JPS633414A - Manufacture of silicon film - Google Patents

Manufacture of silicon film

Info

Publication number
JPS633414A
JPS633414A JP14738086A JP14738086A JPS633414A JP S633414 A JPS633414 A JP S633414A JP 14738086 A JP14738086 A JP 14738086A JP 14738086 A JP14738086 A JP 14738086A JP S633414 A JPS633414 A JP S633414A
Authority
JP
Japan
Prior art keywords
substrate
chamber
silicon film
trisilane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14738086A
Other languages
Japanese (ja)
Other versions
JPH0556852B2 (en
Inventor
Yutaka Hayashi
豊 林
Mitsuyuki Yamanaka
光之 山中
Mitsuo Umemura
梅村 光雄
Satoshi Okazaki
智 岡崎
Ryoji Takada
高田 量司
Masaaki Kamiya
昌明 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Seiko Instruments Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Shin Etsu Chemical Co Ltd
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shin Etsu Chemical Co Ltd, Seiko Instruments Inc filed Critical Agency of Industrial Science and Technology
Priority to JP14738086A priority Critical patent/JPS633414A/en
Publication of JPS633414A publication Critical patent/JPS633414A/en
Publication of JPH0556852B2 publication Critical patent/JPH0556852B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form an amorphous silicon film having a sufficient deposition rate and excellent electric characteristics by a method wherein a thermal CVD method is performed at the substrate temperature of 480 deg.C or below using trisilane or higher silanes. CONSTITUTION:The substrate 4 consisting of a wafer and the like is inserted into the chamber 1 consisting of a heating means 2, a susceptor 3, a gas blow- out hole 5, the exhaust hole and the like connected to a gas exhaust means 7, they are placed on the upper surface of the susceptor 3. When they are heated up to 400 deg.C or thereabout by a heating means 2, the silane of high order which is higher than trisilane is introduced into the chamber 1. As a result, an amorphous silicon film is formed on the surface of the substrate 4 by thermal decomposition reaction. At this time, atmospheric gas is introduced into the chamber 1 in advance, and after the temperature of the substrate 4 has been stabilized, raw gas is introduced, and the temperature variation when a film is formed can be made small substantially by performing a thermal CVD.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、経時変化の少ない薄膜トランジスタ等に用
いるシリコン膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a silicon film used for thin film transistors and the like that undergoes little change over time.

(発明の概要〕 この発明は、トリシラン以上の高次シランを用いた熱C
VDにより、高品質で安定なアモルファスシリコン膜を
製造するものである。
(Summary of the Invention) This invention provides thermal carbonization using a higher order silane than trisilane.
A high quality and stable amorphous silicon film is manufactured by VD.

〔従来の技術〕[Conventional technology]

プラズマ等のR’C粒子によるダメージのないシリコン
膜の製造方法に熱CVDがある。
Thermal CVD is a method for manufacturing silicon films that is not damaged by R'C particles such as plasma.

従来、水素化アモルファスシリコン膜を熱CVD法で成
膜する場合、原料ガスにモノシラン(SiUS)を用い
ると基板温度を600〜650℃の高温にする必要があ
り、膜中の構造欠陥を補償する結合水素量が極めて少な
く膜の特性が良くなかった。
Conventionally, when forming a hydrogenated amorphous silicon film using the thermal CVD method, if monosilane (SiUS) is used as the raw material gas, it is necessary to raise the substrate temperature to a high temperature of 600 to 650 °C, which is necessary to compensate for structural defects in the film. The amount of bonded hydrogen was extremely small and the properties of the film were poor.

ジシラン(SiJi)を用いた場合、基板温度400〜
500℃で適当に水素を含むアモルファスシリコン膜が
形成できるとの報告が、Yoshinori ASHI
[lAら(Yoshinori ASHIDA、Yas
uyoshi MIS)IIf’lA、Masatak
a旧ROSE、Yukio 05AKA and Ke
nichi KOJIMA、 Jj。
When using disilane (SiJi), the substrate temperature is 400~
Yoshinori ASHI reported that an amorphous silicon film containing appropriate hydrogen can be formed at 500°C.
[lA et al. (Yoshinori ASHIDA, Yas.
uyoshi MIS) IIf'lA, Masatak
a Old ROSE, Yukio 05AKA and Ke
nichi KOJIMA, Jj.

