JPS6334051A - Automatic measurement/judgment device for defective material and improper chucking - Google Patents

Automatic measurement/judgment device for defective material and improper chucking

Info

Publication number
JPS6334051A
JPS6334051A JP61174271A JP17427186A JPS6334051A JP S6334051 A JPS6334051 A JP S6334051A JP 61174271 A JP61174271 A JP 61174271A JP 17427186 A JP17427186 A JP 17427186A JP S6334051 A JPS6334051 A JP S6334051A
Authority
JP
Japan
Prior art keywords
workpiece
measurement
chuck
work
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61174271A
Other languages
Japanese (ja)
Other versions
JPH0526628B2 (en
Inventor
Kimitaka Otake
大竹 公孝
Junji Okamoto
岡本 準二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Seiki Co Ltd
Original Assignee
Hitachi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiki Co Ltd filed Critical Hitachi Seiki Co Ltd
Priority to JP61174271A priority Critical patent/JPS6334051A/en
Publication of JPS6334051A publication Critical patent/JPS6334051A/en
Publication of JPH0526628B2 publication Critical patent/JPH0526628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To make it possible to perform a fully automated machining smoothly by providing an NC machine tool such as a turning center with an automatic measurement/judgment device for measuring a misalignment of a work attached to a chuck of the NC machine tool and for judging the work for its properness. CONSTITUTION:In a turning center, a measurement device 44 for measuring a misalignment of a work W is arranged either on the periphery or on the end surface of the work W. The measurement device 44 is connected via an input-output circuit 45. A robot device 25 is also provided for attaching/ detaching the work W to/from a chuck 7. Further, a reject judgment device 48 is connected to a central processing unit (CPU) 30. The judgment device 48 consists of a measurement maximum minimum determination means 49 for determining the maximum or minimum value of various measurements of the measurement device 44, an operation means 50 for calculating a difference between the maximum and minimum values, a judgment means 51 for comparing the operated result with a preset tolerance value, and an abnormality coping means 71 for commanding a machine tool with such a process as a re-checking the work based on a count number of abnormalities.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNC工作機械でワークを加工する際、全自動で
遂行させるために、素材不良およびチャッキング不良を
判断する素材不良、チャッキング不良の自動計測判別装
置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is designed to detect material defects and chucking defects to determine material defects and chucking defects in order to fully automatically process a workpiece with an NC machine tool. This invention relates to an automatic measurement discrimination device.

〔従来の技術〕[Conventional technology]

従来、NC工作機械でワークを加工する際、ワークフィ
ーダからロボットでワークを把持し主軸チャックに取付
け、取外しを行った後、NC加ニブログラムに基づき所
定の加工がワーク毎に繰返され自動加工が行われている
Conventionally, when machining a workpiece with an NC machine tool, the robot grips the workpiece from the workpiece feeder, attaches it to the spindle chuck, and removes it, then predetermined machining is repeated for each workpiece based on the NC machining program and automatic machining is performed. It is being said.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、加工しようとするワークのうち、焼入れ
されたワークを加工する場合には、焼入れした時点でワ
ーク自体に変形が生ずる。そのため、焼入れされたワー
クをロボット等でワークフィーダから主軸のチャックに
取付けて加工を行なう場合、ワークをチャックに取付け
る取付は方が不良であったりあるいはチャックに取付け
る取付は方が正常であってもワーク自体が不良であれば
、ワークを加工する際にワークの振れが生じていくら正
常な加工を施しても不良品が得られてしまう。
However, when processing a hardened workpiece among the workpieces to be processed, the workpiece itself is deformed at the time of hardening. Therefore, when processing a hardened workpiece by attaching it from a workpiece feeder to the spindle chuck using a robot, etc., the attachment of the workpiece to the chuck may be defective, or even if the attachment of the workpiece to the chuck is normal. If the workpiece itself is defective, the workpiece will run out during processing, resulting in a defective product no matter how well the workpiece is processed.

従って、ワークをチャックに取付ける状況を作業者が常
に監視してワークの振れがあれば、チャッキング国整を
したり、あるいはワーク自体を取り替える判断をして所
定の加工を施すので何等問題ないが、全自動で加工を遂
行する場合には、ワーク振れによる不良品が発生してし
まい、生産の低下を招いていた。
Therefore, the operator constantly monitors the situation in which the workpiece is attached to the chuck, and if there is any wobbling of the workpiece, the worker adjusts the chuck or decides to replace the workpiece itself and performs the specified processing, so there is no problem. When machining is performed fully automatically, defective products occur due to workpiece runout, leading to a decline in production.

本発明は上記事情に鑑み、問題を解決するために提案さ
れたものであって、NC工作機械でワークを加工する際
、ワークをワークフィーダから供給して全自動で加工を
遂行するために、チャックに取付けたワークの振れを計
測しワークが正常かどうかの判断を行なって素材不良及
びチャッキング不良を摘出して加工不良をなくすことを
可能にした素材不良、チャッキング不良の自動計測判別
装置を提供することにある。
The present invention has been proposed in view of the above circumstances and to solve the problem. When processing a workpiece with an NC machine tool, the present invention is to feed the workpiece from the workpiece feeder and perform the processing fully automatically. Automatic measurement and discrimination device for material defects and chucking defects that makes it possible to eliminate machining defects by measuring the deflection of the workpiece attached to the chuck and determining whether the workpiece is normal or not, and identifying material defects and chucking defects. Our goal is to provide the following.

