JPS6336174A - Buoy for underwater position measurement - Google Patents

Buoy for underwater position measurement

Info

Publication number
JPS6336174A
JPS6336174A JP18036786A JP18036786A JPS6336174A JP S6336174 A JPS6336174 A JP S6336174A JP 18036786 A JP18036786 A JP 18036786A JP 18036786 A JP18036786 A JP 18036786A JP S6336174 A JPS6336174 A JP S6336174A
Authority
JP
Japan
Prior art keywords
underwater
earth
buoy
response
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18036786A
Other languages
Japanese (ja)
Inventor
Masuo Fukuda
福田 増夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18036786A priority Critical patent/JPS6336174A/en
Publication of JPS6336174A publication Critical patent/JPS6336174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To eliminate the difficulties in submarine position determination and maintenance by providing a transponder with a function which can determines its earth coordinates. CONSTITUTION:A buoy for underwater position measurement consists of a responder part 1 and an earth coordinate calculation part 2. The responder part 1 consists of a transmitter-receiver 11 and a response circuit 12 and sends out a response signal in response to a question signal sent from an underwater moving body. The earth coordinate calculation part 2 is equipped with an antenna 21 and an earth coordinate calculating circuit 22, acquires a transmission radio wave from a navigation satellite such as GPS through the antenna 21, and supplies it to an earth coordinate calculating circuit 22. The output of the calculating circuit 22 is supplied to the response circuit 12 and this is sent as a response signal in a prescribed form through the transmitter-receiver 11. The moving body which receives the answer signal calculates the relative position to the underwater position measuring buoy by an earth coordinate calculator 100 and also calculates its earth coordinates.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水中位置劇画用ブイに関し、特に自己の地球座
標決定機能を付与した水中位置計σ)り用ブイに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a buoy for underwater positioning, and more particularly to a buoy for underwater positioning that is provided with the function of determining its own earth coordinates.

〔従来の技術〕[Conventional technology]

水中を肌性する溜水、疵等の如き水中移動体が、七の水
中位置に計測するために利用される水中位i: gt 
6111用ブイとして、いわゆるトランスポンダが多用
されている。このトランスポンダは、水中移動体から出
力される送1M信号を受けてこれを所要のレベルまで1
lluしふたたび水中に発射するレスボンダとしての機
能あるいは所定の形式の送波信号を発射する機能を有す
るものである。
Underwater position i used to measure underwater moving objects such as pooled water, scratches, etc. underwater at seven underwater positions: gt
So-called transponders are often used as buoys for 6111. This transponder receives the 1M signal output from the underwater vehicle and converts it to the required level.
This device has a function as a responder that sends out a signal into the water again, or a function that sends out a predetermined format of a transmission signal.

このようなトランスポンダを利用して行なう水中位置ま
1゛測は、辿常次の3つのいずれかの方法が計l111
!Ir1W 全勘案して使いわけられている。
Underwater position measurements using such transponders are usually carried out using one of the following three methods:
! Ir1W It is used properly with all considerations in mind.

その1つは5SBL(Super 5hort Ba5
e Line)方式と叶ばれるものである。これは位置
が既知の海底に1個のトランスポンダを配置し、所定の
送波信号を出力するか、あるいはレスボンダとして動作
させる。水中移動体は互いに近接して配置された311
Illlの受波?5Vこよる受1g信号の位相差および
送信信号(質問信号)から受信信号までの時間(距離)
を利用し自己の位置を−p、出する。
One of them is 5SBL (Super 5hort Ba5
e Line) method. In this method, a single transponder is placed on the ocean floor whose location is known, and the transponder outputs a predetermined transmission signal or operates as a responder. Underwater vehicles are located close to each other 311
Reception of Illll? Phase difference of 1g signal received by 5V and time (distance) from transmitted signal (interrogation signal) to received signal
Using -p, output the self position.

