JPS6336526A - Wafer exposure equipment - Google Patents

Wafer exposure equipment

Info

Publication number
JPS6336526A
JPS6336526A JP61179494A JP17949486A JPS6336526A JP S6336526 A JPS6336526 A JP S6336526A JP 61179494 A JP61179494 A JP 61179494A JP 17949486 A JP17949486 A JP 17949486A JP S6336526 A JPS6336526 A JP S6336526A
Authority
JP
Japan
Prior art keywords
wafer
exposure region
exposure area
exposure
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61179494A
Other languages
Japanese (ja)
Inventor
Masao Sadamura
定村 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61179494A priority Critical patent/JPS6336526A/en
Publication of JPS6336526A publication Critical patent/JPS6336526A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To make accurate exposure possible, by providing an exposure region measuring part an arithmetic circuit, a driving circuit and a wafer chuck having a plurality of piezoelectric driving pins, calculating correction quantity, and making a focal plane and an exposure region acurately coincide with each other in the exposure region of wafer surface. CONSTITUTION:Automatic correction of exposure region applying a wafer chuck 41 having piezoelectric driving pins 44, a driving circuit 45, an exposure region measuring part 55 and an arithmetic circuit 56 is executed as follows; a wafer chuck 41 is horizontally transferred under the condition where voltage is not applied to the piezoelectric driving pins 44, and the exposure region 50 of a wafer 42 fixed on the chuck is set at a specified position corresponding to a projection lense 40. Then the upper and the lower positions of a plurality of points on the exposure region 50 are measured. In this measurment, the output light 57 of a light emitting element 46 makes an incidence on the respictive positions corresponding to the piezoelectric driving pins 44. When the reflected light signals are input to the arithmetic circuit 56 via sensors 54, the arithmetic circuit 56 calcurates the difference between each incidence point on the exposure region 50 and the focal plane of the projection lense 40, and the correction quantity is output to a driving circuit 46. which applies a voltage corresponding to the correction quantity to the piezoelectric driving pins 44 corresponding to each point of the exposure region 50, and makes the wafer chuck shift according to the correction quantity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体集積回路素子等の製造に用いられるウェ
ハ露光装置、特にウェハの露光領域の位置補正装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wafer exposure apparatus used in the manufacture of semiconductor integrated circuit devices, and more particularly to a position correction apparatus for an exposure area of a wafer.

(従来の技術) 従来、このような分野の技術としては、第2図および第
3図に示されるようなものがおった。第2図は従来のウ
ェハ露光装置のうち、−例として光による縮小投影露光
装置の概略構成を示したものでおり、第3図はこの縮小
投影露光装備に準備されている自動焦点合わt!装置を
示したものである。
(Prior Art) Conventionally, there have been technologies in this field as shown in FIGS. 2 and 3. FIG. 2 shows a schematic configuration of a conventional wafer exposure apparatus, as an example of a reduction projection exposure apparatus using light, and FIG. 3 shows the automatic focusing t! This shows the device.

第2図において、1は縮小投影露光装置の光源の水銀灯
でおり、この水銀灯1はその光を反射、集光する凹面鏡
2を有している。3は水銀灯1の光の方向を変えるため
の第1反I=l iffでおり、その反射光の光軸位置
には反射光を平行化するコリメ−タ4と光を均一化して
照度むらを小さくするためのインテグレータ5がj堪ブ
られている。このインテグレータ5の前方には第2反射
鏡6が設けられ、その反射光の前方光軸位置には集光用
のコンデンサレンズ7が設置されている。8は例えば現
寸パターンの5倍または10倍の大きざのパターンをも
ったマスクであり、マスク8の前方には縮小投影レンズ
9が設けられている。この縮小投影レンズ9は、マスク
8のパターンを例えば115または1/10に縮小して
、ウェハステージ10の上に置かれたウェハ11の上に
結像させるためのものでおる。
In FIG. 2, reference numeral 1 denotes a mercury lamp as a light source of a reduction projection exposure apparatus, and this mercury lamp 1 has a concave mirror 2 that reflects and condenses the light. 3 is a first inverter I=liff for changing the direction of light from the mercury lamp 1, and a collimator 4 for collimating the reflected light and a collimator 4 at the optical axis position of the reflected light to equalize the light and eliminate uneven illuminance. The integrator 5 to make it smaller is being used. A second reflecting mirror 6 is provided in front of the integrator 5, and a condenser lens 7 for condensing light is provided at the forward optical axis position of the reflected light. Reference numeral 8 denotes a mask having a pattern that is, for example, 5 times or 10 times as large as the actual size pattern, and a reduction projection lens 9 is provided in front of the mask 8. This reduction projection lens 9 is used to reduce the pattern of the mask 8 to, for example, 115 or 1/10, and to form an image on the wafer 11 placed on the wafer stage 10.

