JPS6332827B2 - - Google Patents

Info

Publication number
JPS6332827B2
JPS6332827B2 JP58212655A JP21265583A JPS6332827B2 JP S6332827 B2 JPS6332827 B2 JP S6332827B2 JP 58212655 A JP58212655 A JP 58212655A JP 21265583 A JP21265583 A JP 21265583A JP S6332827 B2 JPS6332827 B2 JP S6332827B2
Authority
JP
Japan
Prior art keywords
resin
epoxy resin
melting point
resin powder
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58212655A
Other languages
Japanese (ja)
Other versions
JPS60104167A (en
Inventor
Norio Kawamoto
Kyoshi Saito
Kazuhiro Tajiri
Juzo Akata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP21265583A priority Critical patent/JPS60104167A/en
Publication of JPS60104167A publication Critical patent/JPS60104167A/en
Publication of JPS6332827B2 publication Critical patent/JPS6332827B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は保存性および硬化性の良好なエポキ
シ樹脂粉体塗料とその製造法に関する。 従来、エポキシ樹脂粉体塗料は、省資源、省エ
ネルギーの観点から、またこれより形成される塗
膜がすぐれた絶縁性、防食性を示すことから、
種々の用途に用いられてきている。さらに最近で
は、塗装作業性を改善するために、硬化促進剤を
用いた速硬化タイプのエポキシ樹脂粉体塗料が出
現してきている。 ところが、上記速硬化タイプの粉体塗料は一般
に粉体状態での保存性が悪く実用性に乏しかつ
た。また速硬化性と保存性とのバランスをとる目
的で硬化促進剤の量を調整する方法があるが、元
来硬化促進剤の添加量は少量のため、上記バラン
スがとりにくく、品質的に安定しない問題があつ
た。さらに別の方法として硬化促進剤の室温付近
での活性度を低下させる目的で、硬化促進剤の活
性点部分を化学的にトラツプする方法が試みられ
ているが、この場合高温での反応時に硬化促進剤
の活性度の再生が充分でなくなるという傾向があ
り、そのために期待する速硬化性が得られないと
いう欠点を有していた。 この発明者らは、上記観点から鋭意検討した結
果、硬化促進剤をエポキシ樹脂およびその硬化剤
に混合するに当たつて、予め上記エポキシ樹脂よ
り高融点の樹脂と混合して粉末化しこれをエポキ
シ樹脂とその硬化剤に溶融混合ないし粉末混合
(ドライブレンド)したときには、保存性と硬化
性とに共にすぐれた速硬化タイプの粉体塗料が得
られることを知り、この発明を完成するに至つた
ものである。 すなわち、この発明は、つぎのa〜c成分; a エポキシ樹脂からなる主剤 b フエノール性水酸基ないし酸無水物基を有す
る化合物からなる硬化剤 c 塩基性化合物からなる硬化促進剤と上記エポ
キシ樹脂からなる主剤より高融点の樹脂とを含
む樹脂粉末 を含有することを特徴とするエポキシ樹脂粉体塗
料に係る第1の発明と、上記粉体塗料の製造方法
に係る第2の発明とからなる。 この発明のエポキシ樹脂粉体塗料は、エポキシ
樹脂からなる主剤(以下、エポキシ樹脂主剤とい
う)およびその硬化剤に混合されてなる硬化促進
剤が上記主剤より高融点の樹脂で被覆された状態
にあるため、粉体状態での保存性に非常にすぐれ
ているとともに、使用時溶融硬化させる際には上
記高融点樹脂による被覆が解除されてエポキシ樹
脂主剤および硬化剤との急激な接触により良好な
硬化性を得ることができる。 また、上記高融点樹脂の使用により、エポキシ
樹脂主剤および硬化剤に対する硬化促進剤の相対
量を保存性の低下をきたすことなく増大でき、し
かもエポキシ樹脂主剤および硬化剤に対して硬化
促進剤を増量したかたちで混合できるためにこの
増量効果によつて硬化促進剤の均一分散性に非常
に好結果を得ることができ、これら働きによつて
前記良好な硬化性がさらに一段と助長される。 このように、この発明によれば、粉体状態での
保存性と使用時の硬化性とに共にすぐれた速硬化
タイプのエポキシ樹脂粉体塗料を提供できるとい
う卓越した効果が得られる。 この発明において使用するa成分のエポキシ樹
脂主剤としては、従来公知のものがいずれも使用
可能である。一方、b成分の硬化剤としてはフエ
ノール樹脂、クレゾール樹脂、ビスフエノール
A、変性ビスフエノールA、ハイドロキノンなど
のフエノール性水酸基を有する化合物または無水
ピロメリツト酸、無水ベンゾフエノンテトラカル
ボン酸、無水ブタンテトラカルボン酸、無水トリ
メリツト酸、無水テトラヒドロフタル酸、無水フ
タル酸などの酸無水物基を有する化合物が用いら
れる。この硬化剤としては常温で固形のものが好
ましい。 エポキシ樹脂主剤と硬化剤との使用割合は、エ
ポキシ樹脂1当量に対して硬化剤が通常0.6〜1.3
当量となる割合、時に0.7〜1.3当量となる割合と
するのがよい。 これらエポキシ樹脂主剤と硬化剤とに混合され
るc成分としての前記樹脂粉末は、硬化促進剤と
上記エポキシ樹脂主剤より高融点の樹脂を含むも
のであるが、ここで硬化促進剤としては前記硬化
剤との組み合わせによつて速硬化タイプの粉体塗
料とするためにイミダゾール化合物や第三級アミ
ン化合物の如き塩基性化合物が用いられる。 エポキシ樹脂主剤より高融点の樹脂としては、
エポキシ樹脂主剤の融点より10℃以上、好適には
15℃以上、通常15〜40℃高い融点を有するもので
あればよい。この高融点樹脂の融点の範囲として
は60〜140℃、好ましくは70〜120℃である。 このような高融点樹脂として使用可能な代表的
なものとしては、エポキシ樹脂、エチレン―酢酸
ビニル共重合体およびポリエステル樹脂を挙げる
ことができる。 上記硬化促進剤と高融点樹脂とを含む樹脂粉末
は、両成分を溶融混合し冷却後粉砕してつくられ
るが、粒子径としては60メツシユパス、好適には
80メツシユパスであるのがよい。粒子径が大きす
ぎてはエポキシ樹脂主剤および硬化剤に対する均
一分散性や硬化性に問題を生じるおそれがあるた
め、好ましくない。 この樹脂粉末のエポキシ樹脂主剤および硬化剤
に対する配合割合は、エポキシ樹脂主剤と硬化剤
との合計量50〜92重量%、好適には70〜90重量%
に対して、樹脂粉末中の硬化促進剤と高融点樹脂
との合計量が50〜8重量%、好適には30〜10重量
%であるのがよい。 またこのときの硬化促進剤量としては、これと
高融点樹脂との合計量中0.5〜20重量%、好適に
は0.7〜15重量%を占める割合、つまりはエポキ
シ樹脂主剤、硬化剤、高融点樹脂および硬化促進
剤からなる四成分中に占める硬化促進剤の割合が
0.05〜10重量%、好適には0.1〜5重量%となる
割合とされているのがよい。 樹脂粉末および硬化促進剤の使用量が過少ない
し過多となると、いずれも保存性と速硬化性との
両立が難しくなり、また樹脂粉末が過多となると
エポキシ樹脂本来の特性が損なわれる結果とな
り、好ましくない。 つぎに、上記この発明のエポキシ樹脂粉体塗料
の製造法につき説明する。この製造法には、一般
の粉体塗料の場合と同様のふたつの方法がある。
ひとつは、エポキシ樹脂主剤と硬化剤とを含む樹
脂粉末を常法にしたがつて調製しこれに硬化促進
剤とエポキシ樹脂主剤より高融点の樹脂とを含む
前記樹脂粉末を粉末混合つまりドライブレンドす
る方法である。この方法自体は、ドルイブレンド
するべき硬化促進剤が高融点樹脂で被覆されてい
ること以外は、従来と特に異ならない。 上記ドライブレンドにより得られるこの発明の
エポキシ樹脂粉体塗料は、エポキシ樹脂主剤系粉
末と硬化促進剤系粉末とが均一に分散混合されて
なるものであり、エポキシ樹脂主剤系粉末の粒子
径としては、硬化促進剤系粉末の場合と同様に60