その2は、S L3 、L (5hort Ba5e 
L 1ne)方式と叶ばれるものである。この方式では
5SBL方式の場合と同じく1個のトランスポンダを位
置が既知の海底に配置し、この送波出力を受ける受波器
は水中移動体の船底等に互いに出来るだけ離隔して配置
した3個を利用し、受信信号の到達時間差および送信信
号から受信信号までの時間差に着目して水中移動体の位
置を確定するものである。この方式はその1の方式に比
し、明らかに受波器間の長さ、つまり計測上の基線長(
Ba5e Line )が長くなり計測鞘度も向上する
Part 2 is S L3, L (5hort Ba5e
This can be achieved using the L1ne) method. In this method, as in the case of the 5SBL method, one transponder is placed on the seabed with a known location, and three receivers that receive the transmitted wave output are placed as far apart as possible from each other on the bottom of the underwater vehicle, etc. The position of an underwater vehicle is determined by focusing on the arrival time difference between received signals and the time difference between the transmitted signal and the received signal. This method is clearly different from the first method in terms of the length between the receivers, that is, the measured baseline length (
Ba5e Line) becomes longer and the measurement sheath degree also improves.

その3はLBL(Long Ba5e Line )方
式と叶ばれるものである。この方式は、広い区域にわた
って高い計6111稍度を必要とするとき等の運用目的
で利用されるもので、位置が既知の海底の3点にトラン
スポンダ3個を配置し、1個の受波器でその送波出力を
受け、到達時間差から自己の位置を決定する。この場合
、3個のトランスホンダの送波出力は互いに異る周阪数
に設定される。
The third option is achieved using the LBL (Long Ba5e Line) method. This method is used for operational purposes when a high total 6111 intensity is required over a wide area, and three transponders are placed at three points on the sea floor with known locations, and one receiver It receives the transmitted wave output and determines its own position from the arrival time difference. In this case, the transmission outputs of the three transhondas are set to different frequencies.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来のこの種の位置計6111
方式は、いずれもトランスポンダの海底設置位置をあら
かじめ決定しておく必要があり、しかもその維持と保守
とが困難であるという欠点がある。
However, the above-mentioned conventional position meter 6111 of this type
All of these methods have the disadvantage that the location of the transponder on the seabed must be determined in advance, and that maintenance and maintenance thereof is difficult.

本発明の目的は上述した欠点を除去し、トランスポンダ
に自己の地球座標を決定しうる機能を付与することによ
り、海底位置決定と維持、保守の困難性を根本的に排除
しりろ水中位置計測用ブイを提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks and to fundamentally eliminate the difficulty of seabed position determination, maintenance, and maintenance by providing a transponder with the ability to determine its own earth coordinates. The purpose is to provide buoys.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の水中位置計測用ブイは、潜水艇等の水中移動体
の出力する水中音波による質問信号を受けてこれに応答
し応答信号を送波するレスボンダ部と、航法体工星の送
信電Vを受けて自己の地球座標を算出しこれを前記レス
ボンダ部と、供給する地球座標算出部とを備えて構成さ
れる。
The underwater position measuring buoy of the present invention includes a responder section that receives an interrogation signal by an underwater sound wave output from an underwater vehicle such as a submersible, responds to the interrogation signal, and transmits a response signal, and a transmitting power V of a navigation vehicle engineering star. It is configured to include the responder unit that receives the information, calculates its own earth coordinates and supplies the same, and an earth coordinate calculation unit that supplies the same.

〔実施例〕〔Example〕

次に、図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の水中位置側測用ブイの一実施例の構成
を示すブロック図である。第1図に示す実施例の構成は
、レスボンダ部1と地球座標算出部2から成り、また第
1図には水中移動体とこの水中移動体に搭載する地球座
標算出器100と送受波器200とを併記して示してい
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the underwater position side survey buoy of the present invention. The configuration of the embodiment shown in FIG. 1 consists of a responder section 1 and a global coordinate calculation section 2, and FIG. It is also shown.