〔問題点を解決するための手段と作用〕上記の問題点を
解決するため、本発明においては、主軸と、主軸先端に
設けられワークを掴むチャックと、前記主軸用に設けら
れた加工又は計測用の速度制御手段及び回転角変位1制
御手段とを有し、前記主軸と刃物台の相対移動によって
ワークを加工する自動工作機械において、前記ワークの
振れを計測する計測装置と、前記ワークを前記チャック
に供給するロボット装置と、前記計測装置の測定値の最
小値又は最大値を決定するための計測値最小・最大値決
定手段及び前記最大値と最小値の差を計算する演算手段
及び該演算手段の演算結果と予めメモリに記憶した公差
設定値を比較し正常、異常の判別をする判定手段及び異
常をカウントし異常のカウント数によりワークの掴み直
し、不良ワークの取外し1次ワークの供給、自動工作機
械の停止、警報出力の少なくとも一つ以上をロボット装
置や自動工作機械に指令する異常対応手段を有する不良
判別装置とから成ることを特徴とする。
[Means and operations for solving the problems] In order to solve the above problems, the present invention provides a main spindle, a chuck provided at the tip of the main spindle to grip the workpiece, and a processing or measuring device provided for the main spindle. An automatic machine tool that processes a workpiece by relative movement of the main spindle and the tool rest, and includes a speed control means for controlling the workpiece and a rotational angular displacement control means for controlling the workpiece. A robot device for supplying the chuck, a measured value minimum/maximum value determining means for determining the minimum value or maximum value of the measured value of the measuring device, and a calculation means for calculating the difference between the maximum value and the minimum value, and the calculation method. Judgment means that compares the calculation results of the means with tolerance setting values stored in memory in advance to determine whether it is normal or abnormal, counts abnormalities, regrips the workpiece based on the number of abnormalities, removes defective workpieces, supplies primary workpieces, The present invention is characterized by comprising a failure determination device having an abnormality response means for instructing a robot device or an automatic machine tool to at least one of stopping the automatic machine tool and outputting an alarm.

上記構成を採用することにより、チャックにワークを取
付けた際、ワーク自体が正常か或いはチャックへの取付
は方が正常かどうかを計測判定して素材不良或いはチャ
ッキング不良の摘出と対応をチャックやロボット装置な
どを制御することにより全自動で行なうことが出来る。
By adopting the above configuration, when a workpiece is attached to the chuck, it is measured and determined whether the workpiece itself is normal or whether the attachment to the chuck is normal, and the chuck or the chuck can identify and deal with defective materials or chucking defects. This can be done fully automatically by controlling a robot device or the like.

〔実施例〕〔Example〕

以下、本発明の一実施態様を図面に基づいて詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

(1)まず本発明の装置が通用される工作機械の概要に
ついて説明する。
(1) First, an outline of a machine tool to which the device of the present invention is used will be explained.

第2図はターニングセンタの平面図で、特にワークフィ
ーダ装置も取付けた状態を示しである。
FIG. 2 is a plan view of the turning center, particularly showing a state in which a work feeder device is also attached.

第2図において、ベツド1上にコラム2が立設され、該
コラム2に主軸台4が取付けられている。
In FIG. 2, a column 2 is erected on a bed 1, and a headstock 4 is attached to the column 2.

主軸台4はモータ5の回転が回路のポールスクリュに伝
達され回路のナツトを介してガイド3,3に沿ってY軸
方向(上下方向)に摺動される。主軸6は、主軸モータ
8の回転がプーリ9,10に巻回したベルトを介して伝
達され回転される。主軸6の先端にはチャック7が取付
けられ、該チャック7にワークWを把持し、ワークWを
回転して旋削加工が施される。主軸6の後端部には主軸
位置割出し装置Mが取付けられていて、ワークWの角度
位置を割出しすることが出来る。(以下、主軸の角度割
出し軸をC軸という。) 他方、ベツド1上にはサドル12が載置され、モータ1
5の回転がポールスクリュ17に伝達されガイド11.
LLに沿ってサドル12がZ軸方向に摺動される。サド
ル12上にはクロススライド14が載置され、該クロス
スライド14に万物台19が取付けられている。刃物台
19はモータ16の回転がポールスクリュ18に伝達さ
れ、ガイド13.13に沿ってX軸方向に摺動される。
The rotation of the motor 5 is transmitted to the headstock 4 to the pole screw of the circuit, and the headstock 4 is slid in the Y-axis direction (vertical direction) along the guides 3, 3 via the nut of the circuit. The main shaft 6 is rotated by the rotation of the main shaft motor 8 transmitted through a belt wound around pulleys 9 and 10 . A chuck 7 is attached to the tip of the main shaft 6, and a work W is gripped by the chuck 7, and the work W is rotated to perform turning processing. A spindle position indexing device M is attached to the rear end of the spindle 6, and can index the angular position of the workpiece W. (Hereinafter, the angle indexing axis of the main shaft will be referred to as the C-axis.) On the other hand, a saddle 12 is placed on the bed 1, and the motor 1
The rotation of the guide 11.5 is transmitted to the pole screw 17.
The saddle 12 is slid along LL in the Z-axis direction. A cross slide 14 is placed on the saddle 12, and a universal table 19 is attached to the cross slide 14. The rotation of the motor 16 is transmitted to the pole screw 18, and the tool rest 19 is slid along the guide 13.13 in the X-axis direction.