Appl、Phys、 23(1984) 129)に
よりなされている。
Appl, Phys, 23 (1984) 129).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のジシランによる熱CVD法では基板加熱
以外に、チャンバーも加熱するホットウォール型の反応
装置を用いていた。ホントウオール型ではデポジション
レートは高いもののチャンバー内壁の不純物をシリコン
膜中にとり込み易く改質の向上がむずかしい。また、気
相反応により基板表面にシリコン粒子が堆積し、表面が
荒れてしまうという問題があった。
However, the conventional thermal CVD method using disilane uses a hot wall type reaction device that not only heats the substrate but also heats the chamber. Although the real wall type has a high deposition rate, impurities on the inner wall of the chamber are easily incorporated into the silicon film, making it difficult to improve the modification. Additionally, there is a problem in that silicon particles are deposited on the substrate surface due to the gas phase reaction, resulting in a rough surface.

一方、チャンバーは加熱せず基板のみを加熱すルコール
ドウォール型の反応装置ではデポジションレートが低い
という問題があった。
On the other hand, a cold wall type reactor in which only the substrate is heated without heating the chamber has a problem in that the deposition rate is low.

そこで、この発明はコールドウオール型の反応装置にお
いても低い基FAA度で十分なデポジションレートがあ
り、良好な電気特性をもつ安定なアモルファスシリコン
膜の形成を目的としている。
Therefore, the present invention aims to form a stable amorphous silicon film having a sufficient deposition rate with a low group FAA degree and good electrical properties even in a cold wall type reactor.

〔問題を解決するための手段〕[Means to solve the problem]

この発明では、原料ガスにトリシラン以上の高次シラン
を用い、pcvoにおける成膜条件とシリコン膜の特性
の関係を明らかにすることにより問題を解決した。
In this invention, the problem was solved by using a higher-order silane higher than trisilane as the raw material gas and clarifying the relationship between the film forming conditions in PCVO and the characteristics of the silicon film.

〔作用〕[Effect]

ジシランに比ベトリシラン以上の高次シランは反応性が
高いので、十分なデポジションレートがあり、膜質に関
係する基板温度、反応圧力等の成膜条件を最適化するこ
とができる。
Higher-order silanes, which are more reactive than disilane than betrisilane, have a sufficient deposition rate and can optimize film-forming conditions such as substrate temperature and reaction pressure, which are related to film quality.

〔実施例〕〔Example〕

まず、この発明に用いる装置例を第1図(alおよびC
b)により説明する。
First, an example of the apparatus used in this invention is shown in FIG. 1 (al and C
This is explained by b).

第1図(a)において、1はチャンバーで、内部にヒー
ター等の基板加熱手段2を有し、熱伝専の良いサセプタ
ー3が固定され、加熱される。サセプター3上には石英
板、ガラス板、ステンレス板。
In FIG. 1(a), a chamber 1 has a substrate heating means 2 such as a heater inside, and a susceptor 3 with good heat transfer is fixed thereon and heated. On the susceptor 3 are a quartz plate, a glass plate, and a stainless steel plate.

シリコンウェハー等の基板4が載せられている(下向き
等の場合には止め金具等で固定される)。
A substrate 4 such as a silicon wafer is placed thereon (if it is facing downward, it is fixed with a stopper or the like).

さらに、基板4の近傍にガス吹出部5を形成し、ガス供
給手段6とチャンバー1内を排気手段5がチャンバー1
に接続されている。ガス供給手段6からガス吹出部まで
の系はヒーター等により原料ガスの沸点(トリシランで
は53,1℃)以上の温度に保たれている。このほか、
必要に応じて、チャンバー1の側面に真空ゲージ、観察
窓等が設けられ、冷却のための空冷ないしは水冷パイプ
が接続されている。
Further, a gas blowing part 5 is formed near the substrate 4, and an exhaust means 5 is connected to the gas supply means 6 and the inside of the chamber 1.
It is connected to the. The system from the gas supply means 6 to the gas blowing section is maintained at a temperature higher than the boiling point of the raw material gas (53.1° C. for trisilane) by a heater or the like. other than this,
If necessary, a vacuum gauge, an observation window, etc. are provided on the side surface of the chamber 1, and an air cooling or water cooling pipe for cooling is connected thereto.

第1図fblは、基板加熱手段2にランプ加熱を用いた
場合で、チャンバー1は光吸収の少ない石英。
FIG. 1fbl shows a case where lamp heating is used as the substrate heating means 2, and the chamber 1 is made of quartz that absorbs little light.

サセプター3は光吸収の良いカーボン等の材質のものを
各々用いる。
The susceptor 3 is made of a material such as carbon that has good light absorption.