以上のように構成される縮小投影露光装置において、水
銀灯1の光は一点鎖線12で示されるように凹面鏡2に
より反射、集光され、ざらに第1反射鏡3によりその方
向を変えられて、コリメータ4に入射する。コリメータ
4により平行化された光は、インテグレータ5に入射し
て均一化され、ウェハ11上の照度むらが少ない一様な
光線となる。
In the reduction projection exposure apparatus configured as described above, the light from the mercury lamp 1 is reflected and focused by the concave mirror 2 as shown by the dashed line 12, and its direction is roughly changed by the first reflecting mirror 3. The light enters the collimator 4. The light collimated by the collimator 4 enters the integrator 5 and is made uniform, resulting in a uniform light beam with little unevenness in illuminance on the wafer 11.

インテグレータ5を出射した光は第2反射鏡6を経てコ
ンデンサレンズ7に入射する。コンデンサレンズ7によ
り集束された光はマスク8を照射した後、縮小投影レン
ズ9に入射する。縮小投影レンズ9の出射光は、マスク
8のパターンをウェハ11表面上の15mmx 15m
m程度の四辺形の露光領域に結像する。このような動作
をウェハステージ10を移動させて繰り返すことにより
、順次別の露光領域を露光させてウェハ11仝面を露光
させる。
The light emitted from the integrator 5 passes through the second reflecting mirror 6 and enters the condenser lens 7. The light focused by the condenser lens 7 irradiates the mask 8 and then enters the reduction projection lens 9 . The light emitted from the reduction projection lens 9 spreads the pattern of the mask 8 onto the surface of the wafer 11 by 15 mm x 15 m.
The image is formed on a quadrilateral exposure area of about m. By repeating such an operation while moving the wafer stage 10, different exposure areas are sequentially exposed and the second surface of the wafer 11 is exposed.

以上のような縮小投影露光装置においては、ウェハ11
表面での焦点深度が±2μm程度と非常に浅いので、ウ
ェハ11表面を精度良く焦点面に合わせるために、第3
図に示されるような自動焦点合わせ装置が用いられる。
In the reduction projection exposure apparatus as described above, the wafer 11
Since the depth of focus at the surface is very shallow, about ±2 μm, in order to precisely align the surface of the wafer 11 with the focal plane, the third
An automatic focusing device as shown in the figure is used.

この自動焦点合わせ装置は、発光ダイオード20、第1
凸レンズ21、第1スリツト22、第2凸レンズ23、
第3凸レンズ24、(騒動反射鏡25、第2スリツト2
6およびホトダイオード27により構成されている。
This automatic focusing device includes a light emitting diode 20, a first
Convex lens 21, first slit 22, second convex lens 23,
Third convex lens 24, (turbulence reflector 25, second slit 2
6 and a photodiode 27.

上記の如く構成される自動焦点合わせ装置において、発
光ダイオード20からの出射光は一点鎖線28で示され
る如く、第1凸レンズ21により集束されて第1スリツ
ト22を通過する。この第1スリツト22の通過光は第
2凸レンズ23により集束されて、ウェハ11上の点2
9に第1スリツト22の像を結ぶ。
In the automatic focusing device configured as described above, the light emitted from the light emitting diode 20 is focused by the first convex lens 21 and passes through the first slit 22, as shown by the dashed line 28. The light passing through the first slit 22 is focused by the second convex lens 23 and is focused at a point 2 on the wafer 11.
The image of the first slit 22 is tied at 9.

ざらに、ウェハ11上の点29で反射された光は、第3
の凸レンズ24を経て振動反射鏡25に入射する。
Roughly speaking, the light reflected at the point 29 on the wafer 11 is
The light enters the vibration reflecting mirror 25 through the convex lens 24 .

この撮動反射鏡25により微小角度の(騒動を与えられ
た光は、第2スリット26位首において再び像を結んで
ホトダイオード27に到達する。上記振動反射鏡25は
振動によりその反則角度を微小変化させるもので、おる
反射角度とそのときのホトダイオード27の感度との関
係によりウェハステージ10の所定の位置が検出される
。すなわら、ホトダイオード27の感度が最大となるよ
うな位置にウェハステージ10を上下に移動させること
により、ウェハ11を縮小投影レンズ9に対し所定の上
下位置に設定する。このような自動焦点合わせ装置によ
り、【ウェハ11上の設定された点29の縮小投影レン
ズ9の焦点に対する設定誤差稈±0.25μm以内とす
ることかできる。
The light that has been given a minute angle disturbance by this photographing reflector 25 forms an image again at the second slit 26 and reaches the photodiode 27. A predetermined position of the wafer stage 10 is detected based on the relationship between the reflected angle and the sensitivity of the photodiode 27 at that time. 10 is moved up and down to set the wafer 11 at a predetermined vertical position with respect to the reduction projection lens 9. With such an automatic focusing device, [the reduction projection lens 9 at the set point 29 on the wafer 11] The setting error for the focal point can be within ±0.25 μm.