刃物台1gには90度割出し可能な割出しへラド20が
取付けられ、X軸方向およびZ軸方向の双方にツールを
割出すことができる。さらに刃物台19上には自動工具
交換装置21が載置され、該自動工具交換装ff121
上には複数のツールを収納する工具マガジン22が設け
られている。自動工具交換装置21にはツールを自動交
換する為のツインアームが前後動(X軸方向)、および
180度回動出来るように取付けられている。
An indexing rod 20 that can be indexed by 90 degrees is attached to the tool rest 1g, and the tool can be indexed in both the X-axis direction and the Z-axis direction. Further, an automatic tool changer 21 is mounted on the tool post 19, and the automatic tool changer ff121
A tool magazine 22 for storing a plurality of tools is provided on the top. A twin arm for automatically exchanging tools is attached to the automatic tool changer 21 so that it can move back and forth (in the X-axis direction) and rotate 180 degrees.

ツール交換指令により、工具マガジン22の交換位置に
あるツールボッl−22aが水平位置まで俯仰し、回路
のツインアームが回動して割出しヘッド20のX軸方向
に挿着されたツールとツールボット22aに挿着された
ツールを把持し、ツールを夫々割出しヘッド20および
ツールポット22aから抜き、180度回動じてツール
の自動交換が行われる。
In response to the tool exchange command, the tool box 1-22a in the exchange position of the tool magazine 22 is lifted up to a horizontal position, and the twin arms of the circuit rotate to insert the tool and the tool bot in the X-axis direction of the indexing head 20. The tool inserted into the tool pot 22a is grasped, the tool is pulled out from the indexing head 20 and the tool pot 22a, and the tool is rotated 180 degrees to perform automatic tool replacement.

割出しヘッド20は、X軸方向に割出されて(固定側と
いう)、主に旋削加工が施されるツールと、X軸方向に
割出されて(回転側という)、主にフライス加工が施さ
れるツールとが挿着される。X軸方向と2軸方向の割出
しは、割出しモータ20aによりインデックスされる。
The indexing head 20 is indexed in the X-axis direction (referred to as the fixed side) and is used for mainly turning tools, and indexed in the X-axis direction (referred to as the rotating side) and used mainly for milling. The tool to be applied is inserted. Indexing in the X-axis direction and the two-axis directions is performed by an indexing motor 20a.

また、X軸方向のツールがフライス加工を行う際は、モ
ータ23により割出しヘッド20の主軸が回転される。
Further, when the tool in the X-axis direction performs milling, the main shaft of the indexing head 20 is rotated by the motor 23.

ターニングセンタの前面にはワークを供給するワークフ
ィーダ装置24が設置され、さらにターニングセンタと
ワークフィーダ装置24の間にはワークWをワークフィ
ーダ装置24の受は渡し位置24aから主軸6の先端部
に取付けられているチャック7へ受渡すためのロボット
装置25が設けられている。このロボット装置は上下方
向の運動と、主軸方向の運動とアームの旋回運動とを有
する。
A work feeder device 24 is installed in front of the turning center to feed the workpiece, and between the turning center and the workpiece feeder device 24, a receiver of the workpiece feeder device 24 feeds the workpiece W from the transfer position 24a to the tip of the main spindle 6. A robot device 25 is provided for transferring to the attached chuck 7. This robot device has vertical movement, movement in the direction of the main axis, and rotational movement of the arm.

ワークフィーダ装置24は、加工すべきワークWをエン
ドレスで且つ一定間隔に連結されたパレット(回路)上
に載せ、パレットを回動し、加工するワークWを、受渡
し位置24aに搬送させる。
The workpiece feeder device 24 places the workpieces W to be processed on an endless pallet (circuit) connected at regular intervals, rotates the pallet, and transports the workpiece W to be processed to the delivery position 24a.

ロボット装置25は、ロボットハンド25aで受渡し位
置にあるワークWを把持し持ち上げた後、回動しチャッ
ク7の前面まで撮込む。ロボットハンド25aに把持さ
れているワークWがチャック7へ受渡し、ワークWがチ
ャック7に把持された後、ロボット装置25をX軸方向
へ後退せしめて待機位置まで動作する。次いでチャック
7に把持されたワークWの所定の旋削加工およびフライ
ス加工が施される。
The robot device 25 grips and lifts the workpiece W at the delivery position with the robot hand 25a, and then rotates to capture the front surface of the chuck 7. The workpiece W held by the robot hand 25a is transferred to the chuck 7, and after the workpiece W is gripped by the chuck 7, the robot device 25 is moved backward in the X-axis direction and moves to a standby position. Next, the work W held by the chuck 7 is subjected to predetermined turning and milling.

ワーク加工を施す前に本発明の装置でチャック7に取付
けられたワークWの振れを計測し、正富な場合に加工が
施されるのである。
Before machining the workpiece, the device of the present invention measures the runout of the workpiece W attached to the chuck 7, and if it is correct, the workpiece is machined.

(2)次に本発明の素材不良、チャッキング不良の自動
計測判別装置の構成について説明する。第1図は本発明
の一実施例のブロック図である。
(2) Next, the configuration of the apparatus for automatically measuring and determining material defects and chucking defects according to the present invention will be explained. FIG. 1 is a block diagram of one embodiment of the present invention.

第1図において、中央演算処理装置12cPLJ30に
はパスライン31を介して本発明を構成する各要素が以
下の通り接続されている。
In FIG. 1, each element constituting the present invention is connected to the central processing unit 12cPLJ30 via a path line 31 as follows.

まず、本発明に必要な情報を入出力する画面付キーボー
ド32がインターフェイス33を介して接続されている
。前記情報は加ニブログラム、計測プログラム、ロボッ
ト動作プログラムとして夫々のメモリ34.35.36
に夫々記憶されるように接続されている。前記加ニブロ
グラムに基づき加工を行うため、刃物台19又は主軸6
をX。
First, a keyboard with a screen 32 for inputting and outputting information necessary for the present invention is connected via an interface 33. The information is stored in memories 34, 35, and 36 as a program, a measurement program, and a robot operation program.
are connected so that they are stored respectively. In order to perform processing based on the above-mentioned machine program, the tool post 19 or the main spindle 6
X.