レスボンダ部1は送受波器11と応答回路12とから成
り、水中移動体から送波される質問信号に応答して応答
信号を運出する。この質問信号は所定の形式の送信信号
であり、また応答信号としては水中位置計6111用ブ
イの地球座標テークが利用され所定の形式で出力される
The responder unit 1 is composed of a transducer 11 and a response circuit 12, and transmits a response signal in response to an interrogation signal transmitted from an underwater vehicle. This interrogation signal is a transmission signal in a predetermined format, and the response signal utilizes the earth coordinates of the buoy for the underwater position meter 6111 and is output in a predetermined format.

水中移動体としては、質問16号によって倚られる水中
位置Si側用ブイの地球座標KX甲位[は計測用ブイと
の相対位置テークによる修正を加える値算を行なうこと
し′こよって自己の地球座標を求めることができるので
ある。
As an underwater moving object, the earth coordinates of the buoy for the underwater position Si side determined by Question No. It is possible to find the coordinates.

水中移動体は、地球座標算出器100から質問信号が出
力すると送受波器200を介して音菩信号に変換され水
中に放射される。この質問信号は水中位置計側用ブイの
レスボンダ部1の送受改器11で受波され、竜気情号に
変換されて応答回路12に供給される。応答回路2は後
述する地球りも標算出部2から受ける地球座標データを
質問1♂号を受ける都度所定の形式の応答信号として出
力。
When an interrogation signal is output from the earth coordinate calculator 100, the underwater moving body converts it into a sound signal via the transducer 200 and radiates it into the water. This interrogation signal is received by the transceiver 11 of the responder section 1 of the buoy for the underwater position meter, converted into a tempo information signal, and supplied to the response circuit 12. The response circuit 2 outputs the earth coordinate data received from the earth position calculation unit 2, which will be described later, as a response signal in a predetermined format each time it receives question No. 1♂.

送受波器11を介して水中に放射せしめる。この応答イ
g号は水中移動体の送受波器200によって捕捉され、
地球座標算出器100に提供されて相対位置と地球座標
の算出が行なわれる。
It is radiated into the water via the transducer 11. This response Ig is captured by the transducer 200 of the underwater mobile object,
The information is provided to the earth coordinate calculator 100 to calculate the relative position and earth coordinates.

相対位置の算出は、たとえば前述した5SBL方式で行
なうとすれば送受波器200は少なくとも3個の近接配
置6二したものを利用し、8B1.方式では少なくとも
3個の船体装備のものを、さらに、LBL方式では水中
移動体側は1個の送受波器でよいが代りに少なくとも3
個の水中位置計測用ブイが必要となる。
For example, if the relative position is calculated using the 5SBL method described above, the transducer 200 uses at least three closely spaced 62 units, 8B1. In the LBL method, at least three transducers are required on the ship, and in the LBL method, at least one transducer is required on the underwater vehicle side.
buoys for underwater position measurement are required.

一方、地球座標の算出は次のようにして行なわれる。す
なわち水中位(α計測用ブイの地球座標算出部2は、ア
ンテナ21と地球座標算出回路22とを備え、アンテナ
21を介してUP S (G lobalPositi
oning 5atellite)等の航法衛星の送信
電波全捕捉しこれを地球座標算出回路22に供給する。
On the other hand, calculation of earth coordinates is performed as follows. In other words, the global position calculation unit 2 of the underwater level (α measurement buoy) is equipped with an antenna 21 and a global coordinate calculation circuit 22.
It captures all the radio waves transmitted by navigation satellites such as Oning 5atellite) and supplies them to the earth coordinate calculation circuit 22.

この場合、利用するfvL法俯星電波は少なくとも3個
とし、いわばLIJL方式にも似た手法で水中位置針測
用ブイの地球座標すなわち経度、緯度情報を地球座標算
出回路22で算出する。地球座標算出回路2211′i
、たとえばUPS受信機を利用する等の手段で容易に実
施できる。
In this case, at least three fvL star radio waves are used, and the earth coordinate calculation circuit 22 calculates the earth coordinates of the underwater positioning buoy, that is, longitude and latitude information, using a method similar to the LIJL method. Earth coordinate calculation circuit 2211'i
This can be easily implemented, for example, by using a UPS receiver.