このような装置において基板温度を400 ℃程度に加
熱し、トリシラン以上の高次シランをチャンバー1内に
導入すると、熱分解反応により、基板4表面にアモルフ
ァスシリコン膜を形成することができる。この場合、チ
ャンバー1の壁面の温度は200℃前後であるが、さら
に冷却する場合は、空気、N2ガス等をチャンバー1外
から吹きつければよい。以下にデポジションの詳細な条
件を示す。
In such an apparatus, when the substrate temperature is heated to about 400° C. and a higher-order silane of trisilane or higher is introduced into the chamber 1, an amorphous silicon film can be formed on the surface of the substrate 4 through a thermal decomposition reaction. In this case, the temperature of the wall surface of the chamber 1 is around 200° C., but if further cooling is desired, air, N2 gas, etc. may be blown from outside the chamber 1. Detailed conditions for deposition are shown below.

第2図は100%トリシランを用いた石英基板上へのア
モルファスシリコン膜のデポジションレートのデータの
一例を示すものである。第3図で横軸は基板温度Tsu
bの逆数(1/K) 、縦軸はデポジションレート (
人/ m1n)であり、△10.○、◇。
FIG. 2 shows an example of data on the deposition rate of an amorphous silicon film on a quartz substrate using 100% trisilane. In Figure 3, the horizontal axis is the substrate temperature Tsu
The reciprocal of b (1/K), the vertical axis is the deposition rate (
person/m1n) and △10. ○、◇.

印はそれぞれ反応圧力が1. 2. 5.10.12T
orrの場合である。10 Torr、 420℃で6
0人/minのデポジションレートがあり、半導体素子
を生産するのに十分な値である。
Each mark indicates a reaction pressure of 1. 2. 5.10.12T
This is the case of orr. 6 at 10 Torr, 420℃
There is a deposition rate of 0 person/min, which is sufficient for producing semiconductor devices.

)IZ+ Nz、 He、 Ar等の雰囲気ガスでn訳
した場合のデポジションは、トリシランの分圧が第3図
の反応圧力と同じなら、デポジションレートもほぼ等し
くなる。
)IZ+ If the partial pressure of trisilane is the same as the reaction pressure in FIG. 3, the deposition rate will be approximately the same when translated into n using an atmospheric gas such as Nz, He, or Ar.

第3図は100%トリシランを用いて反応圧力5Tor
rの場合の光学バンドギャップと結合水素工の基板温度
依存性の一例を示したものである。、l+N温度が48
0℃以下では光学バンドギャップは約1゜65eV 、
結合水素量は約7,5%でほぼ一定である。
Figure 3 shows a reaction pressure of 5 Torr using 100% trisilane.
This figure shows an example of the substrate temperature dependence of the optical bandgap and bonded hydrogen in the case of r. , l+N temperature is 48
At temperatures below 0°C, the optical bandgap is approximately 1°65 eV,
The amount of bound hydrogen is approximately constant at about 7.5%.

基板温度が480℃を越える温度では光学バンドギャッ
プ、結合水素量ともに減少する。これよりトリシラン以
上の高次シランの熱CV Dでは基板温度480℃を越
える温度で水素脱離が起こることが解った。
When the substrate temperature exceeds 480° C., both the optical band gap and the amount of bonded hydrogen decrease. From this, it was found that in thermal CVD of higher order silanes than trisilane, hydrogen desorption occurs at substrate temperatures exceeding 480°C.

第4図は、100%トリシランを用いて反応圧力5 T
orrの場合の暗導電率(O印)とAMIスペクトラム
60n W/calの光照射での光導電率(O印)の基
板温度依存性を示したものである。光導電率は高(ない
が、光ぷ電率と暗導電率の比は3桁以上ある。また、基
板温度480℃を越える温度では、水素脱離により光導
電率、暗導電率ともに低下する。
Figure 4 shows a reaction pressure of 5 T using 100% trisilane.
The graph shows the substrate temperature dependence of the dark conductivity (marked with O) in the case of orr and the photoconductivity (marked with O) when irradiated with light of 60 nW/cal in the AMI spectrum. The photoconductivity is high (although not, the ratio of photoconductivity to dark conductivity is more than 3 digits).In addition, at substrate temperatures exceeding 480°C, both photoconductivity and dark conductivity decrease due to hydrogen desorption. .