メツシユパス、好適には80メツシユパスであるの
がよい。 この発明のエポキシ樹脂粉体塗料を得る他のひ
とつは、エポキシ樹脂主剤および硬化剤に硬化促
進剤とエポキシ樹脂主剤より高融点の樹脂とを含
む樹脂粉末を配合したのち溶融混合し、冷却後粉
砕して粉末化する方法である。溶融混合法自体は
公知であるが、上記溶融混合に際しては、上記高
融点樹脂の融点より低い温度下で行つて溶融混合
後も上記粉末の状態を維持させる必要があり、こ
の点において公知の溶融混合法とは全く異なる方
法といえる。 すなわち、上記溶融混合を、エポキシ樹脂主剤
の融点以上の温度でかつ高融点樹脂粉末の融点よ
り10℃、好適には15℃低い温度下で行うことによ
り、溶融混合時の硬化促進剤とエポキシ樹脂主剤
および硬化剤との直接の接触をさけ、以つて保存
性および硬化性の良好なエポキシ樹脂粉体塗料の
製造を可能ならしめるものである。 上記溶融混合法で得られるこの発明のエポキシ
樹脂粉体塗料は、エポキシ樹脂主剤および硬化剤
の内部に硬化促進剤と上記主剤より高融点の樹脂
とを含む樹脂粉末が均一に分散混合された如き構
造を有する一般に40メツシユパス、好適には60メ
ツシユパスの粒子径を有するものである。ここで
硬化促進剤はエポキシ樹脂主剤系に取り込まれた
かたちとなつているが、この場合でも硬化促進剤
とエポキシ樹脂主剤および硬化剤との直接の接触
は高融点樹脂によつて防がれているため、前記ド
ライブレンドの場合と同様に、やはり保存性およ
び硬化性とに共にすぐれたものとなる。 なお、この発明のエポキシ樹脂粉体塗料には、
前述した各成分つまりエポキシ樹脂主剤、硬化
剤、硬化促進剤およびエポキシ樹脂主剤より高融
点の樹脂のほか、必要に応じて顔料、充てん剤な
どの公知の各種添加剤を配合しても差し支えな
い。これら添加剤はエポキシ樹脂主剤および硬化
剤からなる系に配合してもよいし、また硬化促進
剤とエポキシ樹脂主剤により高融点の樹脂とを含
む樹脂粉末中に配合してもよい。 この発明のエポキシ樹脂粉体塗料を用いて塗膜
形成するには、被塗物上に公知の手段で粉末塗工
したのち、エポキシ樹脂主剤およびこの主剤より
高融点の樹脂成分が共に溶融軟化する温度、一般
には150〜240℃の温度で、0〜15分間加熱して硬
化させればよい。形成される通常0.1〜3mm程度
の厚みを有する硬化塗膜は良好な硬化性によつて
絶縁性、防食性、耐熱性などのエポキシ樹脂本来
のすぐれた性能を発揮する。 以下に、この発明の実施例を記載してより具体
的に説明する。 実施例 1 エポキシ当量930のビスフエノールA型エポキ
シ樹脂(融点97℃)98.5gと2―ウンデシルイミ
ダゾール1.5gとを2軸押出機により溶融混練し、
冷却後粉砕して80メツシユパスの樹脂粉末Aを得
た。 この樹脂粉末A20g、エポキシ当量630のビス
フエノールA型エポキシ樹脂(融点81℃)69.6g
および水酸基当量120g/当量のノボラツクフエ
ノール樹脂10.4gを、2軸押出機で82℃下で溶融
混合し、冷却後粉砕して80メツシユパスのエポキ
シ樹脂粉体塗料とした。 比較例 1 実施例1で用いたエポキシ当量630のビスフエ
ノールA型エポキシ樹脂86.7g、実施例1で用い
た水酸基当量120g/当量のノボラツクフエノー
ル樹脂13gおよび2―ウンデシルイミダゾール
0.3gを、2軸押出機で溶融混合し、冷却後粉砕
して80メツシユパスのエポキシ樹脂粉体塗料とし
た。 実施例 2 実施例1で用いたエポキシ当量630のビスフエ
ノールA型エポキシ樹脂69.6gと水酸基当量120
g/当量のノボラツクフエノール樹脂10.4gとを
溶融混合し、冷却後粉砕して80メツシユパスの樹
脂粉末Bを得た。この樹脂粉末B80gに実施例1
で得た2―ウンデシルイミダゾールを含む樹脂粉
末A20gをドライブレンドしてエポキシ樹脂粉体
塗料とした。 比較例 2 実施例1で用いたエポキシ当量630のビスフエ
ノールA型エポキシ樹脂86.7gと実施例1で用い
た水酸基当量120g/当量のノボラツクフエノー
ル樹脂13gとを溶融混合し、冷却後粉砕して80メ
ツシユパスの樹脂粉末Cを得た。この樹脂粉末
C99.7gに2―ウンデシルイミダゾール0.3gをド
ライブレンドしてエポキシ樹脂粉体塗料とした。 実施例 3 無水トリメツト酸0.1モルおよびイソフタル酸
0.5モルと過剰量のエチレングリコールとから得
られる酸価0.3ミリ当量/g,水酸価1.0ミリ当
量/g,融点100℃のポリエステル樹脂90gと、
トリエチレンジアミン10gとを、2軸押出機によ
り溶融混練し、冷却後粉砕して60メツシユパスの
樹脂粉末Dを得た。 この樹脂粉末D30g、実施例1で用いたエポキ
シ当量630のビスフエノールA型エポキシ樹脂
64.4gおよび無水ベンゾフエノンテトラカルボン
酸5.6gを、2軸押出機で85℃下で溶融混合し、
冷却後粉砕して60メツシユパスのエポキシ樹脂粉
体塗料とした。 比較例 3 実施例1で用いたエポキシ当量630のビスフエ
ノールA型エポキシ樹脂89.2g、無水ベンゾフエ
ノンテトラカルボン酸7.8gおよびトリエチレン
ジアミン3gを、2軸押出機で溶融混合し、冷却
後粉砕して60メツシユパスのエポキシ樹脂粉体塗
料とした。 実施例 4 実施例1で用いたエポキシ当量630のビスフエ
ノールA型エポキシ樹脂64.4gと無水ベンゾフエ
ノンテトラカルボン酸5.6gとを溶融混合し、冷
却後粉砕して80メツシユパスの樹脂粉末Eを得
た。この樹脂粉末E70gに実施例3で得たトリエ
チレンジアミンを含む樹脂粉末D30gをドライブ
レンドしてエポキシ樹脂粉体塗料とした。 比較例 4 実施例1で用いたエポキシ当量630のビスフエ
ノールA型エポキシ樹脂89.2gと無水ベンゾフエ
ノンテトラカルボン酸7.8gとを溶融混合し、冷
却後粉砕して80メツシユパスの樹脂粉末Fを得
た。この樹脂粉末F97gにトリエチレンジアミン
3gを常温下で混合してエポキシ樹脂粉体塗料と
した。 上記実施例1〜4および比較例1〜4の各塗料
のゲル化時間、保存性および硬化性を調べた結果
は、後記の第1表に示されるとおりであつた。な
お、各特性は以下の如く測定した。 〈ゲル化時間〉 熱板法により150℃および200℃でのゲル化時間
を測定した。 〈保存性〉 塗料を30℃で3ケ月間保存したのち、150℃に
加熱した被塗物上に約0.3mm厚の塗膜を形成し、
この塗膜の平滑性が良好である場合を(〇)、外
観が不良である場合を(×)と判断した。 〈硬化性〉 塗料を被塗物上に加熱塗工して150℃で30分間
硬化させて約0.3mm厚の塗膜を形成し、この塗膜
表面をアセトンを含浸させた布でこすつたとき
に、表面光沢に変化が認められない場合を(〇)、
光沢が著しく減少する場合を(×)とした。
The present invention relates to an epoxy resin powder coating with good storage stability and curability, and a method for producing the same. Conventionally, epoxy resin powder coatings have been used from the viewpoint of saving resources and energy, and because the coatings formed from them exhibit excellent insulation and corrosion resistance.