地球座標算出回路22の出力は、応答回路12に絶えず
最新データが供給、格納され、これが読出されて所定の
形式の応答信号として送受波器11を介して送波される
。この応答信号を受けた水中移動体は、地球座標算出器
100によって水中位置計測用ブイに対する相対位置を
前述の如く算出するとともに、また、応答信号から水中
位置計測用ブイの汲出地球座標データを得て、自己の地
球座標算出器に算出することができる。
As for the output of the earth coordinate calculation circuit 22, the latest data is constantly supplied to and stored in the response circuit 12, which is read out and transmitted via the transducer 11 as a response signal in a predetermined format. The underwater mobile object that receives this response signal uses the earth coordinate calculator 100 to calculate the relative position to the underwater position measuring buoy as described above, and also obtains the earth coordinate data of the underwater position measuring buoy from the response signal. You can calculate it using your own earth coordinate calculator.

このような水中位置計測において、水中位置計6111
用ブイは位置が既知の海底に設置することを要せず、海
上にアンテナを沼田してパ止もしくは漂泊せしめた状態
で利用すればよい。
In such underwater position measurement, underwater position meter 6111
The buoy does not need to be installed on the seabed with a known location; it can be used with the antenna moored on the sea, parked or floating.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、水中位置計測用ブ
イにおいて、その地球座標を算出する機能を付与したも
のとすることにより、水中位置計6)1]用ブイを位置
が戊知の状態の海底に設置し、かつ困難な維持と保守と
を継続する問題を根本的に改吾しうろ水中位置計σjす
用ブイが実現できるという効果がある。
As explained above, according to the present invention, the buoy for underwater position measurement is provided with a function to calculate its earth coordinates, so that the buoy for underwater position measurement [6) 1] can be placed in a state where the position is unknown. This has the effect of fundamentally resolving the problem of installing a buoy on the seabed and having to maintain and maintain it in a difficult manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図である。 1・・・・・・レスボンダ部、2・・・・・・地厚座標
算出部、11・・・・・・送受波器、12・・・・・・
応答回路、21・・・・・・アンテナ、22・・・・・
・地球座標算出回路、100・・・・・・地球座標算出
器、200・・・・・・送受波器。
FIG. 1 is a block diagram showing one embodiment of the present invention. 1...Resbonder section, 2...Ground thickness coordinate calculation section, 11...Transducer/receiver, 12...
Response circuit, 21... Antenna, 22...
-Earth coordinate calculation circuit, 100... Earth coordinate calculator, 200... Transmitter/receiver.

Claims (1)

【特許請求の範囲】[Claims] 潜水艇等の水中移動体の出力する水中音波による質問信
号を受けてこれに応答し応答信号を送波するレスボンダ
部と、航法衛星の送信電波を受けて自己の地球座標を算
出しこれを前記レスボンダ部に供給する地坪座標算出部
とを備えて成ることを特徴とする水中位置計測用ブイ。
A responder unit receives an interrogation signal using underwater sound waves output from an underwater vehicle such as a submersible, responds to the interrogation signal, and transmits a response signal, and a responder unit receives a radio wave transmitted from a navigation satellite to calculate its own earth coordinates and transmits the above-mentioned coordinates. 1. A buoy for underwater position measurement, comprising: a ground coordinate calculation section that supplies a ground coordinate calculation section to a responder bonder section.
JP18036786A 1986-07-30 1986-07-30 Buoy for underwater position measurement Pending JPS6336174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18036786A JPS6336174A (en) 1986-07-30 1986-07-30 Buoy for underwater position measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18036786A JPS6336174A (en) 1986-07-30 1986-07-30 Buoy for underwater position measurement

Publications (1)