(発明か解決しようとする問題点) しかしながら、上記構成の縮小投影露光装置およびその
自動焦点装置においては、次のような問題点があった。
(Problems to be Solved by the Invention) However, the reduction projection exposure apparatus and its automatic focusing device having the above configuration have the following problems.

すなわち、自動焦点合わせ装置によりウェハ11上の設
定された点2つの設定誤差は±0,25μm以内とする
ことができるものの、実際の装置においては縮小投影レ
ンズ9の焦点面が完全な平面ではないことと、像が投影
されるウェハ11表面の平坦性が完全ではあり得ないこ
とのために、焦点深度を超えた誤差が発生するおそれが
おった。
That is, although the setting error between the two points set on the wafer 11 by the automatic focusing device can be within ±0.25 μm, in the actual device, the focal plane of the reduction projection lens 9 is not a perfect plane. In addition, because the flatness of the surface of the wafer 11 on which the image is projected cannot be perfect, there is a possibility that an error exceeding the depth of focus may occur.

第4図に示されるように、焦点面の中央断面は曲線31
で表わされる如く湾曲しているので、・ウェハ11表面
の15mmx 15mm程度の広さの露光領域内におい
ては、焦点面の中心とその外縁部の焦点の上下方向距離
の差aは通常2〜3μm程度となる。
As shown in FIG. 4, the central cross section of the focal plane is curved 31.
Since it is curved as expressed by It will be about.

このため、露光領域内全面での露光領域と焦点との差が
最小となるように、露光領域の位置は自動焦点合わせ装
置により破線の直線32で示される如く、焦点の距離の
差aのほぼ中央付近に設定される。ところが実際のウェ
ハ11表面には凹凸かおるので、ウェハ11表面の露光
領域の中央断面は曲線33で示されるとすると、露光領
域の中心点34が前記直線32の位置に設定されている
に過ぎないことになる。ウェハ11表面には、通常上(
2〜3)μm程度の凹凸が存在するので、図のような場
合においては焦点面と露光領域との最大のずれbは、縮
小投影露光装置の焦点深度的±2μmを超えてしまうお
それが多分にある。
Therefore, in order to minimize the difference between the exposure area and the focal point over the entire surface of the exposure area, the position of the exposure area is determined by the automatic focusing device to be approximately equal to the focal distance difference a, as shown by the broken line 32. Set near the center. However, since the actual surface of the wafer 11 is uneven, assuming that the central cross section of the exposure area on the surface of the wafer 11 is shown by the curve 33, the center point 34 of the exposure area is simply set at the position of the straight line 32. It turns out. On the surface of the wafer 11, there is usually a
2-3) Since there are irregularities on the order of μm, in the case shown in the figure, the maximum deviation b between the focal plane and the exposure area is likely to exceed ±2 μm in terms of the depth of focus of the reduction projection exposure system. It is in.

本発明は、前記従来技術がもっていた問題点として、ウ
ェハ11表面の露光領域において焦点面と露光領域とを
正確に一致させることが極めて難しい上に、焦点深度以
上のずれを発生する可能性が多分におるので、縮小投影
レンズ9の解像能力を十分発揮できず、したがって正確
な露光か行なわれないおそれがおる点について解決した
ウェハ露光装置を提供するものでおる。
The present invention addresses the problems that the prior art had, in that it is extremely difficult to accurately match the focal plane and the exposure area in the exposure area on the surface of the wafer 11, and there is a possibility that a deviation greater than the depth of focus may occur. The object of the present invention is to provide a wafer exposure apparatus which solves the problem that the reduction projection lens 9 cannot fully utilize its resolving power due to the large amount of light, and therefore there is a possibility that accurate exposure may not be performed.

(問題点を解決するための手段) 本発明は前記問題点を解決するために、ウェハ露光装置
に、ウェハ表面における露光領域の複数点に光線を照射
し、その光線の反射光に基づき前記複数点の上下位置に
関する信号を得てその信号を出力する露光領域測定部と
、電圧印加により変形する圧電物質を有しこの圧電物質
の変形準に応じ上下動して前記露光領域を変形させる複
数の圧電駆動ピンを空隙部に収容したウェハチャックと
、前記露光領域測定部の出力信号を入力し前記露光領域
の所定位置に対する修正量を求めてそれを出力する演算
回路と、前記演算回路の出力修正量を入力しこの修正量
に基づき前記圧電駆動ピンに電圧を印加して駆動させる
駆動回路とを設けたものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention causes a wafer exposure apparatus to irradiate a plurality of light beams onto a plurality of points in the exposure area on the wafer surface, and based on the reflected light of the light beams, an exposure area measurement unit that obtains a signal regarding the vertical position of a point and outputs the signal; and a plurality of units that have a piezoelectric material that deforms by applying a voltage and that move up and down according to the deformation level of the piezoelectric material to deform the exposure area. a wafer chuck in which a piezoelectric drive pin is housed in a cavity; an arithmetic circuit that inputs the output signal of the exposure area measurement section to determine a correction amount for a predetermined position of the exposure area and outputs it; and an output correction of the arithmetic circuit. The piezoelectric drive pin is provided with a drive circuit that inputs a correction amount and applies a voltage to the piezoelectric drive pin to drive the piezoelectric drive pin based on the correction amount.