It has been used for various purposes. Furthermore, recently, fast-curing type epoxy resin powder coatings using curing accelerators have appeared in order to improve painting workability. However, the above-mentioned fast-curing type powder coatings generally have poor storage stability in powder form and are of little practical use. In addition, there is a method of adjusting the amount of curing accelerator in order to balance fast curing and storage stability, but since the amount of curing accelerator added is originally small, it is difficult to achieve the above balance, and the quality is stable. I had a problem that didn't work. Another method has been attempted in which the active sites of the curing accelerator are chemically trapped in order to reduce the activity of the curing accelerator near room temperature. There is a tendency that the activity of the accelerator is not sufficiently regenerated, so that the desired rapid curing property cannot be obtained. As a result of intensive studies from the above viewpoint, the inventors discovered that when mixing a curing accelerator into an epoxy resin and its curing agent, they first mixed it with a resin having a higher melting point than the epoxy resin and pulverized it into an epoxy resin. He discovered that when a resin and its curing agent are melt-mixed or powder-blended (dry blended), a fast-curing powder coating with excellent storage stability and curing properties can be obtained, which led to the completion of this invention. It is something. That is, this invention consists of the following components a to c: a. A main agent made of an epoxy resin. b. A curing agent made of a compound having a phenolic hydroxyl group or an acid anhydride group. A curing accelerator made of a basic compound and the above-mentioned epoxy resin. The invention consists of a first invention relating to an epoxy resin powder coating characterized by containing a resin powder containing a resin having a higher melting point than a base resin, and a second invention relating to a method for manufacturing the powder coating. The epoxy resin powder coating of the present invention has a base resin made of epoxy resin (hereinafter referred to as epoxy resin base) and a curing accelerator mixed with the curing agent, which is coated with a resin having a higher melting point than the base resin. Therefore, it has excellent storage stability in powder form, and when melted and cured during use, the coating with the high melting point resin is released and rapid contact with the epoxy resin base and curing agent results in good curing. You can get sex. In addition, by using the above-mentioned high melting point resin, the relative amount of curing accelerator to the epoxy resin base resin and curing agent can be increased without deteriorating storage stability, and the amount of curing accelerator can be increased relative to the epoxy resin base resin and curing agent. Since the curing accelerator can be mixed in a uniform manner, this effect of increasing the amount of the curing accelerator can produce very good results in uniform dispersion of the curing accelerator, and these functions further promote the above-mentioned good curing properties. As described above, the present invention has the outstanding effect of providing a fast-curing type epoxy resin powder coating that has excellent storage stability in powder form and curability during use. As the epoxy resin base agent for component a used in this invention, any conventionally known epoxy resin can be used. On the other hand, the curing agent for component b is a compound having a phenolic hydroxyl group such as phenol resin, cresol resin, bisphenol A, modified bisphenol A, hydroquinone, or pyromellitic anhydride, benzophenonetetracarboxylic anhydride, butanetetracarboxylic anhydride. An acid, a compound having an acid anhydride group such as trimellitic anhydride, tetrahydrophthalic anhydride, and phthalic anhydride is used. This curing agent is preferably one that is solid at room temperature. The ratio of the epoxy resin base resin to the curing agent is usually 0.6 to 1.3 per equivalent of the epoxy resin.
