JPS6334773B2 - - Google Patents

Info

Publication number
JPS6334773B2
JPS6334773B2 JP58244024A JP24402483A JPS6334773B2 JP S6334773 B2 JPS6334773 B2 JP S6334773B2 JP 58244024 A JP58244024 A JP 58244024A JP 24402483 A JP24402483 A JP 24402483A JP S6334773 B2 JPS6334773 B2 JP S6334773B2
Authority
JP
Japan
Prior art keywords
fluid
mixing device
floating body
present
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58244024A
Other languages
Japanese (ja)
Other versions
JPS60137425A (en
Inventor
Tetsuo Yamaguchi
Yoji Otahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58244024A priority Critical patent/JPS60137425A/en
Publication of JPS60137425A publication Critical patent/JPS60137425A/en
Publication of JPS6334773B2 publication Critical patent/JPS6334773B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は流体混合装置に係り、広い範囲の流量
に対応して良好な混合精度が得られる流体混合装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fluid mixing device, and more particularly, to a fluid mixing device that can accommodate a wide range of flow rates and achieve good mixing accuracy.

〔発明の背景〕[Background of the invention]

流体を混合することは、多くの工業で要求され
実施されている。従来、流路上に設けた流体混合
装置及びその方法としては次のようなものがあ
る。簡単な構造では混合すべき流体をT字接手等
によつて合流し適当な長さの流路を設けて混合す
る方法。また、流体を合流した後流路上に適当な
口径のオリフイスあるいは固体案内羽根を設けて
混合する方法。また、エジエクタを設けて、第1
流の流体をノズルから噴出させこれに第2流の流
体を吸収し混合する方法がある。
Mixing fluids is required and practiced in many industries. Conventionally, there are the following fluid mixing devices and methods provided on a flow path. In a simple structure, the fluids to be mixed are joined together using a T-shaped joint, etc., and a flow path of an appropriate length is provided to mix the fluids. Another method is to mix the fluids by installing an orifice of an appropriate diameter or a solid guide vane on the flow path after the fluids are combined. In addition, an ejector is provided and the first
There is a method in which a second stream of fluid is ejected from a nozzle and a second stream of fluid is absorbed and mixed therewith.

これらの流体混合装置による流体の混合作用は
流体混合装置内を流れる流体自体の乱れにより生
じる。そこで、流体を混合させるには流体の乱れ
を起させるために混合装置内の流体の流速をある
程度以上に大きくする必要がある。しかし、流体
の流速を大きくしすぎると、流体混合装置による
圧力損失が上昇し、混合装置の用途によつては操
作困難になる。
The mixing action of fluids by these fluid mixing devices is caused by turbulence of the fluid itself flowing within the fluid mixing device. Therefore, in order to mix the fluids, it is necessary to increase the flow velocity of the fluid within the mixing device to a certain level or higher in order to cause turbulence in the fluids. However, if the flow rate of the fluid is increased too much, pressure loss through the fluid mixing device increases, making operation of the mixing device difficult depending on the application.

そこで、前記した従来の流体混合装置は、混合
すべき流体が必要な流速になるように適当な構造
及び大きさのものが設けられ、比較的狭い範囲の
流量で操作される。すなわち、従来の混合装置に
おいては広い範囲で流量が変動する場合には圧力
損失の上昇はさけられない。これは従来の流体混
合装置の内部構造が固定されており、流体の流量
変動に対応してその構造が簡単に変更できないた
めである。
Therefore, the above-mentioned conventional fluid mixing device is provided with an appropriate structure and size so that the fluid to be mixed has a required flow rate, and is operated within a relatively narrow range of flow rates. That is, in conventional mixing devices, when the flow rate fluctuates over a wide range, an increase in pressure loss is unavoidable. This is because the internal structure of the conventional fluid mixing device is fixed and cannot be easily changed in response to fluctuations in fluid flow rate.