第5図は、赤外吸収特性の一例を示したものである。−
般に2000cm−’付近にピークを持つSiH結合の
伸縮振動と2100c+++−’付近にピークを持つS
iJ結合の伸11振動が観察されるが、トリシランの熱
CVDによるアモルファスシリコン膜では5ilt結合
のピークはほとんど観測されず、5ill結合が主であ
り良質な膜であるといえる。
FIG. 5 shows an example of infrared absorption characteristics. −
In general, the stretching vibration of SiH bonds has a peak around 2000 cm-' and the S vibration has a peak around 2100 c+++-'.
Although elongation 11 vibrations of iJ bonds are observed, in the amorphous silicon film produced by thermal CVD of trisilane, almost no peak of 5ilt bonds is observed, and it can be said that the film is of good quality, with 5ill bonds being the main component.

以上のデポジションのデータを利用して作成した薄膜ト
ランジスタの断面図の一例を第6図に示す。低抵抗p型
シリコン基板を利用したゲート6と、前記シリコン基板
を1100℃、 dryO□雰囲気中で熱酸化した約9
00 人のゲート絶縁膜7の上に、トリシラン以上の高
次シランの熱cvoによるノンドープアモルファスンリ
コン膜8を約500人デポジションする。さらにn°ア
モルファスシリコン層とNi等の金属層の二層よりなる
ソース9及びトレイン10を形成する。
FIG. 6 shows an example of a cross-sectional view of a thin film transistor created using the above deposition data. A gate 6 using a low-resistance p-type silicon substrate and a gate 6 made by thermally oxidizing the silicon substrate at 1100° C. in a dryO□ atmosphere.
On the gate insulating film 7 of about 500 people, a non-doped amorphous silicon film 8 is deposited by thermal CVO of higher-order silane of trisilane or higher by about 500 people. Furthermore, a source 9 and a train 10 made of two layers, an n° amorphous silicon layer and a metal layer such as Ni, are formed.

第7図は実際の薄膜トランジスタの出力特性の一例であ
る。ゲート・ソース電圧は20〜30Vまで2■ステツ
プで変化させ、チャネル幅−とチャネル長しの比は−/
L = 40である。ソース・ドレイン電圧を0−1O
−OVと掃引した場合のヒステリシスは非常に小さく安
定である。この薄膜トランジスタの0N10FF電流比
は6桁以上あり、飽和領域から求めたしきい値電圧と電
子移動度は各々18■。
FIG. 7 shows an example of the output characteristics of an actual thin film transistor. The gate-source voltage was varied from 20 to 30 V in 2-inch steps, and the ratio of channel width to channel length was -/
L=40. Source-drain voltage 0-1O
The hysteresis when swept to -OV is very small and stable. The 0N10FF current ratio of this thin film transistor is more than 6 digits, and the threshold voltage and electron mobility determined from the saturation region are each 18 cm.

0、ICl1l/V−5と良好なものであった。0, ICl1l/V-5, which was good.

ドレイン電流1dの時間変化を、モノシランのプラズマ
CVDで作製した薄膜トランジスタと比較して第8図に
示す、プラズマCVD試料は熱C■Dと同じチャンバー
を用い、基板温度300℃1反応圧力0.7Torr、
高周波電力LOWで製膜したちのである。第9図の横軸
は、ドレイン電流を1μA流すのに必要なバイアスを印
加してからの時間。
Figure 8 shows a comparison of the time change of the drain current 1d with a thin film transistor fabricated by monosilane plasma CVD.The plasma CVD sample used the same chamber as the thermal CD, and the substrate temperature was 300°C and the reaction pressure was 0.7 Torr. ,
The film was formed using low-frequency high-frequency power. The horizontal axis in FIG. 9 represents the time after applying the bias necessary to cause a drain current of 1 μA to flow.

縦軸はドレイン電流の初期値1d(0)に対する各時間
における値1dの比である。実線が熱CVD、破線がプ
ラズマCVDによる薄膜トランジスタの場合である。熱
CVDによる薄膜トランジスタの方が、プラズマCVD
によるものよりドレイン電流の時間変化が小さく安定で
ある。
The vertical axis is the ratio of the drain current value 1d at each time to the initial value 1d(0). The solid line is for a thin film transistor formed by thermal CVD, and the broken line is for a thin film transistor formed by plasma CVD. Thin film transistors made by thermal CVD are better than those made by plasma CVD.
The time change in drain current is smaller and more stable than that of the conventional method.