(作 用) 本発明によれば、以上のようにウェハ露光装置を構成し
たので、露光領域測定部はウェハ表面の露光領域の複数
点の上下位置の測定を正確に行う動きをし、演算回路は
前記測定値に基づき露光領域の所定位置に対する修正量
を求める動きをし、駆動回路は前記修正量に基づき圧電
駆動ピンを駆動させる動きをし、ざらにウェハチャック
は圧電駆動ピンを収容した真空の空隙部の負圧によりウ
ェハを吸着して固定すると同時に、圧電駆動ピンの上下
動により露光領域を変形させて所定位置に合致させる働
きをする。上記の働きにより露光領域は所定の位置、例
えば縮小投影レンズの焦点面に正確に一致させることが
できるので、ウェハ表面に対する正確な露光を行うこと
ができる。したがって、前記問題点を除去できるのであ
る。
(Function) According to the present invention, since the wafer exposure apparatus is configured as described above, the exposure area measurement unit moves to accurately measure the vertical positions of multiple points in the exposure area on the wafer surface, and the arithmetic circuit moves to determine the amount of correction for a predetermined position of the exposure area based on the measurement value, the drive circuit moves to drive the piezoelectric drive pin based on the amount of correction, and roughly, the wafer chuck moves to a vacuum housing the piezoelectric drive pin. The negative pressure in the gap attracts and fixes the wafer, and at the same time, the vertical movement of the piezoelectric drive pin deforms the exposure area to align it with a predetermined position. Due to the above-mentioned function, the exposure area can be precisely aligned with a predetermined position, for example, the focal plane of the reduction projection lens, so that accurate exposure of the wafer surface can be performed. Therefore, the above problem can be eliminated.

(実施例) 第1図は本発明の実施例を示すウェハ露光装置の要部構
成図でおり、主にウェハ露光領域の位置補正用の装置に
ついて示したものである。
(Embodiment) FIG. 1 is a block diagram of a main part of a wafer exposure apparatus showing an embodiment of the present invention, and mainly shows a device for correcting the position of a wafer exposure area.

図において、40は固定の縮小投影レンズでおり、この
縮小投影レンズ40はマスクのパターンを可動のウェハ
チャック41の上に置かれた「ウェハ42の表面に投影
、露光するものでおる。前記ウェハチャック41はその
上面に置かれたウェハ42との間隙に空隙部43−1を
有し、この空隙部43−1は、内部の空気が真空ライン
43−2によって吸引されることにより、真空に近い状
態となり、ウェハ42を吸着してウェハチャック41上
に固定している。前記空隙部43−1には複数の圧電駆
動ピン44がウェハチャック41に固定して設けられて
いる。この圧電駆動ピン44は、例えば水晶等の圧電現
象を利用して成るもので、印加された電圧に対応した°
水晶等の変形により圧電駆動ピン44が上下方向に変位
するものでおる。圧電駆動ピン44のそれぞれは、その
駆動回路45に電気的に接続されている。
In the figure, reference numeral 40 denotes a fixed reduction projection lens, and this reduction projection lens 40 projects and exposes the mask pattern onto the surface of a wafer 42 placed on a movable wafer chuck 41. The chuck 41 has a gap 43-1 between it and the wafer 42 placed on its upper surface, and this gap 43-1 is evacuated by suctioning the air inside by the vacuum line 43-2. The wafer 42 is attracted and fixed on the wafer chuck 41. A plurality of piezoelectric drive pins 44 are fixed to the wafer chuck 41 in the gap 43-1. The pin 44 is made of a piezoelectric phenomenon such as a crystal, and has a temperature corresponding to the applied voltage.
The piezoelectric drive pin 44 is displaced in the vertical direction due to the deformation of the crystal or the like. Each piezoelectric drive pin 44 is electrically connected to its drive circuit 45.