このように、広い範囲の流量に対応して良好な
混合精度が得られ、かつ低圧損で作動する流体混
合装置は、本発明以前には実現していない。
As described above, a fluid mixing device that can accommodate a wide range of flow rates, achieve good mixing accuracy, and operate with low pressure loss has not been realized before the present invention.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、混合すべき流体の広い範囲の
流量変動に対応して、良好な混合精度が得られか
つ低圧損で作動する流体混合装置を提供するにあ
る。
An object of the present invention is to provide a fluid mixing device that can respond to a wide range of flow rate fluctuations of fluids to be mixed, obtain good mixing accuracy, and operate with low pressure loss.

〔発明の概要〕[Summary of the invention]

本発明は、流体混合装置の発明であつて、流体
を流路上で混合させる流体混合装置において、第
1流の流路上に上流から下流方向に拡がるテーパ
管部を形成し、このテーパ領域に自由に移動でき
る浮遊体を収納し、かつテーパ管の上流側に第2
流の流体入口を設けたことを特徴とする。また、
前記浮遊体としては、前記第1流と第2流の混合
流体によつて、テーパ領域内で浮遊状態を維持で
きる形状、大きさ及び密度のものが選定され、こ
の浮遊体の背後には渦流が形成される。また、テ
ーパ管部の上流、下流には、浮遊体が飛び出すの
を防止するために、金網、多孔板或いは突起など
が設けてることが望ましい。
The present invention is an invention of a fluid mixing device, which mixes fluids on a flow path, in which a tapered pipe portion extending from upstream to downstream is formed on the flow path of a first flow, and this tapered region is free. A floating body that can be moved is stored, and a second
It is characterized by having a fluid inlet for the flow. Also,
The floating body is selected to have a shape, size, and density that can maintain a floating state within the tapered region by the mixed fluid of the first flow and the second flow, and a vortex flow is behind the floating body. is formed. Further, it is desirable that wire mesh, perforated plates, protrusions, or the like be provided upstream and downstream of the tapered pipe portion in order to prevent floating bodies from flying out.

次に、本発明の原理について説明する。小口径
側を下にしてほぼ垂直に設けたテーパ管内に自由
に移動できる適当な形状、大きさ及び密度の浮遊
体を収納し、下方より流体を供給すると、浮遊体
はその前後に生ずる圧力差による力で上方に押し
上げられるが、浮遊体が上方へ移動するにつれて
浮遊体とテーパ管との流通面積が増加するのでそ
こを通過する流体の速度が小さくなつて圧力差が
減少し、浮遊体はその自重と圧力差による力との
均衡した位置で静止する。すなわち、テーパ管内
に浮遊体を収納した装置においては、流体の供給
量が増加しても、その流量に応じて浮遊体がテー
パ管内における静止位置を自動的に変え、圧力損
失は上昇しないことが知られている。一方、流体
中に静止した物体を置くと、物体の背後にうずが
発生することが知られている。これより、前記テ
ーパ管内に供給した流体によつて浮遊体が静止状
態にある場合、その浮遊体の背後にうずが発生し
ている。
Next, the principle of the present invention will be explained. When a freely movable floating body of an appropriate shape, size, and density is housed in a tapered tube installed almost vertically with the small diameter side facing down, and fluid is supplied from below, the floating body will react to the pressure difference that occurs before and after it. However, as the floating body moves upward, the area of communication between the floating body and the tapered tube increases, so the velocity of the fluid passing through it decreases and the pressure difference decreases, and the floating body It comes to rest at a position where its own weight and the force due to the pressure difference are balanced. In other words, in a device in which a floating body is housed in a tapered pipe, even if the amount of fluid supplied increases, the floating body automatically changes its resting position within the tapered pipe according to the flow rate, and pressure loss does not increase. Are known. On the other hand, it is known that when a stationary object is placed in a fluid, eddies occur behind the object. Accordingly, when the floating body is in a stationary state due to the fluid supplied into the tapered pipe, eddies are generated behind the floating body.