Y及びX軸方向に夫々駆動させるべく、夫々X。X respectively to drive in the Y and X axis directions.

Y及びX軸方向のモータ16.5.15は補間器37及
びアンプ38を介して接続されている。前記主軸6は加
工又は計測のためモータ8によって回転されるが、この
時の速度制御及び回転角度位置制御を行うため、前記モ
ータ8はモータ周波数変換る39及びアンプ40を介し
て接続されている。前記主軸6には先端にワークW取付
は用チャック7が取付けられると共に、後端にチャック
7開閉用シリンダ41が取付けられ、該シリンダ41の
開閉動作を行うためツレノドバルブ42が入出力回路4
3を介して接続されている。前記ワークWの外周又は端
面には該ワークWの振れ等を計測するための計測装置4
4が設けられ、該計測装置44が入出力回路45を介し
て接続されている。
The Y and X axis motors 16.5.15 are connected via an interpolator 37 and an amplifier 38. The main shaft 6 is rotated by a motor 8 for processing or measurement, and the motor 8 is connected via a motor frequency converter 39 and an amplifier 40 in order to control the speed and rotation angle position at this time. . A chuck 7 for attaching the workpiece W is attached to the tip of the main shaft 6, and a cylinder 41 for opening and closing the chuck 7 is attached to the rear end, and a pressure valve 42 is connected to the input/output circuit 4 to open and close the cylinder 41.
Connected via 3. A measuring device 4 is provided on the outer periphery or end face of the workpiece W to measure the deflection, etc. of the workpiece W.
4 is provided, and the measuring device 44 is connected via an input/output circuit 45.

また、前記ワークWをチャック7に取付は取外すために
ロボット装置25が設けられ、該ロボット装置25の駆
動モータ25b、25c、25dがR3232Cの如き
インターフェイス46とロボット制御用プログラマブル
・コントローラ41を介して接続されている。さらに、
中央演算処理装置CPtJ3Gには不良判別装置48が
接続されている。該不良判別装置48は、前記計測装置
44の種々の測定値の最小値又は量大値を決定するため
の計測値最小・最大決定手段49と、最大値、最小値の
差を計算する演算手段50と、演算結果と公差設定値と
を比較し、正常、異常の判別をする判定手段51と、異
常をカウントし異常のカウント数によりワークの掴み直
し、不良ワークの取外し1次ワークの供給、自動工作機
械の停止、警報出力の少なくとも一つ以上をロボット装
置や自動工作機械に指令する異常対応手段71とから構
成されている。前記計測値最小・最大決定手段49は、
計測装置44が発するタッチ信号とその時の刃物台19
の機械座標位置を取込むことにより得られる計測値を計
測の都度入力する測定値レジスタ53と、計測スタート
信号と最初の測定値レジスタ53の値によりアントゲ−
)54.55とオアゲート56.57を経て測定値レジ
スタ53の値が入力される最小基準値レジスタ58及び
量大基準値レジスタ59と、2回以降の測定値レジスタ
53の値と計測中信号によりアンドゲート55を経て測
定値レジスタ53の値が入力される比較値レジスタ61
と、該比較値レジスタ61の値Aiと前記最小基準値レ
ジスタ58及び最大基準値レジスタ59の値AOI、A
O2を夫々比較する比較器62.63と、該比較器62
.63の比較結果と比較値レジスタ61からの条件信号
によりアンドゲート64.65を介してデータA Il
i n +A+maxがどちから一方に記憶される最小
値レジスタ66及び最大値レジスタ67とから成り、該
最小値レジスタ66及び最大値レジスタ67に記憶され
た最小値As1n及び最大値Amaxはオアゲー)56
.57を介して最小又は最大基準値レジスタ58.59
に入って最小又は最大基準値A01゜AO2を設定させ
直し、次の測定レジスタ53から入力されるデータと順
次比較され、最小値Am1n及び最大値A waxが決
められるように構成されている。そして全測定値の比較
が終わると、計測終了信号とこの最小値レジスタ66及
び最大値レジスタ67からの信号でアントゲ−)68.
69が開き、最小値Am1n 、最大値A waxが次
の演算手段50に入力される。前記演算手段50は、前
記最小値A+minと最大値A@axの差F(F=A@
ax−Amin)を計算する演算回路によって構成され
ている。そして、演算結果の最大値Amaxと最小値A
m1nの差Fが次の判定手段51に入力される。
Further, a robot device 25 is provided to attach and detach the workpiece W to the chuck 7, and drive motors 25b, 25c, and 25d of the robot device 25 are connected via an interface 46 such as R3232C and a programmable controller 41 for controlling the robot. It is connected. moreover,
A defect determination device 48 is connected to the central processing unit CPtJ3G. The defect determination device 48 includes a measured value minimum/maximum determining means 49 for determining the minimum value or the maximum value of various measured values of the measuring device 44, and an arithmetic means for calculating the difference between the maximum value and the minimum value. 50, a determining means 51 that compares the calculation result and the tolerance setting value and determines whether it is normal or abnormal, counts abnormalities, regrips the workpiece based on the number of abnormalities, removes the defective workpiece, and supplies the primary workpiece; It is comprised of an abnormality response means 71 that instructs the robot device or the automatic machine tool to at least one of stopping the automatic machine tool and outputting an alarm. The measurement value minimum/maximum determining means 49 includes:
The touch signal emitted by the measuring device 44 and the turret 19 at that time
A measurement value register 53 is used to input the measurement value obtained by importing the machine coordinate position of
) 54.55 and the value of the measurement value register 53 is inputted via the OR gate 56.57, the minimum reference value register 58 and the large quantity reference value register 59, the values of the second and subsequent measurement value registers 53, and the measuring signal. Comparison value register 61 into which the value of measurement value register 53 is input via AND gate 55
, the value Ai of the comparison value register 61 and the values AOI, A of the minimum reference value register 58 and maximum reference value register 59.
Comparators 62 and 63 for comparing O2, respectively, and the comparator 62
.. 63 and the condition signal from the comparison value register 61, data A Il is passed through AND gates 64 and 65.
It consists of a minimum value register 66 and a maximum value register 67 in which i n +A+max is stored on one side, and the minimum value As1n and maximum value Amax stored in the minimum value register 66 and maximum value register 67 are the or game) 56
.. 57 via minimum or maximum reference value register 58.59
The system is configured such that the minimum or maximum reference value A01°AO2 is set again and sequentially compared with the data input from the next measurement register 53 to determine the minimum value Am1n and maximum value Awax. When the comparison of all the measured values is completed, the measurement end signal and the signals from the minimum value register 66 and maximum value register 67 are used to generate an ant game) 68.
69 is opened, and the minimum value Am1n and maximum value A wax are input to the next calculation means 50. The calculation means 50 calculates the difference F (F=A@ax) between the minimum value A+min and the maximum value A@ax.
ax-Amin). Then, the maximum value Amax and the minimum value A of the calculation results are
The difference F between m1n is input to the next determining means 51.