46は発光ダイオード等の発光素子でおり、この発光素
子46を光源としてその光軸上に第1凸レンズ47、複
数の切込みが設けられた第1スリツト48および第2凸
レンズ49が順次設けられている。前記第1スリツト4
8の複数の切込みは、それぞれの像を縮小投影レンズ4
0に対応したウェハ42上の露光領域50に結ぶように
設定されている。また、この露光領1.+!50の前記
結像箇所のそれぞれは、前記圧電駆動ピン44のそれぞ
れと一対一の対応を成すように設定されている。前記結
像箇所にお(プるそれぞれの反射光の進む前方には第3
凸レンズ51および反射鏡52が設けられ、この反射鏡
52は、それぞれの反射光が第2スリツト53の直俊に
設置されたホトダイオード等の受光素子から成る複数の
ゼンサ54の受光面に結像するように、設定されている
。すなわち、センサ54は前記第1スリツト48の切込
みの位置および個数に対応して設けられている。上記の
発光素子46からセンサ54までの構成からなる光学系
は、露光領域測定部55を形成している。
Reference numeral 46 denotes a light emitting element such as a light emitting diode, and using this light emitting element 46 as a light source, a first convex lens 47, a first slit 48 having a plurality of notches, and a second convex lens 49 are sequentially provided on the optical axis of the light emitting element 46. . Said first slit 4
The plurality of notches 8 reduce the respective images through the projection lens 4.
It is set to connect to the exposure area 50 on the wafer 42 corresponding to 0. In addition, this exposure area 1. +! Each of the 50 imaging locations is set in one-to-one correspondence with each of the piezoelectric drive pins 44. In front of each reflected light beam, there is a third
A convex lens 51 and a reflecting mirror 52 are provided, and the reflecting mirror 52 is arranged so that each reflected light forms an image on the light receiving surface of a plurality of sensors 54 made of light receiving elements such as photodiodes installed directly in the second slit 53. is set to . That is, the sensors 54 are provided corresponding to the positions and number of cuts of the first slit 48. The optical system consisting of the above-mentioned light emitting element 46 to sensor 54 forms an exposure area measuring section 55.

前記センサ54のそれぞれは、その出力に応じてそれぞ
れのセンサ54に対応した前記圧電駆動ピン44の上下
動の変位量を決定する演算回路56に接続されている。
Each of the sensors 54 is connected to an arithmetic circuit 56 that determines the amount of vertical displacement of the piezoelectric drive pin 44 corresponding to each sensor 54 according to its output.

この演算回路56は例えばマイクロコンピュータ等によ
り構成され、その出力は前記駆動回路45に接続されて
おり、圧電駆動ピン44の駆動回路45を制御する。
This arithmetic circuit 56 is composed of, for example, a microcomputer, and its output is connected to the drive circuit 45 to control the drive circuit 45 of the piezoelectric drive pin 44.

以上のように、圧電駆動ピン44を有するウェハチャッ
ク41、駆動回路45、露光領域測定部55および演算
回路56により構成される自動露光領域補正装置の動作
について、次に説明する。先ず、圧電駆動ピン44に電
圧を印加しない状態において、ウェハチャック41を水
平方向に移動して、その上に固定されたウェハ42の露
光順Vi50を縮小投影レンズ40に対応した所定の位
置に設定する。このとき、露光順Vj、50の位置情報
は、位置設定と同時に演算回路56に与えられる。また
、露光領域50の中心の上下位置は、例えば予め演算回
路56に入力されている縮小投影レンズ40の焦点に一
致した位置に設定されているものとする。この状態にお
いて、露光領域測定部55により露光領域50の複数点
の上下位置の測定を行う。この測定は、発光素子46の
出射光57か第1凸レンズ47を経て第1スリツト48
の複数の切込みを通過したそれぞれの光によって行われ
る。それぞれの光は第2凸レンズ49を経て、露光領域
50の圧電駆動ピン44にそれぞれ対応した位置に入射
し、その反射光は第3凸レンズ51、反射鏡52および
第2スリツト53を経た後、それぞれ対応するセンサ5
4に入射する。このセンサ54による信号が演算回路5
6に入力されると、演算回路56は露光領域50の各入
射点と縮小投影レンズ40の焦点面とのずれを計算し、
その修正量を駆動回路45に出力する。駆動回路45は
修正量に応じた電圧を露光領域50の各点に対応した圧
電駆動ピン44に印加して、圧電駆動ピン44を修正量
に応じて上下に変位ざUる。これにより露光領域50は
変形して縮小投影レンズ40の焦点面に一致する。
As described above, the operation of the automatic exposure area correction apparatus constituted by the wafer chuck 41 having the piezoelectric drive pin 44, the drive circuit 45, the exposure area measuring section 55, and the arithmetic circuit 56 will be described next. First, with no voltage applied to the piezoelectric drive pin 44, the wafer chuck 41 is moved in the horizontal direction, and the exposure order Vi50 of the wafer 42 fixed thereon is set at a predetermined position corresponding to the reduction projection lens 40. do. At this time, the position information of the exposure order Vj, 50 is given to the arithmetic circuit 56 at the same time as the position setting. Further, it is assumed that the vertical position of the center of the exposure area 50 is set, for example, to a position that coincides with the focal point of the reduction projection lens 40, which is input into the arithmetic circuit 56 in advance. In this state, the exposure area measuring section 55 measures the vertical positions of a plurality of points in the exposure area 50. In this measurement, the emitted light 57 of the light emitting element 46 passes through the first convex lens 47 and then passes through the first slit 48.
This is done by each light beam passing through multiple incisions. The respective lights pass through the second convex lens 49 and enter the positions corresponding to the piezoelectric drive pins 44 in the exposure area 50, and the reflected lights pass through the third convex lens 51, the reflecting mirror 52, and the second slit 53, and then enter the respective positions corresponding to the piezoelectric drive pins 44 in the exposure area 50. Corresponding sensor 5
4. The signal from this sensor 54 is transmitted to the arithmetic circuit 5
6, the arithmetic circuit 56 calculates the deviation between each incident point of the exposure area 50 and the focal plane of the reduction projection lens 40,
The correction amount is output to the drive circuit 45. The drive circuit 45 applies a voltage corresponding to the amount of correction to the piezoelectric drive pin 44 corresponding to each point in the exposure area 50, and displaces the piezoelectric drive pin 44 up and down according to the amount of correction. As a result, the exposure area 50 is deformed to coincide with the focal plane of the reduction projection lens 40.