そこで、第1図に示すように、第1流1の流路
上に、小口径側を下にしてほぼ垂直にしたテーパ
管2を設け、このテーパ領域内に自由に移動でき
る浮遊体3を入れ、かつその上流側に混合すべき
第2流4の流体入口5を設けた構造にし、これに
第1流体1と第2流体4とをそれぞれ供給して、
テーパ管2内で浮遊体3が静止する状態にすれ
ば、浮遊体3の背後に生じるうず6によつて、第
1流体1と第2流体4とを混合させることがで
き、さらに、第1流体1と第2流体4の供給流量
が増加しても圧力損失が増加しない流体混合装置
7を構成することができる。
Therefore, as shown in Fig. 1, a tapered pipe 2 is provided on the flow path of the first flow 1, with the small diameter side facing down, and is made almost vertical, and a freely movable floating body 3 is inserted into this tapered region. , and a fluid inlet 5 for the second flow 4 to be mixed is provided on the upstream side thereof, and the first fluid 1 and the second fluid 4 are respectively supplied thereto,
If the floating body 3 is kept stationary within the tapered pipe 2, the first fluid 1 and the second fluid 4 can be mixed by the vortex 6 generated behind the floating body 3, and furthermore, the first fluid 1 and the second fluid 4 can be mixed. It is possible to configure the fluid mixing device 7 in which pressure loss does not increase even if the supply flow rates of the fluid 1 and the second fluid 4 increase.

なお、第1図に示すように、テーパ管2内の上
下には浮遊体3がテーパ領域から流出するのを防
止するために、突起8、金網あるいは多孔板など
が設けてある。また、テーパ管2及び浮遊体3の
大きさその他の仕様は混合すべき流体の流量範囲
及び特性によつて適宜最適なものが選定される。
As shown in FIG. 1, protrusions 8, wire mesh, perforated plates, etc. are provided at the top and bottom of the tapered tube 2 to prevent the floating bodies 3 from flowing out of the tapered region. Further, the sizes and other specifications of the tapered tube 2 and the floating body 3 are appropriately selected depending on the flow rate range and characteristics of the fluids to be mixed.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例をあげて本発明を具体的に説明す
る。しかし、本発明はこれらの実施例に限定され
るものではない。
Hereinafter, the present invention will be specifically explained with reference to Examples. However, the present invention is not limited to these examples.

実施例 1 本発明の流体混合装置の混合効果を明確にする
ために、第2図に示す実験装置を用いた。この実
験装置は、本発明の流体混合装置7、第1流体貯
槽9、ポンプ10および流量計11からなる第1
流体の供給系、第2流体貯槽12、ポンプ13か
らなる第2流体の供給系、液分配器14およびPH
測定装置15,16からなる流出液の混合度の測
定系より構成した。ここに用いた本発明の流体混
合装置7は管長が63mm、管端の口径は下側が6.5
mm、上側が7.7mmのテーパ管2であり、その内部
に径6.3mmのステンレス製の球状の浮遊体3を収
納し、かつテーパ領域より5mm上流側に、口径3
mmの第2流体の注入口5を設けた構造である。混
合装置の上部には、平面の大きさが30mm×100mm、
幅が9.5mmの液分配器14を取付けた。また、液
分配器14の内部空間は横方向に5等分され、か
つ分割した各室に流出液の導管17を設け、これ
をそれぞれHz測定管15に接続した。第1流体の
供試液は0.002MKH2PO4溶液を用い、これに1N
NaOHを添加して、PH6.3に調製した。また、第
2流体の供試液は0.1N NaOH溶液である。
Example 1 In order to clarify the mixing effect of the fluid mixing device of the present invention, an experimental device shown in FIG. 2 was used. This experimental device consists of a first fluid mixing device 7 of the present invention, a first fluid storage tank 9, a pump 10, and a flow meter 11.
A fluid supply system, a second fluid supply system consisting of a second fluid storage tank 12, a pump 13, a liquid distributor 14, and a PH
It consisted of a system for measuring the degree of mixing of the effluent, consisting of measuring devices 15 and 16. The fluid mixing device 7 of the present invention used here has a tube length of 63 mm and a diameter of the lower tube end of 6.5 mm.
mm, the upper side is a tapered tube 2 with a diameter of 7.7 mm, and a stainless steel spherical floating body 3 with a diameter of 6.3 mm is housed inside it, and a diameter of 3 mm is placed on the upstream side of the taper region.
This structure is provided with a second fluid injection port 5 of mm. The top of the mixing device has a flat surface size of 30mm x 100mm,
A liquid distributor 14 with a width of 9.5 mm was installed. Further, the internal space of the liquid distributor 14 was divided into five equal parts in the horizontal direction, and each divided chamber was provided with an outflow liquid conduit 17, which was connected to the Hz measuring tube 15, respectively. A 0.002MKH 2 PO 4 solution was used as the test solution for the first fluid, and 1N
NaOH was added to adjust the pH to 6.3. Moreover, the test liquid of the second fluid is a 0.1N NaOH solution.