Publication Number Publication Date
JPS6336174A true JPS6336174A (en) 1988-02-16

Family

ID=16082004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18036786A Pending JPS6336174A (en) 1986-07-30 1986-07-30 Buoy for underwater position measurement

Country Status (1)

Country Link
JP (1) JPS6336174A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540164A (en) * 1991-08-07 1993-02-19 Furuno Electric Co Ltd Survey method of reference point under water and buoy-type reference point survey device used for this method
EP0535919A2 (en) * 1991-10-01 1993-04-07 Michael C. Ryan Method for identifying a penetrable member
JPH06117173A (en) * 1992-10-08 1994-04-26 Mitsubishi Heavy Ind Ltd Position controller of suspended pipe in deep sea
US20140142841A1 (en) * 2011-07-15 2014-05-22 Samsung Heavy Ind. Co., Ltd Apparatus for measuring location of underwater vehicle and method thereof
JP2018084445A (en) * 2016-11-22 2018-05-31 株式会社エス・イー・エイ Underwater acoustic positioning system
JP2019527364A (en) * 2016-06-09 2019-09-26 サブマリン・オープン・テクノロジーズ Apparatus and method for positioning underwater device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540164A (en) * 1991-08-07 1993-02-19 Furuno Electric Co Ltd Survey method of reference point under water and buoy-type reference point survey device used for this method
EP0535919A2 (en) * 1991-10-01 1993-04-07 Michael C. Ryan Method for identifying a penetrable member
JPH06117173A (en) * 1992-10-08 1994-04-26 Mitsubishi Heavy Ind Ltd Position controller of suspended pipe in deep sea
US20140142841A1 (en) * 2011-07-15 2014-05-22 Samsung Heavy Ind. Co., Ltd Apparatus for measuring location of underwater vehicle and method thereof
US9335172B2 (en) * 2011-07-15 2016-05-10 Samsung Heavy Ind. Co., Ltd Apparatus for measuring location of underwater vehicle and method thereof
JP2019527364A (en) * 2016-06-09 2019-09-26 サブマリン・オープン・テクノロジーズ Apparatus and method for positioning underwater device
JP2018084445A (en) * 2016-11-22 2018-05-31 株式会社エス・イー・エイ Underwater acoustic positioning system

Similar Documents

Publication Publication Date Title
US6501704B2 (en) Underwater object positioning system
US7362653B2 (en) Underwater geopositioning methods and apparatus
US8009516B2 (en) Underwater acoustic positioning system and method
KR101015039B1 (en) Underwater position finding system and method
RU2009110868A (en) METHOD FOR SHOOTING AQUATORIA BOTTOM RELIEF AND DEVICE FOR ITS IMPLEMENTATION
RU2303275C2 (en) Method for determination of co-ordinates of submerged objects
JP2002250766A (en) Method and system for underwater towed body position measurement
US4924446A (en) Navigation system and method for determining the position of a relatively noisy platform using underwater transponders
US4176338A (en) High resolution acoustic navigation system
JPS6336174A (en) Buoy for underwater position measurement
JP2004245779A (en) System for determining position of submerging vessel and sonobuoy
JP4266669B2 (en) Bistatic orientation detection system and detection method
US7106658B1 (en) Navigation system and method using directional sensor
CN111537946A (en) Underwater beacon directional positioning system and method
KR100331182B1 (en) System for locating sound generation source
WO2020096495A1 (en) Method for positioning underwater objects
JP2755863B2 (en) Underwater vehicle position detection device and position detection method
JP2865082B2 (en) Radio wave receiver
JP2001151195A (en) Echo-sounder system for underwater sailing body
JPH08248114A (en) Method for measuring locating of underwater running body
JPH08136650A (en) Acoustic position measuring instrument
JPS6336179A (en) Underwater position measurement system
RU2271021C1 (en) Method for determining cable-laying route and depth for underwater cable
JPH01153988A (en) Position detecting device
JPH10239417A (en) Measuring device for position of diver