It is preferable to set the ratio to be an equivalent, sometimes 0.7 to 1.3 equivalents. The resin powder as the component c mixed with the epoxy resin base material and the curing agent contains a curing accelerator and a resin having a higher melting point than the epoxy resin base material. A basic compound such as an imidazole compound or a tertiary amine compound is used in order to obtain a fast-curing powder coating by a combination of the following. As a resin with a higher melting point than the epoxy resin base resin,
10℃ or more than the melting point of the epoxy resin base material, preferably
Any material having a melting point higher than 15°C, usually 15 to 40°C higher may be used. The melting point range of this high melting point resin is 60 to 140°C, preferably 70 to 120°C. Typical examples that can be used as such high melting point resins include epoxy resins, ethylene-vinyl acetate copolymers, and polyester resins. The resin powder containing the hardening accelerator and high melting point resin is produced by melt-mixing both components, cooling and pulverizing, and the particle size is preferably 60 mesh passes.
It is good that it is 80 metsushiyu pass. If the particle size is too large, it is not preferable because it may cause problems in uniform dispersibility and curability with respect to the epoxy resin main ingredient and curing agent. The blending ratio of this resin powder to the epoxy resin base resin and curing agent is 50 to 92% by weight, preferably 70 to 90% by weight of the total amount of the epoxy resin base and curing agent.
In contrast, the total amount of the curing accelerator and high melting point resin in the resin powder is preferably 50 to 8% by weight, preferably 30 to 10% by weight. In addition, the amount of the curing accelerator at this time is 0.5 to 20% by weight, preferably 0.7 to 15% by weight of the total amount of this and the high melting point resin. The proportion of curing accelerator in the four components consisting of resin and curing accelerator is
The proportion is preferably 0.05 to 10% by weight, preferably 0.1 to 5% by weight. If the amount of resin powder and curing accelerator used is too little or too much, it will be difficult to achieve both storage stability and quick curing properties, and if too much resin powder is used, the original properties of the epoxy resin will be impaired. Undesirable. Next, a method for producing the epoxy resin powder coating of the present invention will be explained. There are two manufacturing methods similar to those used for general powder coatings.
One method is to prepare a resin powder containing an epoxy resin base resin and a curing agent according to a conventional method, and then powder-mix or dry blend the resin powder containing a curing accelerator and a resin with a higher melting point than the epoxy resin base resin. It's a method. This method itself is not particularly different from conventional methods, except that the curing accelerator to be Druid blended is coated with a high melting point resin. The epoxy resin powder coating of the present invention obtained by the above dry blending is made by uniformly dispersing and mixing the epoxy resin base powder and the curing accelerator powder, and the particle size of the epoxy resin base powder is , 60 as in the case of hardening accelerator powder.