実験は貯槽9からポンプ10により流量計11
を経て、第1流体1を3〜18/hの流量範囲で
連続的に供給し、これに約90分の1の第2流体4
を貯槽12からポンプ13により供給した。そし
て、各供給流量における混合装置の混合度は、第
1流体と第2流体とを混合した後、混合溶液がPH
7.3になるようにし、その際液分配装置より5等
分された各流出液のPHを測定して求めた。なお、
測定に用いたPHセンサの精度から、流出液のPHの
変動幅が0.1以内にある場合を完全混合と見なし
た。
In the experiment, a flow meter 11 is connected to a pump 10 from a storage tank 9.
The first fluid 1 is continuously supplied at a flow rate range of 3 to 18/h, and the second fluid 4 is supplied at a flow rate of about 1/90th.
was supplied from a storage tank 12 by a pump 13. The mixing degree of the mixing device at each supply flow rate is such that after mixing the first fluid and the second fluid, the mixed solution has a pH of
7.3, and the pH of each of the effluents divided into 5 equal parts from the liquid distribution device was measured and determined. In addition,
Based on the accuracy of the PH sensor used in the measurement, complete mixing was considered when the pH fluctuation range of the effluent was within 0.1.

このようにして測定した本発明の流体混合装置
7の結果は第3図のAに示すように、供給流量5
/h以上でPH変動幅は0.1以下になり、良好な
混合度が得られた。かつ、第4図のAに示すよう
に、本発明の流体混合装置の圧力損失は、供給流
量の広い範囲にわたつてほぼ一定であり、30〜38
mmH2Oと低い値であつた。
The results of the fluid mixing device 7 of the present invention measured in this way are as shown in A of FIG.
/h or more, the PH fluctuation range was 0.1 or less, and a good mixing degree was obtained. Moreover, as shown in A of FIG. 4, the pressure loss of the fluid mixing device of the present invention is almost constant over a wide range of supply flow rate, and is 30 to 38
The value was as low as mmH 2 O.

比較例 1 第1図に示した本発明の流体混合装置7の浮遊
体3による混合効果をさらに明確にするために、
浮遊体3を取りはずしてテーパ管のみにした第5
図の構造の混合装置を用いて検討した。実験装置
は前記実施例1で用いた第2図と同じであり、混
合装置7のみ第5図のものととりかえた。また、
実験方法は前記実施例1と同じにした。
Comparative Example 1 In order to further clarify the mixing effect of the floating body 3 of the fluid mixing device 7 of the present invention shown in FIG.
5th model with floating body 3 removed and only a tapered tube
The study was conducted using a mixing device with the structure shown in the figure. The experimental apparatus was the same as that shown in FIG. 2 used in Example 1, and only the mixing device 7 was replaced with that shown in FIG. 5. Also,
The experimental method was the same as in Example 1 above.

第5図に示すテーパ管のみの構造の流体混合装
置による混合の結果は、第3図のBに示すように
供給液の全流量範囲においてPH変動幅は0.1以上
であり、良好な混合度は全く得られなかつた。た
だし、第5図の混合装置の圧力損失は、第4図の
Bに示すように、1〜9mmH2Oと本発明の混合
装置より低い値であつた。
As shown in Fig. 5, the mixing result using the fluid mixing device with only a tapered tube structure shows that the PH fluctuation range is 0.1 or more in the entire flow rate range of the feed liquid, and a good mixing degree is obtained. I couldn't get it at all. However, the pressure loss of the mixing apparatus of FIG. 5 was 1 to 9 mmH2O, which was lower than that of the mixing apparatus of the present invention, as shown in B of FIG.