前記判定手段51は前記最大値Amaxと最小値Awi
nの差Fと公差設定メモリ72の公差設定値△lを比較
する比較器により構成され、差Fが公差設定値△lより
も大きい場合NG(異常)となり、小さい場合OK(正
常)となる、そして、NGとなった場合、このNGがカ
ウンタ70.70’。
The determining means 51 determines the maximum value Amax and the minimum value Awi.
It is composed of a comparator that compares the difference F of n with the tolerance setting value Δl of the tolerance setting memory 72, and if the difference F is larger than the tolerance setting value Δl, it is NG (abnormal), and if it is smaller, it is OK (normal). , and when the result is NG, this NG is counted as the counter 70.70'.

70“によってカウントされ、1個のワークに対して1
回目の計測の時(Kn=1.に=1) 、再掴み直しの
プログラムが指令され、1個のワークに対して2回目の
計測の時(Kn=2.に=2)はそのワークを取外し、
新しいワークをチャックに取付けるプログラムが指令さ
れる。新しいワークの計測が行われ、1回目の計測でN
Gの場合(Kn=3.に=1) 、再掴み直しのプログ
ラムが指令され、2回目のNG (Kn=4.に=2)
で警報手段52が起動される。なお、計測がOKの場合
は加ニブログラムが指令される。前記警報手段52は2
個のワークが連続してNGの時、音や光等によりアラー
ムを発するもので、アラームと共に機械は停止される。
70", 1 for 1 workpiece.
At the time of the second measurement (Kn = 1. = 1), a program to regrip the workpiece is commanded, and at the time of the second measurement for one workpiece (Kn = 2. = 2), the workpiece is Remove,
A program is issued to attach a new workpiece to the chuck. A new workpiece is measured, and the first measurement is N.
In the case of G (Kn = 3. = 1), a re-gripping program is commanded, and the second NG (Kn = 4. = 2).
The alarm means 52 is activated. It should be noted that if the measurement is OK, a cannibal program is commanded. The alarm means 52 has two
When each workpiece fails continuously, an alarm is emitted by sound or light, and the machine is stopped along with the alarm.

なお、カウンタ70゜70′は1個のワーク毎NGをカ
ウントする。これらカウンタ70.70’、70’およ
び警報手段52等は本発明の異常対応手段71を構成し
ている。
Note that the counters 70 and 70' count NG for each workpiece. These counters 70, 70', 70', alarm means 52, etc. constitute abnormality response means 71 of the present invention.

以上の不良判別装置48はCPUバス31に接続される
CPU30の周辺装置として構成しても良いが、CPU
3 Qにi使手段として内在するように構成しても良い
The defect determination device 48 described above may be configured as a peripheral device of the CPU 30 connected to the CPU bus 31;
3 It may be configured so that it is inherent in Q as a means of using i.

次に、本発明の基本的な原理について説明する。Next, the basic principle of the present invention will be explained.