The mesh pass is preferably 80 mesh passes. Another way to obtain the epoxy resin powder coating of the present invention is to blend resin powder containing a curing accelerator and a resin with a higher melting point than the epoxy resin base into the epoxy resin base and curing agent, then melt and mix, cool, and then crush. This method involves powdering. Although the melt mixing method itself is known, it is necessary to carry out the melt mixing at a temperature lower than the melting point of the high melting point resin to maintain the powder state even after melt mixing. This method can be said to be completely different from the mixed method. That is, by performing the above melt mixing at a temperature higher than the melting point of the epoxy resin main ingredient and 10°C, preferably 15°C lower than the melting point of the high melting point resin powder, the curing accelerator and epoxy resin during melt mixing are Direct contact with the base agent and curing agent is avoided, thereby making it possible to produce an epoxy resin powder coating with good storage stability and curing properties. The epoxy resin powder coating of the present invention obtained by the above-mentioned melt mixing method is such that resin powder containing a curing accelerator and a resin having a higher melting point than the above-mentioned base resin is uniformly dispersed and mixed inside the epoxy resin base and curing agent. Generally, the particles have a particle size of 40 mesh passes, preferably 60 mesh passes. Here, the curing accelerator is incorporated into the epoxy resin base system, but even in this case, direct contact between the curing accelerator and the epoxy resin base and curing agent is prevented by the high melting point resin. Therefore, as in the case of the dry blend, it also has excellent storage stability and curing properties. In addition, the epoxy resin powder coating of this invention includes:
In addition to the above-mentioned components, ie, the epoxy resin base, curing agent, curing accelerator, and resin with a higher melting point than the epoxy resin base, various known additives such as pigments and fillers may be blended as necessary. These additives may be blended into a system consisting of an epoxy resin base and a curing agent, or may be blended into a resin powder containing a curing accelerator and a high melting point resin formed by an epoxy resin base. In order to form a coating film using the epoxy resin powder coating of this invention, the powder is coated on the object to be coated by a known method, and then the epoxy resin base and the resin component with a higher melting point than the base are both melted and softened. It may be cured by heating at a temperature, generally 150 to 240°C, for 0 to 15 minutes. The formed cured coating film, which usually has a thickness of about 0.1 to 3 mm, exhibits the excellent properties inherent to epoxy resins, such as insulation, corrosion resistance, and heat resistance, due to its good curing properties. EXAMPLES Below, examples of the present invention will be described in more detail. Example 1 98.5 g of bisphenol A type epoxy resin (melting point 97°C) with an epoxy equivalent of 930 and 1.5 g of 2-undecylimidazole were melt-kneaded using a twin-screw extruder.
After cooling, it was pulverized to obtain 80 mesh passes of resin powder A. 20g of this resin powder A, 69.6g of bisphenol A type epoxy resin with an epoxy equivalent of 630 (melting point 81℃)
and 10.4 g of a novolac phenol resin having a hydroxyl equivalent of 120 g/equivalent were melt-mixed at 82° C. in a twin-screw extruder, cooled and pulverized to obtain an 80 mesh pass epoxy resin powder coating. Comparative Example 1 86.7 g of the bisphenol A type epoxy resin with an epoxy equivalent of 630 used in Example 1, 13 g of the novolac phenol resin with a hydroxyl equivalent of 120 g/equivalent used in Example 1, and 2-undecylimidazole