第9図(al及びtblはそれぞれ実際のデポジション
の手順の一例を示したもので、横軸は時間、縦軸はチャ
ンバー圧と基板温度を示している。第9図(alは10
0%トリシランの場合で、真空引きしたチャンバー1に
トリシランを導入するとデポジションが始まる。この時
、チャンバー圧が急に増加すると基板加熱手段2とサセ
プター3.及びサセプター3と基板4間の熱伝導が良(
なり、基板温度が20℃程度も上昇する。しばらくする
と温度制御が追従し、基板温度が安定する。チャンバー
圧が10Torr以上でこの現象は顕著である。このデ
ポジション開始時の基板温度変化は、デポジション時間
が短い場合、膜厚の制御や膜質の均一性を悪くする。
FIG. 9 (al and tbl each show an example of an actual deposition procedure, the horizontal axis shows time, and the vertical axis shows chamber pressure and substrate temperature.
In the case of 0% trisilane, deposition begins when trisilane is introduced into the evacuated chamber 1. At this time, if the chamber pressure suddenly increases, the substrate heating means 2 and the susceptor 3. and good heat conduction between the susceptor 3 and the substrate 4 (
As a result, the substrate temperature rises by about 20°C. After a while, the temperature control will follow suit and the substrate temperature will stabilize. This phenomenon is remarkable when the chamber pressure is 10 Torr or more. This change in substrate temperature at the start of deposition deteriorates control of film thickness and uniformity of film quality when the deposition time is short.

そこで、第9図(blに示すように、あらかじめH2゜
Nz、 He、Ar等の希釈ガスを10Torr以上チ
ャンバー1内に導入しておき、基板温度が安定してから
トリシランを与太すると、基板温度の変化は1℃以下に
おさえることができ、安定なデポジションを行うことが
できる。この安定化効果は5 Torr前後のチャンバ
ー圧でも認められた。
Therefore, as shown in Fig. 9 (bl), a diluent gas such as H2°Nz, He, Ar, etc. is introduced into the chamber 1 at a pressure of 10 Torr or more, and after the substrate temperature has stabilized, trisilane is applied thickly. The temperature change can be suppressed to 1° C. or less, and stable deposition can be performed. This stabilizing effect was observed even at a chamber pressure of around 5 Torr.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、どの発明はトリシラン以上
の高次シランを用いて基板温度480℃以下で熱CVD
を行った場合、電気特性の良い安定なアモルファスシリ
コン膜が得られる利点がある。
As explained in detail above, which invention involves thermal CVD at a substrate temperature of 480°C or less using a higher-order silane higher than trisilane.
When carried out, there is an advantage that a stable amorphous silicon film with good electrical properties can be obtained.

また、雰囲気ガスをあらかしめチャンバー内に導入し、
基板温度が安定した後に原料ガスを導入して熱CVDを
行うと、成膜時の基板温度変化を非常に小さくすること
ができる。
In addition, atmospheric gas is introduced into the chamber,
If the source gas is introduced and thermal CVD is performed after the substrate temperature has stabilized, changes in the substrate temperature during film formation can be made very small.

