tank 11 through an operating valve 20, and a tributary stream is branched from the upstream side of the operating valve 20 and opened to the atmosphere via the operating valve 21. Configure as possible.

当該ガス吸着塔6は、その内部に酸素・窒素分
離用のカーボン・モレキユラーシーブ5を充填
し、このカーボン・モレキユラーシーブのもつ4
乃至5Åの超ミクロ孔内への拡散速度の差を利用
して酸素・窒素ガスを分離可能にする。
The gas adsorption tower 6 is filled with a carbon molecular sieve 5 for oxygen/nitrogen separation, and the carbon molecular sieve has 4
It is possible to separate oxygen and nitrogen gases by utilizing the difference in diffusion rate into ultra-micropores of 5 Å to 5 Å.

一方、処理室1には、処理対象物22が順次搬
送されており、溶剤の蒸発を伴ないながら出口に
送られる。
On the other hand, objects 22 to be processed are sequentially transported into the processing chamber 1 and sent to the outlet while the solvent evaporates.

そして、上記窒素ガス貯留槽11の下流側を、
その処理室1に燥作弁23を介して分岐接続し、
窒素ガスと溶剤蒸気の混合ガスから成る溶剤混合
ガスをブロワー24により液化装置3に案内す
る。
Then, the downstream side of the nitrogen gas storage tank 11 is
A branch connection is made to the processing chamber 1 via a drying valve 23,
A solvent mixed gas consisting of a mixed gas of nitrogen gas and solvent vapor is guided to the liquefier 3 by the blower 24.

液化装置3は、冷却装置25、凝縮器26及び
溶剤回収槽27から成り、溶剤混合ガスを凝縮器
26で熱交換して、液化した溶剤を溶剤回収槽2
7に貯留するとともに、溶剤を分離除去した後の
窒素ガスを処理室1の窒素ガス供給ライン28に
循環させる。
The liquefaction device 3 consists of a cooling device 25, a condenser 26, and a solvent recovery tank 27. The solvent mixed gas is heat exchanged with the condenser 26, and the liquefied solvent is sent to the solvent recovery tank 2.
At the same time, the nitrogen gas after the solvent has been separated and removed is circulated to the nitrogen gas supply line 28 of the processing chamber 1.

また、第2図は、上記液化装置3を溶剤吸着方
式にしたものである。
Further, FIG. 2 shows the liquefaction device 3 of a solvent adsorption type.

即ち、処理室1から導出される溶剤混合ガス排
出ライン31の下流側に、溶剤吸着槽30を二基
並列状に操作弁32を介して連結する。
That is, two solvent adsorption tanks 30 are connected in parallel via operation valves 32 to the downstream side of a solvent mixed gas discharge line 31 led out from the processing chamber 1 .

そして、当該各吸着槽30の出口30aから二
本の分岐管を導出してこの一方同士を操作弁8を
介して合流させて、窒素ガス循環ライン33と
し、処理室1に循環させる。
Then, two branch pipes are led out from the outlet 30a of each adsorption tank 30, one of which is joined together via the operation valve 8 to form a nitrogen gas circulation line 33, and the nitrogen gas is circulated to the processing chamber 1.

また、分岐管の他方同士を操作弁4を介して合
流させて、水蒸気供給源34に連結する。
Further, the other branches of the branch pipes are joined together via the operating valve 4 and connected to the steam supply source 34 .

一方、各溶剤吸着槽30の入口室30bから一
本の分岐管を導出し、操作弁35を介して両分岐
管を合流させて凝縮器26、分離器36及び溶剤
回収槽27に順次直列状に接続する。
On the other hand, one branch pipe is led out from the inlet chamber 30b of each solvent adsorption tank 30, and both branch pipes are joined together via the operation valve 35, and connected in series to the condenser 26, separator 36, and solvent recovery tank 27. Connect to.

そして、溶剤吸着槽30は、その入口室30b
に活性炭素繊維からなる円筒状の吸着層37を内
装し、吸着層37のの内部を出口30aと直結す
る。
The solvent adsorption tank 30 has an inlet chamber 30b.
A cylindrical adsorption layer 37 made of activated carbon fiber is installed inside, and the inside of the adsorption layer 37 is directly connected to the outlet 30a.

以下、溶剤吸着式液化装置の全体的な機能を述
べると、一方の吸着槽30の操作弁8及び32を
閉じ、操作弁倣4及び35を開いて水蒸気供給源
34から水蒸気を吸着槽内に流入させる。
The overall function of the solvent adsorption type liquefaction device will be described below. The operation valves 8 and 32 of one adsorption tank 30 are closed, and the operation valves 4 and 35 are opened to supply water vapor from the steam supply source 34 into the adsorption tank. Let it flow.