0.3 g was melt-mixed in a twin-screw extruder, cooled and pulverized to obtain an 80 mesh pass epoxy resin powder coating. Example 2 69.6 g of the bisphenol A type epoxy resin used in Example 1 with an epoxy equivalent of 630 and a hydroxyl equivalent of 120
g/equivalent of novolac phenolic resin (10.4 g), cooled and pulverized to obtain resin powder B of 80 mesh passes. Example 1 to 80g of this resin powder B
20 g of the resin powder A containing 2-undecylimidazole obtained in step 1 was dry blended to obtain an epoxy resin powder coating. Comparative Example 2 86.7 g of the bisphenol A type epoxy resin used in Example 1 with an epoxy equivalent of 630 and 13 g of the novolac phenol resin with a hydroxyl equivalent of 120 g/equivalent used in Example 1 were melt-mixed, cooled, and crushed. Resin powder C of 80 mesh passes was obtained. This resin powder
An epoxy resin powder coating was prepared by dry blending 99.7 g of C and 0.3 g of 2-undecyl imidazole. Example 3 0.1 mol of trimethic anhydride and isophthalic acid
90 g of a polyester resin with an acid value of 0.3 meq/g, a hydroxyl value of 1.0 meq/g, and a melting point of 100°C obtained from 0.5 mol and an excess amount of ethylene glycol;
10 g of triethylenediamine were melt-kneaded using a twin-screw extruder, cooled, and pulverized to obtain 60 mesh passes of resin powder D. 30 g of this resin powder D, the bisphenol A type epoxy resin with an epoxy equivalent of 630 used in Example 1.
64.4 g and 5.6 g of anhydrous benzophenonetetracarboxylic acid were melt-mixed at 85°C in a twin-screw extruder,
After cooling, it was crushed to obtain an epoxy resin powder coating of 60 mesh passes. Comparative Example 3 89.2 g of the bisphenol A type epoxy resin with an epoxy equivalent of 630 used in Example 1, 7.8 g of anhydrous benzophenonetetracarboxylic acid, and 3 g of triethylenediamine were melt-mixed in a twin-screw extruder, cooled, and pulverized. It was made into an epoxy resin powder coating with 60 mesh passes. Example 4 64.4 g of the bisphenol A type epoxy resin used in Example 1 with an epoxy equivalent weight of 630 and 5.6 g of anhydrous benzophenonetetracarboxylic acid were melt-mixed, cooled and pulverized to obtain resin powder E of 80 mesh pass. Ta. 70 g of this resin powder E was dry-blended with 30 g of the triethylenediamine-containing resin powder D obtained in Example 3 to obtain an epoxy resin powder coating. Comparative Example 4 89.2 g of the bisphenol A type epoxy resin with an epoxy equivalent of 630 used in Example 1 and 7.8 g of anhydrous benzophenonetetracarboxylic acid were melt-mixed, cooled and pulverized to obtain resin powder F of 80 mesh pass. Ta. 97 g of this resin powder F was mixed with 3 g of triethylene diamine at room temperature to obtain an epoxy resin powder coating. The gelation time, preservability and curing properties of each of the paints of Examples 1 to 4 and Comparative Examples 1 to 4 were examined, and the results were as shown in Table 1 below. In addition, each characteristic was measured as follows. <Gelification time> Gelation time was measured at 150°C and 200°C by the hot plate method. <Storability> After storing the paint at 30℃ for 3 months, a coating film of approximately 0.3mm thickness is formed on the object heated to 150℃.
The case where the smoothness of this coating film was good was judged as (◯), and the case where the appearance was poor was judged as (×). <Curability> When the paint is heated and applied onto the object to be coated and cured at 150°C for 30 minutes to form a coating film approximately 0.3mm thick, the coating surface is rubbed with a cloth impregnated with acetone. If no change in surface gloss is observed (〇),
A case where the gloss decreased significantly was marked as (x).