さらに、低温でしかも荷電粒子のダメージのないプロセ
スであることから、LSI等のプロセスと組合せた場合
でも、既に形成済みの他の素子に悪い影響を与えること
がないことは明白である。
Furthermore, since the process is performed at a low temperature and does not cause damage from charged particles, it is clear that even when combined with a process for LSI, etc., there will be no adverse effect on other devices that have already been formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(81はこの発明に用いるヒーター加熱による装
置の断面略図、第1図tblは同様にランプ加熱による
装置の断面略図、第2図はこの発明の100%トリシラ
ンを用いた熱CVDのデポジションレートの基板温度依
存性を示す図、第3図は、この発明の光学バンドギャッ
プと水素含有率の基板温度依存性を示す図、第4図はこ
の発明の導電率の基板温度依存性を示す図、第5図はこ
の発明のシリコン膜の赤外吸収特性図、第6図は第2図
から第5図までのデータを利用して作製した薄膜トラン
ジスタの断面図、第7図は第6図の薄膜トランジスタの
出力特性図、第8図は同じく、ドレイン電流の時間変化
を示す図、第9図(a)は100%トリシランを用いた
場合のデポジションの手順例を示す図、第9図へ)は同
様に雰囲気ガスで希釈した場合のデポジションの手順例
を示す図である0図中、1はチャンバー、2は基板加熱
手段、3はサセプタ、4は基板、5はガス吹出部、6は
ガス供給手段、7は排気手段、8はシリコン膜、9はソ
ース、10はドレインである。 以上 出 願 人  工業技術院長 信越化学工業株式会社 セイコー電子工業株式会社 指定代理人  工業技術院電子技術総合研究所所長佐藤
孝平 4代 理 人  弁理士 最 上  11t (他1名
)第1凶(a) 基板温度(0C) 1000/Tsub (1/に) デボシ゛シ3ンし一トΦ肪暴し!壱に杓峠缶を、ホTf
fi第2図 導  電 早 (S−cm−〇 に%>−二t″G−7(eV)    7關に、4iL
(%):JL数(cm−’) 赤外吸家符性図 第5図 NF2.rラシシ“スタの迂γ面図 第6図 ドレイン・ソース電圧 (V) 薄4片費、トランジズタの出力特十往図第 7 図 バイアス卵1ag7−月ノつ’(hourンドしイ〕電
麦の片開変化をホTIIK 第8図 ミ午間 (minン テ゛ホ55Gのす櫃1烈1ホT図 第9図(a) B′r  閣 (minン テホ゛ジシj二の計慣例1ホT図 第9図(b)
Figure 1 (81 is a schematic cross-sectional view of a device heated by a heater used in this invention, Figure 1 tbl is a schematic cross-sectional view of a device heated by a lamp, and Figure 2 is a schematic cross-sectional view of a device heated by a lamp of this invention). FIG. 3 is a diagram showing the substrate temperature dependence of the position rate. FIG. 3 is a diagram showing the substrate temperature dependence of the optical band gap and hydrogen content of the present invention. FIG. 4 is a diagram showing the substrate temperature dependence of the conductivity of the present invention. 5 is an infrared absorption characteristic diagram of the silicon film of the present invention, FIG. 6 is a cross-sectional view of a thin film transistor manufactured using the data from FIGS. 2 to 5, and FIG. The output characteristics of the thin film transistor shown in the figure, Figure 8 is also a diagram showing the change in drain current over time, and Figure 9 (a) is a diagram showing an example of the deposition procedure when using 100% trisilane. Figure 1) is a diagram showing an example of the deposition procedure when diluted with atmospheric gas. 6 is a gas supply means, 7 is an exhaust means, 8 is a silicon film, 9 is a source, and 10 is a drain. Applicants: Shin-Etsu Chemical Co., Ltd., Director of the Agency of Industrial Science and Technology; Seiko Electronics Co., Ltd., designated agent; Kohei Sato, 4th Director, Electronics Technology Research Institute, Agency of Industrial Science and Technology; Attorney: Patent Attorney Mogami 11t (1 other person) Daiichi Kouhei (a) ) Substrate temperature (0C) 1000/Tsub (to 1/) Deboss 3 and expose the Φ fat! Ichitoge can, ho Tf
fi Diagram 2 Conductivity (S-cm-〇%>-2t″G-7 (eV) 7, 4iL
(%): JL number (cm-') Infrared fluctuating sign diagram Figure 5 NF2. Fig. 6 Drain-source voltage (V) Thin 4-channel transistor output characteristic diagram Fig. 7 Bias Fig. 8 (min. (b)

Claims (2)

【特許請求の範囲】[Claims] (1)基板加熱手段を内蔵するチャンバーに排気手段と
ガス供給手段とが接続された装置を用い、原料ガスとし
てトリシラン(Si_3H_2)以上の高次シランを前
記チャンバー内に導入し、基板温度480℃以下で、か
つ前記チャンバー壁面の温度を前記基板温度より低く保
ち、熱CVDによりシリコン膜を成長させることを特徴
とするシリコン膜の製造方法。
(1) Using a device in which an exhaust means and a gas supply means are connected to a chamber containing a substrate heating means, a higher order silane of trisilane (Si_3H_2) or higher is introduced into the chamber as a raw material gas, and the substrate temperature is 480°C. A method for manufacturing a silicon film as described below, characterized in that the temperature of the wall surface of the chamber is kept lower than the temperature of the substrate, and the silicon film is grown by thermal CVD.
(2)雰囲気ガス(H_2、N_2、He、Ar等)を
あらかじめ前記チャンバー内に導入し、基板温度が安定
した後に、原料ガスを導入してシリコン膜を成長させる
ことを特徴とする特許請求範囲第1項記載のシリコン膜
の製造方法。
(2) The scope of the claim characterized in that an atmospheric gas (H_2, N_2, He, Ar, etc.) is introduced into the chamber in advance, and after the substrate temperature is stabilized, a source gas is introduced to grow a silicon film. 2. The method for manufacturing a silicon film according to item 1.
JP14738086A 1986-06-24 1986-06-24 Manufacture of silicon film Granted JPS633414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14738086A JPS633414A (en) 1986-06-24 1986-06-24 Manufacture of silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14738086A JPS633414A (en) 1986-06-24 1986-06-24 Manufacture of silicon film

Publications (2)