比較例 2 本発明の流体混合装置(第1図)の流量変動に
対する圧力損失の特性を明確にするために、従来
の絞り盤を設けた第6図の構造の混合装置を用い
て検討した。実験装置は前記実施例1で用いた第
2図のものと同じであり、混合装置7のみ、第6
図の構造のものに取替えた。また、実験方法は前
記実施例1と同じにした。
Comparative Example 2 In order to clarify the characteristics of pressure loss with respect to flow rate fluctuations of the fluid mixing device of the present invention (FIG. 1), a study was conducted using a mixing device of the structure shown in FIG. 6 provided with a conventional drawing disk. The experimental apparatus was the same as that shown in FIG. 2 used in Example 1, with only the mixing device 7 and the 6th
It was replaced with the structure shown in the figure. Furthermore, the experimental method was the same as in Example 1 above.

第6図に示す絞り盤19を設けた構造の流体混
合装置による混合の結果は、第3図Cに示すよう
に、供給液の流量が5/h以上において流出液
のPH変動幅は0.1以下であり、良好な混合精度が
得られた。しかし、その際の圧力損失は第4図の
Cに示すように、供給液の流量が増大するにつれ
て、上昇し、45〜973mmH2Oと高い値になつた。
As shown in FIG. 3C, the result of mixing by the fluid mixing device having the structure shown in FIG. 6 is that the PH fluctuation range of the effluent is less than 0.1 when the flow rate of the feed liquid is 5/h or more. , and good mixing accuracy was obtained. However, as shown in C in FIG. 4, the pressure loss at that time increased as the flow rate of the feed liquid increased and reached a high value of 45 to 973 mmH 2 O.

以上のように、本発明の流体混合装置を用いれ
ば、混合すべき流体の広い範囲の変動に対応して
良好な混合精度が得られ、かつ低圧損で作動する
ことがわかる。
As described above, it can be seen that by using the fluid mixing device of the present invention, good mixing accuracy can be obtained in response to a wide range of fluctuations in the fluids to be mixed, and the device operates with low pressure loss.

次に、本発明の具体的な適用例をあげて説明す
る。第7図は先に特願昭58−11287として出願し
たもので、被反応液を通液し、酵素反応を連続的
に行う固定化酵素反応装置である。固定化酵素反
応装置は、反応器20、原料貯槽21、原料ポン
プ22、反応液貯槽23、PH調整液貯槽24及び
ポンプ25により構成されている。この反応器2
0の構造は反応槽26と調節部27とを交互に多
段に設けた多段充填層型であり、その目的は固定
化酵素の反応層26における酵素反応により変化
したPH、温度を調節部27により最適領域に調節
し、より反応効率の高い固定化酵素反応器を提供
するにある。
Next, specific application examples of the present invention will be described. FIG. 7, previously filed as Japanese Patent Application No. 58-11287, is an immobilized enzyme reaction device in which a reaction solution is passed through and enzyme reactions are carried out continuously. The immobilized enzyme reaction apparatus includes a reactor 20, a raw material storage tank 21, a raw material pump 22, a reaction liquid storage tank 23, a PH adjustment liquid storage tank 24, and a pump 25. This reactor 2
The structure of No. 0 is a multi-stage packed bed type in which reaction vessels 26 and adjustment sections 27 are arranged alternately in multiple stages. The purpose of the present invention is to provide an immobilized enzyme reactor that can be adjusted to an optimum range and has higher reaction efficiency.