以上のような動作をウェハチャック41を移動させて各
露光領域に対し順次繰り返すことにより、ウェハ42の
全表面に所定の露光を実施することができる。
By moving the wafer chuck 41 and repeating the above operations sequentially for each exposure area, the entire surface of the wafer 42 can be exposed to a predetermined amount.

本実施例においては、ウェハ42の各露光領域毎にそれ
ぞれの全面を縮小投影レンズ40の焦点面に合わせて露
光させることかできるので、縮小投影レンズ40の解像
度は常に最良の状態にあり、正確な露光を行うことがで
きるという利点がおる。
In this embodiment, since the entire surface of each exposure area of the wafer 42 can be exposed in alignment with the focal plane of the reduction projection lens 40, the resolution of the reduction projection lens 40 is always in the best condition and accurate. This has the advantage that it is possible to perform precise exposure.

なお、本発明は図示の実施例に限定されず種々の変形が
可能であり、例えば次に挙げるような変形例が考えられ
る。
Note that the present invention is not limited to the illustrated embodiment and can be modified in various ways, for example, the following modifications can be considered.

(1)本実施例においては、光による縮小投影露光装置
について示したか、これに限定されない。例えば、光を
用いた他の露光装置である等倍投影露光装置やX線およ
びイオン線等を用いた露光装置等に対しても使用するこ
とか可能である。
(1) In this embodiment, a reduction projection exposure apparatus using light is shown, but the present invention is not limited to this. For example, it is possible to use it for other exposure apparatuses that use light, such as a same-magnification projection exposure apparatus and an exposure apparatus that uses X-rays, ion beams, and the like.

(2)自動露光領域補正装置の構成は本実施例のものに
限定されない。すなわち、圧電駆動ピン44およびセン
サ54等の設置個数はいくつでもよい。また、圧電駆動
ピン44に対しては水晶のみならずロッシェル塩やチタ
ン酸バリウム結晶および圧電セラミック等の圧電効果を
有する他の物質を使用することができる。発光素子46
はレーザダイオードとしてもよく、ざらに半導体素子に
限定されず光源ランプとしてもよい。センサ54の受光
素子についても同様にホトトランジスタや光電管等とし
てもよい。
(2) The configuration of the automatic exposure area correction device is not limited to that of this embodiment. That is, any number of piezoelectric drive pins 44, sensors 54, etc. may be installed. Furthermore, for the piezoelectric drive pin 44, other materials having a piezoelectric effect, such as Rochelle salt, barium titanate crystal, and piezoelectric ceramic, can be used in addition to crystal. Light emitting element 46
may be a laser diode, and is not limited to a semiconductor device, but may be a light source lamp. Similarly, the light receiving element of the sensor 54 may be a phototransistor, a phototube, or the like.

(3)本実施例においては、露光領域50の入射光の位
置と圧電駆動ピン44の位置およびそれぞれの個数は対
応するものとしたが、対応しなくてもよい。
(3) In this embodiment, the position of the incident light on the exposure area 50 and the position of the piezoelectric drive pins 44 and the number of each correspond to each other, but they do not have to correspond.