Publication Number Publication Date
JPS633414A true JPS633414A (en) 1988-01-08
JPH0556852B2 JPH0556852B2 (en) 1993-08-20

Family

ID=15428933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14738086A Granted JPS633414A (en) 1986-06-24 1986-06-24 Manufacture of silicon film

Country Status (1)

Country Link
JP (1) JPS633414A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335535A (en) * 1989-06-30 1991-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin film field effect transistor
US5607724A (en) * 1991-08-09 1997-03-04 Applied Materials, Inc. Low temperature high pressure silicon deposition method
US5614257A (en) * 1991-08-09 1997-03-25 Applied Materials, Inc Low temperature, high pressure silicon deposition method
US6716751B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and processes
US6815007B1 (en) 2002-03-04 2004-11-09 Taiwan Semiconductor Manufacturing Company Method to solve IMD-FSG particle and increase Cp yield by using a new tougher UFUN season film
US7026219B2 (en) 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
US7092287B2 (en) 2002-12-18 2006-08-15 Asm International N.V. Method of fabricating silicon nitride nanodots
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US7294582B2 (en) 2002-07-19 2007-11-13 Asm International, N.V. Low temperature silicon compound deposition
US7297641B2 (en) 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
US7427571B2 (en) 2004-10-15 2008-09-23 Asm International, N.V. Reactor design for reduced particulate generation
JP2009071290A (en) * 2007-08-17 2009-04-02 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7553516B2 (en) 2005-12-16 2009-06-30 Asm International N.V. System and method of reducing particle contamination of semiconductor substrates
US7629270B2 (en) 2004-08-27 2009-12-08 Asm America, Inc. Remote plasma activated nitridation
US7674726B2 (en) 2004-10-15 2010-03-09 Asm International N.V. Parts for deposition reactors
US7674728B2 (en) 2004-09-03 2010-03-09 Asm America, Inc. Deposition from liquid sources
US7691757B2 (en) 2006-06-22 2010-04-06 Asm International N.V. Deposition of complex nitride films
US7732350B2 (en) 2004-09-22 2010-06-08 Asm International N.V. Chemical vapor deposition of TiN films in a batch reactor
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
US7851307B2 (en) 2007-08-17 2010-12-14 Micron Technology, Inc. Method of forming complex oxide nanodots for a charge trap
US9443730B2 (en) 2014-07-18 2016-09-13 Asm Ip Holding B.V. Process for forming silicon-filled openings with a reduced occurrence of voids
US9837271B2 (en) 2014-07-18 2017-12-05 Asm Ip Holding B.V. Process for forming silicon-filled openings with a reduced occurrence of voids
US10460932B2 (en) 2017-03-31 2019-10-29 Asm Ip Holding B.V. Semiconductor device with amorphous silicon filled gaps and methods for forming

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126680A (en) * 1983-01-11 1984-07-21 Mitsui Toatsu Chem Inc Amorphous silicon solar battery and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126680A (en) * 1983-01-11 1984-07-21 Mitsui Toatsu Chem Inc Amorphous silicon solar battery and manufacture thereof