そこで、多段充填層型固定化酵素反応器20の
目的を達成するために、反応器20に設けられる
調節部27に次のような機能が要求される。ま
ず、調節部では、PHを調節するために注入された
PH調整液と被反応液とを混合させる機能が要求さ
れる。また、反応層に充填される固定化酵素粒子
の圧縮強度は一般に小さいので、できるだけ圧力
損失が低いことが要求される。ところで、固定化
酵素の活性は反応時間の経過とともに徐々に低下
する。そこで、反応器20による反応液の反応率
を一定にするためには、固定化酵素の活性の低下
に応じて反応器20に供給する被反応液の流量を
徐々に減少させることになる。そのため、調節部
27においては、さらにこの被反応液の供給流量
の変動範囲に対応して良好な混合精度が得られ、
かつ低圧損で作動する機能が要求される。
Therefore, in order to achieve the purpose of the multi-stage packed bed type immobilized enzyme reactor 20, the following functions are required of the adjustment section 27 provided in the reactor 20. First, in the adjustment section, injected to adjust the PH
A function to mix the PH adjustment liquid and the reacted liquid is required. Furthermore, since the compressive strength of the immobilized enzyme particles packed into the reaction bed is generally small, pressure loss is required to be as low as possible. Incidentally, the activity of the immobilized enzyme gradually decreases with the passage of reaction time. Therefore, in order to keep the reaction rate of the reaction liquid in the reactor 20 constant, the flow rate of the reacted liquid supplied to the reactor 20 is gradually reduced in accordance with the decrease in the activity of the immobilized enzyme. Therefore, in the adjustment section 27, good mixing accuracy can be obtained in response to the variation range of the supply flow rate of the reacted liquid,
In addition, the ability to operate with low pressure loss is required.

このように、多段充填層型反応器20に設けら
れる調節部27には種々の機能が要求される。こ
れに対して、第1図に示す本発明の流体混合装置
は要求されるこれらの機能を全て満足できるの
で、調節部27に適用すれば、固定化酵素反応器
を効率よく操作できる。
As described above, the adjustment section 27 provided in the multistage packed bed reactor 20 is required to have various functions. On the other hand, since the fluid mixing device of the present invention shown in FIG. 1 can satisfy all of these required functions, if it is applied to the adjustment section 27, the immobilized enzyme reactor can be operated efficiently.

第8図は本発明の流体混合装置7を前記固定化
酵素反応器20の調節部27に内設した構造を示
したものであり、調節部27のほぼ中央に、上側
に広がつたテーパ管2が取付けられており、テー
パ管2の内部には浮遊体3が収納されている。ま
た、テーパ管2の上部と下部には浮遊体3が流出
するのを防止するための多孔板8が設けられてい
る。また、テーパ管2の下部にはPH調整液の注入
口5が設けられており、テーパ管2のほぼ中央に
開口している。また、テーパ管2の外側はジヤケ
ツトになつており、冷却水を供給、排出するため
のパイプ28,29が調節部27の外側に設けら
れている。
FIG. 8 shows a structure in which the fluid mixing device 7 of the present invention is installed inside the regulating section 27 of the immobilized enzyme reactor 20, in which a tapered pipe extending upward is located approximately in the center of the regulating section 27. 2 is attached, and a floating body 3 is housed inside the tapered tube 2. Additionally, porous plates 8 are provided at the upper and lower portions of the tapered tube 2 to prevent the floating bodies 3 from flowing out. Further, an inlet 5 for the pH adjustment liquid is provided at the lower part of the tapered tube 2, and opens approximately at the center of the tapered tube 2. Further, the outside of the tapered tube 2 is a jacket, and pipes 28 and 29 for supplying and discharging cooling water are provided outside the adjustment section 27.

次に、変形例について説明する。浮遊体3の形
状としては、第1図に示した球体以外に、上部が
円板状であり、下部が円錐になつた形状のもの
(第9図)、また、上部の円板に斜めに溝を切つて
テーパ管内の流体によつて回転を与えられる形状
のもの(第10図)、また円板を間隔をおいて2
段以上かさねた形状のもの(第11図)などにし
てもよい。
Next, a modification will be explained. In addition to the spherical shape shown in Figure 1, the shape of the floating body 3 may be one in which the upper part is a disk shape and the lower part is a cone shape (Figure 9), or one in which the upper disk is diagonally shaped. A groove is cut in the shape of the tapered pipe so that it can be rotated by the fluid in the pipe (Fig. 10), and a disc with two discs spaced apart
It is also possible to have a shape with more than one layer (Fig. 11).