そして、吸着槽30に吸着された溶剤を水蒸気
とともに凝縮器26及び分離器36に導いて、溶
剤を回収槽27に回収し、残留する水分を系外に
除去する。
Then, the solvent adsorbed in the adsorption tank 30 is guided together with water vapor to the condenser 26 and the separator 36, the solvent is recovered in the recovery tank 27, and the remaining moisture is removed from the system.

また、この溶剤回収工程と平行して他方の吸着
槽30の操作弁8及び32を開き、操作弁4及び
35を閉じて、溶剤混合ガス排出ライン31から
溶剤混合ガスを当該他方の吸着槽内に流入させ
る。
In parallel with this solvent recovery process, the operating valves 8 and 32 of the other adsorption tank 30 are opened, the operating valves 4 and 35 are closed, and the solvent mixed gas is discharged from the solvent mixed gas discharge line 31 into the other adsorption tank. to flow into.

そして、溶剤を吸着層37に吸着させるととも
に、分離した窒素ガス循環ライン3を通じて処理
室1内に循環させて、窒素ガスの再生利用を図つ
ている。
Then, the solvent is adsorbed on the adsorption layer 37 and circulated into the processing chamber 1 through the separated nitrogen gas circulation line 3 to recycle the nitrogen gas.

ここで、本考案の溶剤回収装置の機能を述べる
と、空気を空気取入口13から取入れ、コンプレ
ツサー14、アフタクーラー15、ドレン噴離器
16及び乾燥器17に通して予め除湿処理を施
す。
Here, to describe the function of the solvent recovery device of the present invention, air is taken in from the air intake port 13, passed through the compressor 14, aftercooler 15, drain jetter 16, and dryer 17, and is subjected to dehumidification treatment in advance.

そして、一方のガス吸着塔6の操作弁18及び
19を開き、操作弁7を閉じて装置内に空気を送
り込むとともに、他方の窒素ガス発生装置6の操
作弁18・19を閉じ、操作弁7を開いて真空ポ
ンプ12によつて装置内を減圧状態に保持する。
Then, the operation valves 18 and 19 of one gas adsorption tower 6 are opened and the operation valve 7 is closed to send air into the device, and the operation valves 18 and 19 of the other nitrogen gas generator 6 are closed and the operation valve 7 is closed. is opened and the inside of the apparatus is maintained at a reduced pressure state by the vacuum pump 12.

従つて、上記一方の塔6からは窒素ガスを選択
的に排出して窒素ガス貯留槽11に流入させ、操
作弁23を開いて処理室1に供給する。
Therefore, nitrogen gas is selectively discharged from one of the columns 6, flows into the nitrogen gas storage tank 11, and is supplied to the processing chamber 1 by opening the operation valve 23.

また、他方の装置6からは活性炭5に吸着され
た酸素が減圧脱着によつて除去され、真空ポンプ
12を通つて回収工程に送られる。
Further, from the other device 6, the oxygen adsorbed on the activated carbon 5 is removed by desorption under reduced pressure, and sent to the recovery process through the vacuum pump 12.

以下、二基のガス吸着塔を交互に窒素ガス透過
工程と酸素ガス脱着工程に切換えて、処理室1に
効率的に窒素ガスを供給する。そして、処理室内
を爆発限界以下に保ちながら、溶剤混合ガスを既
述の液化装置3に導出して溶剤を液化回収し、窒
素ガスを処理室1に再循環するのである。
Thereafter, the two gas adsorption towers are alternately switched to the nitrogen gas permeation step and the oxygen gas desorption step to efficiently supply nitrogen gas to the processing chamber 1. Then, while maintaining the inside of the processing chamber below the explosion limit, the solvent mixed gas is led to the liquefaction device 3 described above, the solvent is liquefied and recovered, and the nitrogen gas is recycled to the processing chamber 1.

尚、本考案は、固体吸着剤を用いて空気から選
択的に窒素ガスを取出し、これをもつて溶剤蒸気
と混合させることを必須構成要件としているの
で、溶剤の蒸発を伴う工程であれば、あらゆる処
理工程に本装置を応用できる。
Note that the present invention requires that nitrogen gas be selectively extracted from air using a solid adsorbent and mixed with solvent vapor, so if the process involves evaporation of the solvent, This device can be applied to any processing process.