第3図(イ)〜(ニ)は本発明の基本的な原理を説明す
る説明図である。第3図(イ)〜(ニ)において夫々の
割出しヘッド20にはタッチセンサTs■およびTa■
が取付けられる。一方主軸6にはチャック7を介して加
工しようとするワークWが把持される。チャック7に把
持されたワークWは所定の加工を施す前に割出しヘッド
20に取付けられたタッチセンサTs■あるいはTs■
で第3図(ロ)〜(ニ)に示す如くワークWの外径面あ
るいは端面に接触させてワーク径や端面長さを計測する
。なお、計測するデータとしては主軸6を一定角度に割
出して通富6〜24ケ所の計測を行ない、その求めた計
測データから最大、最小の計測データ例えば量大計測デ
ータAmax 、最小計測データAs1aを抽出し、そ
の差F (Amax −Aa+in )と予め設定され
た許容範囲の公差△2と比較する。1 (1!jのワー
クWを例えば1回目に計測して(Ao+ax −Aa+
in ) >八iとなった時すなわちNGとなればワー
クWを再チャックし直して再度計測し2回目も同様にN
GとなるとそのワークWは所定の加工を施さず、別のワ
ークWと交換する。次の新しいワークの1回目がNGで
再チャッキングして2回目の計測もNGとなったら即ち
連続2個のワークがNGとなった時アラームを発し機械
を停止するようにして機械の異富を知らせるようにした
ものである。
FIGS. 3(a) to 3(d) are explanatory diagrams for explaining the basic principle of the present invention. In FIGS. 3(a) to 3(d), each indexing head 20 has touch sensors Ts■ and Ta■.
is installed. On the other hand, a workpiece W to be machined is gripped by the main shaft 6 via a chuck 7. Before the workpiece W gripped by the chuck 7 is subjected to predetermined processing, the touch sensor Ts■ or Ts■ attached to the indexing head 20
Then, as shown in FIGS. 3(b) to 3(d), the diameter and length of the end surface of the workpiece W are measured by contacting the outer diameter surface or end surface of the workpiece W. As for the data to be measured, the main axis 6 is indexed at a certain angle and measurements are taken at 6 to 24 locations, and from the obtained measurement data, maximum and minimum measurement data such as large measurement data Amax and minimum measurement data As1a are obtained. is extracted, and the difference F (Amax −Aa+in ) is compared with the tolerance Δ2 of a preset allowable range. 1 (For example, when measuring the workpiece W of 1!j for the first time, (Ao+ax −Aa+
in ) > 8i, that is, if it is NG, chuck the workpiece W again and measure again, and the second time is also NG.
When the workpiece W becomes G, the workpiece W is not subjected to the predetermined processing and is replaced with another workpiece W. If the first measurement of the next new workpiece is NG and the second measurement is also NG, an alarm will be issued and the machine will be stopped. This is to let you know.

本発明の動作を第4図のフローチャートに基づき説明す
る。第4図において、本発明の装置をスタートさせると
、第0段でロボット装置25のハンド25aによりチャ
ック7に取付けられているワークWを取外してワークフ
ィーダ装置24に戻し、次いでロボット装置25のハン
ド25aでワークフィーダ装置24の受渡し位置24a
に載置されている次加工用ワークWを把持し機内へ振り
込みチャック7に取付ける。第0段で刃物台19の割出
しヘッド20に取付けたタッチセンサTsを、チャック
7に把持された次加工用ワークWの外径面にタッチさせ
て振れ測定を行なう。次加工用ワークWの振れ測定は最
大24ケ所の測定が出来るから、適宜選択して測定する
。例えば6ケ所測定しようとするならば主軸6を60度
ずつ割出して6ケ所の半径測定値か得られる。第0段で
6個の測定値から最大Amax 、最小Am1nを抽出
し予め設定された公差Δlとから(Amax −Am1
n)≦△lとなっているかどうか振れの判定を行なう。
The operation of the present invention will be explained based on the flowchart of FIG. In FIG. 4, when the apparatus of the present invention is started, the work W attached to the chuck 7 is removed by the hand 25a of the robot device 25 in the 0th stage and returned to the work feeder device 24, and then the hand 25a of the robot device 25 25a is the delivery position 24a of the work feeder device 24.
The work W for next processing placed on the machine is grasped, transferred into the machine, and attached to the chuck 7. At the 0th stage, the touch sensor Ts attached to the indexing head 20 of the tool rest 19 is made to touch the outer diameter surface of the workpiece W for next processing held by the chuck 7 to measure runout. Since it is possible to measure the run-out of the workpiece W for the next processing at a maximum of 24 locations, it is possible to select and measure as appropriate. For example, if you want to measure six points, you can index the main axis 6 by 60 degrees to obtain radius measurements at six points. In the 0th stage, the maximum Amax and minimum Am1n are extracted from the six measured values, and from the preset tolerance Δl, (Amax - Am1
Runout is determined whether n)≦△l.

第0段で(Amax −Amin )≦Δ2でなければ
1回目のNGとなり、第0段でワークWをチャック7か
ら一旦取外してから再度チャック7に取付けし直すワー
ク再チャッキングが行われて第0段の手前のプログラム
に戻される。次いで前回と同様に第0段で振れ測定を行
い第0段で振れの判定を行う。第0段の振れ判定で(A
w+ax −Amin )≦△lでなければ2回目のN
Gとなり、第0段でワークWが2個連続してNGかどう
かの判断がなされる。この場合にはまだワークW1個で
2回目のNGとなっているので、第0段に進み、ロボッ
ト装置25のハンド25aでワークWを取外す、さらに
第0段でロボット装置25により新しい2個目のワーク
をチャンク7に取付けて、前回と同様第0段、第0段で
振れ測定および振れ判定を行い1回目NGであれば第0
段でワークの再チャツキングを行い、再度第0段、第0
段で振れ測定および振れ判定を行い、2回目NGであれ
ば第0段に進み、ワーク2個が連続してNGかどうかの
判断が施される。この場合にはワーク2個が連続してN
Gであるからアラームが発せられNC工作機械を停止し
異常個所を点検する。第0段で(A wax−Amin
)≦へ2であれば、NGでなくOKであるから第0段に
進み所定の加工が施される。従って、加工しようとする
ワークが2個連続してNGとならない限り連続して所定
の加工が自動的に行われる。
If (Amax - Amin)≦Δ2 is not satisfied at the 0th stage, the first time is NG, and at the 0th stage, the workpiece W is once removed from the chuck 7, and then re-chucking is performed by attaching it to the chuck 7 again. Returns to the program before stage 0. Next, as in the previous case, the runout is measured at the 0th stage, and the runout is determined at the 0th stage. In the shake judgment of the 0th stage (A
If w + ax − Amin )≦△l, the second N
G, and it is determined whether or not two consecutive workpieces W are NG in the 0th stage. In this case, since it is still the second NG with only one workpiece W, proceed to stage 0, remove the workpiece W with the hand 25a of the robot device 25, and then remove the workpiece W with the hand 25a of the robot device 25.Furthermore, in the stage 0, the robot device 25 removes the second workpiece Attach the workpiece to chunk 7, measure and judge the runout at the 0th stage and 0th stage as before, and if the first time is NG, the 0th stage
Re-chucking the workpiece in the 0th stage and 0th stage again.
Run-out measurement and run-out determination are performed in the stage, and if the second time is NG, the process proceeds to the 0th stage, where it is determined whether two workpieces are NG in succession. In this case, two workpieces are consecutively
Since it is G, an alarm is generated, the NC machine tool is stopped, and the abnormality is inspected. In the 0th stage (A wax-Amin
)≦2, it is not NG but OK, so the process proceeds to the 0th stage and predetermined processing is performed. Therefore, unless two consecutive workpieces to be machined fail, the predetermined machining is automatically performed continuously.