また、テーパ管内に自由に移動できる浮遊体を
入れた流体混合装置の原理を拡張すれば、流体よ
りも比重の軽い浮遊体を用い、下側広がりのテー
パ管に収納して上側より流体を流す方法をとつて
もよい(図示せず)。さらに、第12図に示すよ
うに、浮遊体を、例えばバネなどの弾性体30と
ともにテーパ管内に収納し、弾性体の反発力を利
用する横型の流体混合装置を構成してもよい。
In addition, by expanding the principle of a fluid mixing device in which a freely movable floating body is placed inside a tapered pipe, floating bodies with a specific gravity that is lighter than the fluid can be stored in a tapered pipe that widens at the bottom, and the fluid is allowed to flow from the top. A method (not shown) may also be used. Furthermore, as shown in FIG. 12, the floating body may be housed in a tapered tube together with an elastic body 30 such as a spring, and a horizontal fluid mixing device may be constructed that utilizes the repulsive force of the elastic body.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、供給流量が増加しても、各流
量に応じて浮遊体がテーパ管内における静止位置
を自動的に変え、その浮遊体の背後に生じるうず
によつて流体を混合し、圧力損失も上昇しないの
で、本発明装置は混合すべき流体の広い範囲の流
量変動に対応して、良好な混合精度が得られかつ
低圧損で作動する等の効果を持つている。
According to the present invention, even if the supply flow rate increases, the floating body automatically changes its resting position in the tapered pipe according to each flow rate, and the fluid is mixed by the eddies generated behind the floating body, and the pressure is increased. Since the loss does not increase, the device of the present invention can respond to a wide range of flow rate fluctuations of the fluids to be mixed, achieve good mixing accuracy, and operate with low pressure drop.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第12図は本発明の流体混合装置の概
略断面図、第2図は本発明の流体混合装置を組込
んだ一実施例装置の概略フロー図、第3図は本発
明及び比較例夫々の流体混合装置を第2図の実験
装置に組込んで得られた混合度の特性図、第4図
は同じく第2図の実験装置に組込んで得られた圧
力損失の特性図、第5図、第6図は本発明の流体
混合装置に対する比較例の流体混合装置の概略断
面図、第7図は本発明の流体混合装置の応用例で
ある多段充填層型固定化酵素反応装置の概略フロ
ー図、第8図は第7図の部分拡大図、第9図乃至
第11図は浮遊体の変形例を示す側面図である。 1…第1流体、2…テーパ管、3…浮遊体、4
…第2流体、5…注入口、6…うず、7…流体混
合装置、8…突起、9…第1流体貯槽、10…ポ
ンプ、11…流量計、12…第2流体貯槽、13
…ポンプ、14…液分配器、15…PH測定管、1
6…PHメータ、17…流出液の導管、18…多孔
板、19…絞り盤、20…多段充填層型固定化酵
素反応器、21…原料貯槽、22…原料ポンプ、
23…反応液貯槽、24…PH調整液貯槽、25…
ポンプ、26…反応槽、27…調節部、28…冷
却水入口、29…冷却水出口。
1 and 12 are schematic sectional views of a fluid mixing device of the present invention, FIG. 2 is a schematic flow diagram of an example device incorporating the fluid mixing device of the present invention, and FIG. 3 is a comparison diagram of the present invention and a comparison device. A characteristic diagram of the degree of mixing obtained by incorporating the fluid mixing device of each example into the experimental device shown in FIG. 2, and FIG. 5 and 6 are schematic sectional views of a fluid mixing device as a comparative example to the fluid mixing device of the present invention, and FIG. 7 is a multi-stage packed bed type immobilized enzyme reaction device which is an application example of the fluid mixing device of the present invention. FIG. 8 is a partially enlarged view of FIG. 7, and FIGS. 9 to 11 are side views showing modified examples of the floating body. DESCRIPTION OF SYMBOLS 1...First fluid, 2...Tapered pipe, 3...Floating body, 4
...Second fluid, 5...Inlet, 6...Wirl, 7...Fluid mixing device, 8...Protrusion, 9...First fluid storage tank, 10...Pump, 11...Flow meter, 12...Second fluid storage tank, 13
...Pump, 14...Liquid distributor, 15...PH measuring tube, 1
6... PH meter, 17... Effluent conduit, 18... Perforated plate, 19... Squeezing plate, 20... Multi-stage packed bed type immobilized enzyme reactor, 21... Raw material storage tank, 22... Raw material pump,
23... Reaction liquid storage tank, 24... PH adjustment liquid storage tank, 25...
Pump, 26...Reaction tank, 27...Adjustment section, 28...Cooling water inlet, 29...Cooling water outlet.