【表】【table】

【表】 なお、上記実施例1,2および比較例1,2の
各塗料はいずれも硬化促進剤としての2―ウンデ
シルイミダゾールを同一量用いたものであり、ま
た上記実施例3,4および比較例3,4の各塗料
はいずれも硬化促進剤としてのトリエチレンジア
ミンを同一量用いたものである。 上記結果からも明らかなように、従来の粉体塗
料では硬化性か保存性かのいずれかに劣つてお
り、特に硬化促進剤としてトリエチレンジアミン
を用いた比較例3,4中溶融混合法を採用した比
較例3では製造直後からほとんどフロー性がな
く、またドライブレンド法を採用した比較例4に
あつても1週間以上保存することは困難であつ
た。 これに対してこの発明の粉体塗料はいずれの場
合も良良好な保存性を有してかつ硬化性にもすぐ
れており、保存性と硬化性との両立を容易になし
うるものであつた。なお、実施例3,4において
樹脂粉末Dの使用量を5gに減らし、そのぶんエ
ポキシ樹脂主剤および硬化剤量を増加させたとき
には、硬化性がやや低下する傾向がみられた。こ
れより、樹脂粉末Dの使用量をあまりに少なくす
ることは、硬化促進剤であるトリエチレンジアミ
ンの絶対量不足をきたして好ましくないものであ
ることが判つた。
[Table] The paints of Examples 1 and 2 and Comparative Examples 1 and 2 used the same amount of 2-undecylimidazole as a curing accelerator, and the paints of Examples 3, 4 and Each of the paints of Comparative Examples 3 and 4 used the same amount of triethylenediamine as a curing accelerator. As is clear from the above results, conventional powder coatings are inferior in either curability or storage stability, and in particular, the melt mixing method in Comparative Examples 3 and 4 using triethylenediamine as a curing accelerator was adopted. In Comparative Example 3, there was almost no flowability immediately after production, and even in Comparative Example 4, which adopted the dry blending method, it was difficult to store for more than one week. In contrast, the powder coating of the present invention had good storage stability and excellent curability in all cases, and could easily achieve both storage stability and curability. . In Examples 3 and 4, when the amount of resin powder D used was reduced to 5 g and the amounts of the epoxy resin base and curing agent were increased accordingly, there was a tendency for the curability to decrease slightly. From this, it was found that reducing the amount of resin powder D too much is undesirable because it results in an absolute shortage of triethylenediamine, which is a curing accelerator.

Claims (1)

【特許請求の範囲】 1 つぎのa〜c成分; a エポキシ樹脂からなる主剤 b フエノール性水酸基ないし酸無水物基を有す
る化合物からなる硬化剤 c 塩基性化合物からなる硬化促進剤と上記エポ
キシ樹脂からなる主剤より高融点の樹脂とを含
む樹脂粉末 を含有することを特徴とするエポキシ樹脂粉体塗
料。 2 c成分における硬化促進剤としての塩基性化
合物がイミダゾール化合物ないし第三級アミン化
合物からなる特許請求の範囲第1項記載のエポキ
シ樹脂粉体塗料。 3 c成分におけるエポキシ樹脂からなる主剤よ
り高融点の樹脂がエポキシ樹脂、エチレン―酢酸
ビニル共重合体ないしその変性物およびポリエス
テル樹脂の中から選ばれた少なくとも1種である
特許請求の範囲第1項または第2項記載のエポキ
シ樹脂粉体塗料。 4 c成分としての塩基性化合物からなる硬化促
進剤とエポキシ樹脂からなる主剤より高融点の樹
脂とを含む樹脂粉末が60メツシユパスである特許
請求の範囲第1〜3項のいずれかに記載のエポキ
シ樹脂粉体塗料。 5 a成分としてのエポキシ樹脂からなる主剤と
b成分としてのフエノール性水酸基ないし酸無水
物基を有する化合物からなる硬化剤との合計量50
〜92重量%に対し、c成分における塩基性化合物
からなる硬化促進剤とエポキシ樹脂からなる主剤
より高融点の樹脂との合計量が50〜8重量%であ
る特許請求の範囲第1〜4項のいずれかに記載の
エポキシ樹脂粉体塗料。 6 c成分における塩基性化合物からなる硬化促
進剤がこれとエポキシ樹脂からなる主剤より高融
点の樹脂との合計量中0.5〜20重量%を占める特
許請求の範囲第5項記載のエポキシ樹脂粉体塗
料。 7 a)エポキシ樹脂からなる主剤およびb)フ
エノール性水酸基ないし酸無水物基を有する化合
物からなる硬化剤に、c)塩基性化合物からなる
硬化促進剤と上記エポキシ樹脂からなる主剤より
高融点の樹脂とを含む樹脂粉末を配合したのち、
エポキシ樹脂からなる主剤の融点以上でかつ上記
樹脂粉末の融点より低い温度下で溶融混合し、冷
却後粉砕することを特徴とするエポキシ樹脂粉体
塗料の製造法。
[Scope of Claims] 1 The following components a to c: a A main agent made of an epoxy resin b A curing agent made of a compound having a phenolic hydroxyl group or an acid anhydride group C A curing accelerator made of a basic compound and the above-mentioned epoxy resin An epoxy resin powder coating comprising a resin powder having a higher melting point than a base resin. 2. The epoxy resin powder coating according to claim 1, wherein the basic compound as a curing accelerator in component c comprises an imidazole compound or a tertiary amine compound. 3. Claim 1, wherein the resin having a higher melting point than the main resin consisting of an epoxy resin in component c is at least one selected from epoxy resins, ethylene-vinyl acetate copolymers or modified products thereof, and polyester resins. Or the epoxy resin powder coating described in item 2. 4. The epoxy according to any one of claims 1 to 3, wherein the resin powder containing a curing accelerator consisting of a basic compound as component c and a resin having a higher melting point than the main resin consisting of an epoxy resin has a 60 mesh pass. Resin powder paint. 5 The total amount of the main resin consisting of epoxy resin as component a and the curing agent consisting of a compound having a phenolic hydroxyl group or acid anhydride group as component b 50
Claims 1 to 4, wherein the total amount of the curing accelerator made of a basic compound in component c and the resin having a higher melting point than the main resin made of epoxy resin is 50 to 8% by weight relative to 92% by weight. The epoxy resin powder coating described in any of the above. 6. The epoxy resin powder according to claim 5, in which the curing accelerator made of a basic compound in component c accounts for 0.5 to 20% by weight of the total amount of this and the resin having a higher melting point than the main resin made of epoxy resin. paint. 7 a) A main resin consisting of an epoxy resin, b) a curing agent consisting of a compound having a phenolic hydroxyl group or an acid anhydride group, c) a curing accelerator consisting of a basic compound, and a resin having a higher melting point than the main resin consisting of the above epoxy resin. After blending resin powder containing
1. A method for producing an epoxy resin powder coating, which comprises melting and mixing at a temperature above the melting point of the main ingredient made of epoxy resin and below the melting point of the resin powder, cooling, and then pulverizing.
JP21265583A 1983-11-09 1983-11-09 Epoxy resin powder coating and its production Granted JPS60104167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21265583A JPS60104167A (en) 1983-11-09 1983-11-09 Epoxy resin powder coating and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21265583A JPS60104167A (en) 1983-11-09 1983-11-09 Epoxy resin powder coating and its production