ただしこの場合は、演算回路56による推定計算等によ
り、圧電駆動ピン44の位置にあける露光領域50の修
正量を求める必要かある。
However, in this case, it is necessary to determine the amount of correction of the exposure area 50 to be made at the position of the piezoelectric drive pin 44 by estimating calculation by the arithmetic circuit 56 or the like.

(4)本実施例においては、縮小投影レンズ40の焦点
面およびウェハ42表面の凹凸に対する修正を行うこと
としたがこれに限定されず、いずれか一方の修正のみに
使用してもよいし、他の要因に対する修正に使用するこ
ともできる。
(4) In this embodiment, the focal plane of the reduction projection lens 40 and the irregularities on the surface of the wafer 42 are corrected, but the present invention is not limited to this, and it may be used to correct only one of them. It can also be used to correct for other factors.

(5)本実施例の自動露光領域補正装置は、ウェハ露光
装置以外の装置、例えばホトリピータ等のマスク製造装
置等にも適用することができる。
(5) The automatic exposure area correction device of this embodiment can be applied to devices other than wafer exposure devices, such as mask manufacturing devices such as photorepeater.

(発明の効果) 以上詳細に説明したように、本発明によれば、露光領域
測定部、演算回路、駆動回路および圧電駆動ピンを有す
るウェハチャックを設けたので、ウェハ表面の露光領域
を、例えば所定の焦点面に部分的に或は近似的に一致さ
せるのではなく、面全体として一致させることができる
。したがって極めて正確な露光をウェハ表面に行うこと
ができるので、半導体集積回路素子等の製造工程におけ
る歩留りの向上のみならず、その信頼性を飛躍的に向上
させるという効果が期待できる。
(Effects of the Invention) As described above in detail, according to the present invention, the wafer chuck having the exposure area measurement section, the arithmetic circuit, the drive circuit, and the piezoelectric drive pin is provided, so that the exposure area on the wafer surface can be adjusted, for example. Rather than partially or approximately matching a predetermined focal plane, it is possible to match the entire plane. Therefore, since extremely accurate exposure can be performed on the wafer surface, it is expected that not only will the yield in the manufacturing process of semiconductor integrated circuit devices and the like be improved, but also that the reliability will be dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すウェハ露光装置の主に自
動露光領域補正装置部分を表わす要部構成図、第2図は
従来のウェハ露光装置の概略I成因、第3図は従来のウ
ェハ露光装置の主に自動焦点合わせ装置の部分を示す要
部構成図、第4図は焦点面と露光領域の断面曲線図でお
る。 40・・・・・・縮小投影レンズ、41・・・・・・ウ
ェハチャック、42・・・・・・ウェハ、43−1・・
・・・・空隙部、43−2・・・・・・真空ライン、4
4・・・・・・圧電駆動ピン、45・・・・・・駆動回
路、46・・・・・・発光素子、48・・・・・・第1
スリツ1〜.50・・・・・・露光領域、54・・・・
・・センサ、55・・・・・・露光領域測定部、56・
・・・・・演鋒回路。 出願人代理人  柿  水  恭  成7門 1,1j 従来のウェハ露fL妓買イ現略構成図 第2図 従来のウェハ露光装置要部構成図 第3図 第4図
FIG. 1 is a main part configuration diagram mainly showing the automatic exposure area correction device part of a wafer exposure apparatus according to an embodiment of the present invention, FIG. 2 is a schematic diagram of the components of a conventional wafer exposure apparatus, and FIG. FIG. 4 is a block diagram of the main parts of the wafer exposure apparatus mainly showing the automatic focusing device, and is a cross-sectional curve diagram of the focal plane and the exposure area. 40... Reduction projection lens, 41... Wafer chuck, 42... Wafer, 43-1...
...Gap, 43-2...Vacuum line, 4
4... Piezoelectric drive pin, 45... Drive circuit, 46... Light emitting element, 48... First
Slits 1~. 50... Exposure area, 54...
...Sensor, 55...Exposure area measuring section, 56.
... Enfeng circuit. Applicant's agent Kaki Mizu Kyo Sei7mon 1, 1j Current configuration of conventional wafer exposure equipment Figure 2 Configuration of main parts of conventional wafer exposure equipment Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 ウェハ表面における露光領域の複数点に光線を照射し、
その光線の反射光に基づき前記複数点の上下位置に関す
る信号を得てその信号を出力する露光領域測定部と、 電圧印加により変形する圧電物質を有しこの圧電物質の
変形量に応じ上下動して前記露光領域を変形させる複数
の圧電駆動ピンを空隙部に収容したウェハチャックと、 前記露光領域測定部の出力信号を入力し前記露光領域の
所定位置に対する修正量を求めてそれを出力する演算回
路と、 前記演算回路の出力修正量を入力しこの修正量に基づき
前記圧電駆動ピンに電圧を印加して駆動させる駆動回路
とを備えたことを特徴とするウエハ露光装置。
[Claims] Irradiating a plurality of points in an exposure area on a wafer surface with a light beam,
an exposure area measurement section that obtains a signal regarding the vertical position of the plurality of points based on the reflected light of the light beam and outputs the signal; and a piezoelectric material that deforms when a voltage is applied, and moves up and down according to the amount of deformation of the piezoelectric material. a wafer chuck in which a plurality of piezoelectric drive pins for deforming the exposure area are housed in a cavity; and a calculation unit that inputs an output signal from the exposure area measurement unit, calculates a correction amount for a predetermined position of the exposure area, and outputs it. A wafer exposure apparatus comprising: a circuit; and a drive circuit that inputs an output correction amount of the arithmetic circuit and applies a voltage to the piezoelectric drive pin based on the correction amount to drive the piezoelectric drive pin.
JP61179494A 1986-07-30 1986-07-30 Wafer exposure equipment Pending JPS6336526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61179494A JPS6336526A (en) 1986-07-30 1986-07-30 Wafer exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61179494A JPS6336526A (en) 1986-07-30 1986-07-30 Wafer exposure equipment