Claims (1)

【特許請求の範囲】 1 上流から下流の方向に拡がるテーパ部を備え
た第1の流路と、 該第1の流路内でかつ前記テーパ部の上流側に
開口する第2の流路と、 前記テーパ部内を上流、下流のいずれの方向に
も移動可能でかつ背後に渦流を形成する浮遊体と
を具備してなる流体混合装置。
[Scope of Claims] 1. A first flow path having a tapered portion expanding from upstream to downstream; and a second flow path opening within the first flow path and upstream of the tapered portion. and a floating body that is movable in either the upstream or downstream direction within the tapered portion and forms a vortex behind it.
JP58244024A 1983-12-26 1983-12-26 Fluid mixing device Granted JPS60137425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58244024A JPS60137425A (en) 1983-12-26 1983-12-26 Fluid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58244024A JPS60137425A (en) 1983-12-26 1983-12-26 Fluid mixing device

Publications (2)

Publication Number Publication Date
JPS60137425A JPS60137425A (en) 1985-07-22
JPS6334773B2 true JPS6334773B2 (en) 1988-07-12

Family

ID=17112570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58244024A Granted JPS60137425A (en) 1983-12-26 1983-12-26 Fluid mixing device

Country Status (1)

Country Link
JP (1) JPS60137425A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775658B2 (en) * 1990-05-10 1995-08-16 株式会社新潟鐵工所 Gas mixing device
ID21814A (en) * 1997-01-07 1999-07-29 Shell Int Research FLUID RESERVOIRS AND PROCESSES THAT USE THE TOOL
JP4706664B2 (en) * 2007-05-28 2011-06-22 パナソニック電工株式会社 Fine bubble generating apparatus and fine bubble generating method
JP4706665B2 (en) * 2007-05-28 2011-06-22 パナソニック電工株式会社 Microbubble generator
JP4706669B2 (en) * 2007-06-18 2011-06-22 パナソニック電工株式会社 Microbubble generator

Also Published As

Publication number Publication date
JPS60137425A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
US3545731A (en) Apparatus for producing bubbles of very small,microscopic size
US5918637A (en) Plates perforated with venturi-like orifices
SU724082A3 (en) Foaming device for delivering liquid containing solid particles
US4443551A (en) Method and new distributor for delivering high velocity gas from a gas distributor through a nozzle with decreased erosion in the nozzle
RU2468857C2 (en) Device for mixing fluid flows (versions)
CN101668585A (en) Fluidized bed sparger
CN104226200A (en) Fluid distribution device
JPS6334773B2 (en)
US4167819A (en) Pressure regulator
PL170115B1 (en) Method of and apparatus for producing gaseous molecules
Ahn et al. Solid circulation and gas bypassing in an internally circulating fluidized bed with an orifice-type draft tube
Jeong et al. Experimental study of the effect of pipe length and pipe-end geometry on flooding
US4338187A (en) Solids feeding device and system
US4625744A (en) Process and device for performing a series of hydrodynamic functions on a flow comprised of at least two phases
US7521027B2 (en) Catalytic fixed-bed reactor comprising bypass means for flows through the bed
JPH036094B2 (en)
US5175942A (en) Method for fluidized bed discharge
US4303618A (en) Catalytic reactor
US4961857A (en) Throttling device and method for feeding gas dissolved in liquid under high pressure into liquid under low pressure
CA1084750A (en) Means for damping the pressure disturbances in the pulp suspension flow in a paper machine
US4464262A (en) Liquid flow distributor
GB2246306A (en) A device for gassing liquids
Prakash et al. Porous gas distributors in bubble columns. Effect of liquid presence on distributor pressure drop. Effect of start‐up procedure on distributor performance
JPH11114453A (en) Gas-liquid separator
GB2195323A (en) Arrangement for controlling flow of granular material through a passage