〔効果〕〔effect〕

本発明はNC工作機械でワークを加工する際、ワークを
ワークフィーダから供給して全自動で加工を遂行する為
にワークをチャックに取付けたワーク自体が正常かある
いはチャック取付は方が正常かどうか計測判定して素材
不良あるいはチャッキング不良を検出することが出来る
ようにしたから、不良品を出さずに人手を介入すること
なく全自動で所定の加工が出来る。従って、本発明の装
置を採用することによって無人化による加工がなされ、
延いては稼働率の向上と共に生産性が従来より数段と向
上する効果を奏する。
When machining a workpiece with an NC machine tool, the present invention examines whether the workpiece itself is normal or whether the chuck installation is normal in order to feed the workpiece from the workpiece feeder and perform the machining fully automatically. Since it is possible to detect material defects or chucking defects through measurement and judgment, it is possible to perform the specified processing fully automatically without producing defective products and without human intervention. Therefore, by employing the device of the present invention, unmanned processing can be performed.
As a result, it has the effect of improving the operating rate and productivity by several orders of magnitude compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す制御ブロック図である。第
2図は本発明の装置が通用されるターニングセンタの平
面図である。第3図(イ)〜(ニ)は本発明の基本的な
原理を説明する説明図である。 第4図は本発明の詳細な説明するフローチャートである
。 5・・・モータ      6・・・主軸7・・・チャ
ック     8・・・主軸モータ15、16・・・モ
ータ    19・・・刃物台20・・・割出しヘッド
   21・・・自動工具交換装置23・・・モータ 24・・・ワークフィーダ装置 25・・・ロボット装置30・・・CPU34・・・加
ニブログラム・メモリ 35・・・計測プログラム・メモリ 36・・・ロボット動作プログラム・メモリ48・・・
不良判別装置 49・・・計測値最小・最大値決定手段50・・・演算
手段     51・・・判定手段52・・・警報手段
     71・・・異常対応手段特許出願人  日立
$Ii機株式会社 代理人 弁理士  磯 野 道 造 84J−嘔 b−1 第4図
FIG. 1 is a control block diagram showing the configuration of the present invention. FIG. 2 is a plan view of a turning center in which the apparatus of the present invention is used. FIGS. 3(a) to 3(d) are explanatory diagrams for explaining the basic principle of the present invention. FIG. 4 is a flowchart illustrating the present invention in detail. 5... Motor 6... Spindle 7... Chuck 8... Spindle motor 15, 16... Motor 19... Turret post 20... Indexing head 21... Automatic tool changer 23 ...Motor 24...Work feeder device 25...Robot device 30...CPU 34...Cannibal program memory 35...Measurement program memory 36...Robot operation program memory 48...
Defective determination device 49...Measurement value minimum/maximum value determination means 50...Calculation means 51...Judgment means 52...Alarm means 71...Abnormality response means Patent applicant Hitachi $Ii Machine Co., Ltd. Agent Person Patent Attorney Michizo Isono 84J-Ob-1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 主軸と、主軸先端に設けられワークを掴むチャックと、
前記主軸用に設けられた加工又は計測用の速度制御手段
及び回転角度位置制御手段とを有し、前記主軸と刃物台
の相対移動によってワークを加工する自動工作機械にお
いて、前記ワークの振れを計測する計測装置と、前記ワ
ークを前記チャックに供給するロボット装置と、前記計
測装置の測定値の最小値又は最大値を決定するための計
測値最小・最大値決定手段及び前記最大値と最小値の差
を計算する演算手段及び該演算手段の演算結果と予めメ
モリに記憶した公差設定値を比較し正常、異常の判別を
する判定手段及び異常をカウントし異常のカウント数に
よりワークの掴み直し、不良ワークの取外し、次ワーク
の供給、自動工作機械の停止、警報出力の少なくとも一
つ以上をロボット装置や自動工作機械に指令する異常対
応手段を有する不良判別装置とから成ることを特徴とす
る素材不良、チャッキング不良の自動計測判別装置。
A main spindle, a chuck provided at the tip of the main spindle that grips the workpiece,
In an automatic machine tool that has speed control means and rotation angle position control means for machining or measurement provided for the main spindle, and that processes a workpiece by relative movement of the main spindle and the tool post, the runout of the workpiece is measured. a robot device for feeding the workpiece to the chuck; a measurement value minimum/maximum value determining means for determining the minimum value or maximum value of the measurement value of the measurement device; A calculating means for calculating the difference, a determining means for comparing the calculation result of the calculating means with a tolerance setting value stored in memory in advance and determining whether it is normal or abnormal, and a determining means for counting abnormalities and re-gripping the workpiece based on the number of abnormalities. Material defects characterized by comprising a defect determination device having an abnormality response means for instructing a robot device or an automatic machine tool to perform at least one of the following: removing a workpiece, supplying the next workpiece, stopping an automatic machine tool, and outputting an alarm. , an automatic measurement and determination device for chucking defects.
JP61174271A 1986-07-24 1986-07-24 Automatic measurement/judgment device for defective material and improper chucking Granted JPS6334051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174271A JPS6334051A (en) 1986-07-24 1986-07-24 Automatic measurement/judgment device for defective material and improper chucking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174271A JPS6334051A (en) 1986-07-24 1986-07-24 Automatic measurement/judgment device for defective material and improper chucking