Publications (1)

Publication Number Publication Date
JPS6336526A true JPS6336526A (en) 1988-02-17

Family

ID=16066804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61179494A Pending JPS6336526A (en) 1986-07-30 1986-07-30 Wafer exposure equipment

Country Status (1)

Country Link
JP (1) JPS6336526A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198130A (en) * 1989-01-27 1990-08-06 Canon Inc Detection of face position
JP2005049874A (en) * 2003-07-30 2005-02-24 Asml Holding Nv Deformable optical system, deformable optical device and wave front aberration correcting method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130738A (en) * 1980-03-19 1981-10-13 Hitachi Ltd Method and device for exposure
JPS5867026A (en) * 1981-10-19 1983-04-21 Hitachi Ltd Thin plate metamorphosis device
JPS5947731A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Automatic focusing mechanism of projection exposing apparatus
JPS6174338A (en) * 1984-09-20 1986-04-16 Hitachi Ltd Optical alignment device
JPS61128552A (en) * 1984-11-27 1986-06-16 Sumitomo Electric Ind Ltd Manufacture of lead frame

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130738A (en) * 1980-03-19 1981-10-13 Hitachi Ltd Method and device for exposure
JPS5867026A (en) * 1981-10-19 1983-04-21 Hitachi Ltd Thin plate metamorphosis device
JPS5947731A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Automatic focusing mechanism of projection exposing apparatus
JPS6174338A (en) * 1984-09-20 1986-04-16 Hitachi Ltd Optical alignment device
JPS61128552A (en) * 1984-11-27 1986-06-16 Sumitomo Electric Ind Ltd Manufacture of lead frame

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198130A (en) * 1989-01-27 1990-08-06 Canon Inc Detection of face position
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
USRE46099E1 (en) 2003-07-30 2016-08-09 Asml Holding N.V. Method of using deformable mirror using piezoelectric actuators formed as an integrated circuit
USRE45511E1 (en) 2003-07-30 2015-05-12 Asml Holding N.V. Method of using deformable mirror using piezoelectric actuators formed as an integrated circuit
US7372614B2 (en) 2003-07-30 2008-05-13 Asml Holding N.V. Method of using deformable mirror using piezoelectric actuators formed as an integrated circuit
JP2005049874A (en) * 2003-07-30 2005-02-24 Asml Holding Nv Deformable optical system, deformable optical device and wave front aberration correcting method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
JP3181050B2 (en) Projection exposure method and apparatus
US4356392A (en) Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed
US5162642A (en) Device for detecting the position of a surface
EP0833193B1 (en) Exposure apparatus
US4704020A (en) Projection optical apparatus
KR100471524B1 (en) Exposure method
US4232969A (en) Projection optical system for aligning an image on a surface
JPH0548609B2 (en)
JP2862311B2 (en) Surface position detection device
JPH08145645A (en) Inclination detector
JPS6336526A (en) Wafer exposure equipment
JPH0122977B2 (en)
JPH08162397A (en) Projection light exposure device and manufacture of semiconductor device by use thereof
JP2886957B2 (en) Automatic focusing device
JPS62140418A (en) Position detector of surface
JP2662236B2 (en) Projection exposure method and apparatus
JPH104055A (en) Automatic focusing device and manufacture of device using it
JPH01303721A (en) Plane inclination detector
JP3143514B2 (en) Surface position detecting apparatus and exposure apparatus having the same
JPH0616483B2 (en) Projection optics
JPS61128522A (en) Focussing device
US9423299B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2926581B1 (en) Reduction projection exposure equipment
JPH07211612A (en) Projection aligner
JPS62140420A (en) Position detector of surface