そして、溶剤の液化装置の態様としては、冷却
式、溶剤吸着式を問わず適用できる。
As for the mode of the solvent liquefaction device, it is applicable regardless of whether it is a cooling type or a solvent adsorption type.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の実施例を示すもので、第1図は
溶剤回収装置の略示系統図、第2図は溶剤吸着方
式の液化装置を示す略示系統図である。 1…処理室、2…ガス供給源、3…液化装置、
5…固体吸着剤、6…窒素ガス発生装置。
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic system diagram of a solvent recovery device, and FIG. 2 is a schematic system diagram showing a solvent adsorption type liquefaction device. 1... Processing chamber, 2... Gas supply source, 3... Liquefaction device,
5...Solid adsorbent, 6...Nitrogen gas generator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 溶剤を蒸発させる処理室1と、ガス分離装置2
と、溶剤混合ガスを液化回収する液化装置3から
成り、ガス分離装置2から処理室1にガスを供給
して処理室1内を爆発限界以下にし、溶剤蒸気と
ガスの混合気である溶剤混合ガスを液化装置3に
導いて溶剤を液化回収するように構成した溶剤回
収装置において、上記ガス分離装置を固体吸着剤
5を用いたガス吸着塔6で構成し、当該固体吸着
剤5により空気中から酸素を分離し、窒素ガスを
処理室1に供給するようにしたことを特徴とする
溶剤回収装置。
Processing chamber 1 for evaporating solvent and gas separation device 2
and a liquefaction device 3 that liquefies and recovers the solvent mixed gas, supplies gas from the gas separation device 2 to the processing chamber 1 to bring the inside of the processing chamber 1 below the explosion limit, and removes the solvent mixture, which is a mixture of solvent vapor and gas. In a solvent recovery device configured to lead gas to a liquefaction device 3 to liquefy and recover the solvent, the gas separation device is configured with a gas adsorption tower 6 using a solid adsorbent 5. 1. A solvent recovery device characterized in that oxygen is separated from the solvent and nitrogen gas is supplied to a processing chamber 1.
JP12428783U 1983-08-09 1983-08-09 Solvent recovery equipment Granted JPS6031301U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12428783U JPS6031301U (en) 1983-08-09 1983-08-09 Solvent recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12428783U JPS6031301U (en) 1983-08-09 1983-08-09 Solvent recovery equipment

Publications (2)

Publication Number Publication Date
JPS6031301U JPS6031301U (en) 1985-03-02
JPS634483Y2 true JPS634483Y2 (en) 1988-02-05

Family

ID=30283382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12428783U Granted JPS6031301U (en) 1983-08-09 1983-08-09 Solvent recovery equipment

Country Status (1)

Country Link
JP (1) JPS6031301U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964361B2 (en) 2010-07-21 2015-02-24 Teradyne, Inc. Bulk transfer of storage devices using manual loading
US9001456B2 (en) 2010-08-31 2015-04-07 Teradyne, Inc. Engaging test slots
US9459312B2 (en) 2013-04-10 2016-10-04 Teradyne, Inc. Electronic assembly test system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759282B2 (en) * 1990-08-22 1995-06-28 ジャパン・フィールド株式会社 Method and apparatus for distilling flammable solvent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964361B2 (en) 2010-07-21 2015-02-24 Teradyne, Inc. Bulk transfer of storage devices using manual loading
US9001456B2 (en) 2010-08-31 2015-04-07 Teradyne, Inc. Engaging test slots
US9459312B2 (en) 2013-04-10 2016-10-04 Teradyne, Inc. Electronic assembly test system

Also Published As

Publication number Publication date
JPS6031301U (en) 1985-03-02

Similar Documents

Publication Publication Date Title
US11635253B2 (en) Gas separation system with auto-refrigeration and selective recycle for carbon dioxide capture and compression
EP0791388B1 (en) VSA adsorption process with energy recovery
EP0345686B1 (en) Pressure swing adsorption apparatus and process for recovery of oil-soluble vapors
US4283212A (en) Treatment of gas streams
CN109224756A (en) A kind of skid-mounted system using deep cooling condensation method recycling VOCs
JPH02290219A (en) Separation of gas mixture
NO853316L (en) PROCEDURE FOR OZONE MANUFACTURING.
CN112755719A (en) Efficient organic waste gas recovery device and process
JP2004309119A (en) Air separator
JP2967166B2 (en) Carbon dioxide gas separation and recovery method
JPS634483Y2 (en)
CN206695507U (en) Health care gas integrated form is produced and feedway
JP4683543B2 (en) Gas separation method and gas separation apparatus
JP4817560B2 (en) Carbon dioxide recovery method from carbon dioxide dry cleaning equipment
CN106731497B (en) Decarbonizing and extracting N from nitric acid industrial tail gas 2 O purification device and process method
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
CN112850668A (en) Chlorine-containing tail gas helium purification system
JPH04131118A (en) Continuous treatment of gas containing organic solvent vapor
CN214182435U (en) High-concentration tetrahydrofuran organic waste gas treatment device
CN215692905U (en) Efficient organic waste gas recovery device
JP3788814B2 (en) Solvent recovery method
CN213160115U (en) Novel acetylene drying system
JPH01297120A (en) Regeneration of adsorption device for refining helium gas
JP4339243B2 (en) Gas separation method and apparatus
WO2023161610A1 (en) Asu electrolyser system