Publications (2)

Publication Number Publication Date
JPS6334051A true JPS6334051A (en) 1988-02-13
JPH0526628B2 JPH0526628B2 (en) 1993-04-16

Family

ID=15975733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174271A Granted JPS6334051A (en) 1986-07-24 1986-07-24 Automatic measurement/judgment device for defective material and improper chucking

Country Status (1)

Country Link
JP (1) JPS6334051A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105859A (en) * 1986-10-22 1988-05-11 Okuma Mach Works Ltd Control method for machine tool with loading device
JPH0344089U (en) * 1989-09-08 1991-04-24
JPH03190601A (en) * 1989-12-15 1991-08-20 Fanuc Ltd Work changing method
EP0648358A1 (en) * 1992-05-18 1995-04-19 Sensor Adaptive Machines Incorporated Further methods and apparatus for control of lathes and other machine tools
WO2020209134A1 (en) * 2019-04-11 2020-10-15 シチズン時計株式会社 Machine tool, and detecting method
JPWO2020032237A1 (en) * 2018-08-10 2020-12-17 豊和工業株式会社 Chuck grip accuracy confirmation method, chuck claw replacement method and chuck grip accuracy confirmation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5863857B2 (en) 2014-03-07 2016-02-17 ファナック株式会社 Robot controller that controls the robot that supplies and discharges workpieces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027181A (en) * 1973-07-14 1975-03-20
JPS5314455U (en) * 1976-07-16 1978-02-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027181A (en) * 1973-07-14 1975-03-20
JPS5314455U (en) * 1976-07-16 1978-02-06

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105859A (en) * 1986-10-22 1988-05-11 Okuma Mach Works Ltd Control method for machine tool with loading device
JPH0344089U (en) * 1989-09-08 1991-04-24
JPH03190601A (en) * 1989-12-15 1991-08-20 Fanuc Ltd Work changing method
EP0648358A1 (en) * 1992-05-18 1995-04-19 Sensor Adaptive Machines Incorporated Further methods and apparatus for control of lathes and other machine tools
EP0648358A4 (en) * 1992-05-18 1995-12-13 Sensor Adaptive Mach Further methods and apparatus for control of lathes and other machine tools.
JPWO2020032237A1 (en) * 2018-08-10 2020-12-17 豊和工業株式会社 Chuck grip accuracy confirmation method, chuck claw replacement method and chuck grip accuracy confirmation device
US11794301B2 (en) 2018-08-10 2023-10-24 Howa Machinery, Ltd. Chuck grip accuracy checking method, chuck claw exchanging method, and chuck grip accuracy checking device
WO2020209134A1 (en) * 2019-04-11 2020-10-15 シチズン時計株式会社 Machine tool, and detecting method
CN113543912A (en) * 2019-04-11 2021-10-22 西铁城时计株式会社 Machine tool and sensing method
CN113543912B (en) * 2019-04-11 2023-12-26 西铁城时计株式会社 Machine tool and sensing method

Also Published As

Publication number Publication date
JPH0526628B2 (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US6937942B2 (en) Method and apparatus of detecting tool abnormality in a machine tool
EP0106253B1 (en) Numerical control machine tool with an emergency origin returning function
US20220244701A1 (en) Control Device for Use on a Numerically Controlled Machine Tool, and Machine Tool Comprising a Control Device
JPS6334051A (en) Automatic measurement/judgment device for defective material and improper chucking
JP4049911B2 (en) Method and apparatus for monitoring and controlling tailstock of machine tool
JP4947534B2 (en) Machine tool and method of operating machine tool
JP3171298B2 (en) Numerically controlled machine tools
EP0593758B1 (en) Work exchange system
JP3357083B2 (en) Automatic processing equipment
JPH04160605A (en) Collision preventing device for automatic operating machine tool
JP4253054B2 (en) NC lathe work machining method
SU774918A1 (en) Flow line production process control method
JP2882534B2 (en) Turning center tool calling device Built-in numerical controller
KR101892393B1 (en) Automatic tool changing apparatus and method
JP2001030143A (en) Automatic measuring method and device for ball end mill tool
JP2668618B2 (en) Dimensional change tendency tracking type automatic measurement correction method
JPH0711841Y2 (en) Positioning control device by monitoring the load of the feed motor
JPH06315840A (en) Positioning confirming device for tool magazine
JPS6322224A (en) Data preparing device for continuous electric discharge machining
JP2693022B2 (en) NC machine tool control method
JPH0683421A (en) Inspection device for machine tool
JP2892671B2 (en) Unmanned operation control device for machine tools
JPH0691527A (en) Grinding device
JPH05138505A (en) Automatic processing system
JPH11198003A (en) Shape measuring instrument for work after machining