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335535A (en) * 1989-06-30 1991-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin film field effect transistor
US5607724A (en) * 1991-08-09 1997-03-04 Applied Materials, Inc. Low temperature high pressure silicon deposition method
US5614257A (en) * 1991-08-09 1997-03-25 Applied Materials, Inc Low temperature, high pressure silicon deposition method
US5700520A (en) * 1991-08-09 1997-12-23 Applied Materials, Inc. Low temperature, high pressure silicon deposition method
US5874129A (en) * 1991-08-09 1999-02-23 Applied Materials, Inc. Low temperature, high pressure silicon deposition method
US5876797A (en) * 1991-08-09 1999-03-02 Applied Materials, Inc. Low temperature high pressure silicon deposition method
US6821825B2 (en) 2001-02-12 2004-11-23 Asm America, Inc. Process for deposition of semiconductor films
US6962859B2 (en) 2001-02-12 2005-11-08 Asm America, Inc. Thin films and method of making them
US6743738B2 (en) 2001-02-12 2004-06-01 Asm America, Inc. Dopant precursors and processes
US7285500B2 (en) 2001-02-12 2007-10-23 Asm America, Inc. Thin films and methods of making them
US6716751B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and processes
US6900115B2 (en) 2001-02-12 2005-05-31 Asm America, Inc. Deposition over mixed substrates
US6958253B2 (en) 2001-02-12 2005-10-25 Asm America, Inc. Process for deposition of semiconductor films
US6716713B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and ion implantation processes
US7026219B2 (en) 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
US7790556B2 (en) 2001-02-12 2010-09-07 Asm America, Inc. Integration of high k gate dielectric
US7585752B2 (en) 2001-02-12 2009-09-08 Asm America, Inc. Process for deposition of semiconductor films
US7186582B2 (en) 2001-02-12 2007-03-06 Asm America, Inc. Process for deposition of semiconductor films
US7273799B2 (en) 2001-02-12 2007-09-25 Asm America, Inc. Deposition over mixed substrates
US6815007B1 (en) 2002-03-04 2004-11-09 Taiwan Semiconductor Manufacturing Company Method to solve IMD-FSG particle and increase Cp yield by using a new tougher UFUN season film
US7294582B2 (en) 2002-07-19 2007-11-13 Asm International, N.V. Low temperature silicon compound deposition
US7297641B2 (en) 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US8921205B2 (en) 2002-08-14 2014-12-30 Asm America, Inc. Deposition of amorphous silicon-containing films
US7092287B2 (en) 2002-12-18 2006-08-15 Asm International N.V. Method of fabricating silicon nitride nanodots
US7629270B2 (en) 2004-08-27 2009-12-08 Asm America, Inc. Remote plasma activated nitridation
US7674728B2 (en) 2004-09-03 2010-03-09 Asm America, Inc. Deposition from liquid sources
US7732350B2 (en) 2004-09-22 2010-06-08 Asm International N.V. Chemical vapor deposition of TiN films in a batch reactor
US7966969B2 (en) 2004-09-22 2011-06-28 Asm International N.V. Deposition of TiN films in a batch reactor
US7674726B2 (en) 2004-10-15 2010-03-09 Asm International N.V. Parts for deposition reactors
US7427571B2 (en) 2004-10-15 2008-09-23 Asm International, N.V. Reactor design for reduced particulate generation
US7553516B2 (en) 2005-12-16 2009-06-30 Asm International N.V. System and method of reducing particle contamination of semiconductor substrates
US7691757B2 (en) 2006-06-22 2010-04-06 Asm International N.V. Deposition of complex nitride films
US7851307B2 (en) 2007-08-17 2010-12-14 Micron Technology, Inc. Method of forming complex oxide nanodots for a charge trap
US8203179B2 (en) 2007-08-17 2012-06-19 Micron Technology, Inc. Device having complex oxide nanodots
JP2009071290A (en) * 2007-08-17 2009-04-02 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US9054206B2 (en) 2007-08-17 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
US9443730B2 (en) 2014-07-18 2016-09-13 Asm Ip Holding B.V. Process for forming silicon-filled openings with a reduced occurrence of voids
US9837271B2 (en) 2014-07-18 2017-12-05 Asm Ip Holding B.V. Process for forming silicon-filled openings with a reduced occurrence of voids
US10460932B2 (en) 2017-03-31 2019-10-29 Asm Ip Holding B.V. Semiconductor device with amorphous silicon filled gaps and methods for forming

Also Published As

Publication number Publication date
JPH0556852B2 (en) 1993-08-20

Similar Documents

Publication Publication Date Title
JPS633414A (en) Manufacture of silicon film
JP2592238B2 (en) Method for manufacturing thin film transistor
US5354700A (en) Method of manufacturing super channel TFT structure
EP0154373B1 (en) Methods for producing single crystals in insulators
JPH03289140A (en) Manufacture of thin film semiconductor device
JP2560038B2 (en) Method for manufacturing semiconductor device
JP3125931B2 (en) Semiconductor fabrication method
JP3051807B2 (en) Insulated gate field effect semiconductor device and method of manufacturing the same
JP3221129B2 (en) Semiconductor device manufacturing method
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JP3494467B2 (en) Method of forming semiconductor thin film
JPS5965479A (en) Thin film transistor and manufacture thereof
JPH04318973A (en) Thin film transistor and manufacture thereof
Ohshita et al. Reaction of Si2H2 molecule on a silicon surface
JP3461819B2 (en) Manufacturing method of semiconductor crystal film
Murota Epitaxial growth techniques: low-temperature epitaxy
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH04257225A (en) Forming method for insulating film
JPH0462073B2 (en)
JPH0661489A (en) Manufacture of thin-film transistor
JP3203772B2 (en) Semiconductor film forming method and thin film semiconductor device manufacturing method
JPH0645257A (en) Method for forming semiconductor thin film
JPH04184921A (en) Vapor growth method
JPH0373149B2 (en)
JPH05335261A (en) Formation of single crystal semiconductor thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term