Publications (2)

Publication Number Publication Date
JPS60104167A JPS60104167A (en) 1985-06-08
JPS6332827B2 true JPS6332827B2 (en) 1988-07-01

Family

ID=16626216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21265583A Granted JPS60104167A (en) 1983-11-09 1983-11-09 Epoxy resin powder coating and its production

Country Status (1)

Country Link
JP (1) JPS60104167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308312A (en) * 1988-06-03 1989-12-13 Shinko Electric Co Ltd Part straightening feeder in vibration part supplier
JPH024489A (en) * 1988-06-21 1990-01-09 Shinko Electric Co Ltd Vibration type parts feeder
JPH037124U (en) * 1989-06-09 1991-01-23

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662247B2 (en) * 1988-07-21 1997-10-08 日本ユピカ株式会社 Low temperature curing type resin composition for powder coating
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
WO2016054530A1 (en) 2014-10-03 2016-04-07 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108136A (en) * 1973-02-16 1974-10-15
JPS5046739A (en) * 1973-08-07 1975-04-25
JPS5163834A (en) * 1974-11-29 1976-06-02 Nitto Electric Ind Co HYOMENMOYOOKEISEISHIURUFUNMATSUTOSOYOJUSHISOSEIBUTSU
JPS56129267A (en) * 1980-03-14 1981-10-09 Kubota Ltd Powdered paint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108136A (en) * 1973-02-16 1974-10-15
JPS5046739A (en) * 1973-08-07 1975-04-25
JPS5163834A (en) * 1974-11-29 1976-06-02 Nitto Electric Ind Co HYOMENMOYOOKEISEISHIURUFUNMATSUTOSOYOJUSHISOSEIBUTSU
JPS56129267A (en) * 1980-03-14 1981-10-09 Kubota Ltd Powdered paint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308312A (en) * 1988-06-03 1989-12-13 Shinko Electric Co Ltd Part straightening feeder in vibration part supplier
JPH024489A (en) * 1988-06-21 1990-01-09 Shinko Electric Co Ltd Vibration type parts feeder
JPH037124U (en) * 1989-06-09 1991-01-23

Also Published As

Publication number Publication date
JPS60104167A (en) 1985-06-08

Similar Documents

Publication Publication Date Title
EP1302518B1 (en) Powder coating composition, method for the curing thereof, and articles derived therefrom
US4381334A (en) Zinc-rich powders
US3269974A (en) Powdered epoxy resin compositions
US20030194560A1 (en) Coating powders, methods of manufacture thereof, and articles formed therefrom
JPH02102274A (en) Epoxy resin powder coating material suitable for slot insulation
JPH04214771A (en) Resin composition for powder coating
JPS6332827B2 (en)
US3989679A (en) Epoxy resin powder composition
EP1361257B1 (en) Coating powders, methods of manufacture thereof, and articles formed therefrom
CN113930130A (en) Thermosetting powder coating
JP3511440B2 (en) Powder coating for cast iron pipe
JPH04161466A (en) Production of epoxy resin-based powder coating
JPH03122113A (en) Imidazole compound-containing curing agent composition, production thereof and thermosetting epoxy resin composition
US3384610A (en) Fluidized bed coatings containing powdered epoxy resin compositions and method for preparing the same
JPH07258384A (en) Epoxy resin composition
JPH04288317A (en) Powdered epoxy resin composition and production thereof
CA1120253A (en) Zinc-rich powders
JP2778183B2 (en) Epoxy powder coating composition
JPS60248725A (en) Epoxy resin powder composition
JPS61151274A (en) Powder coating
JPS6227111B2 (en)
JP2000068420A (en) Electronic component sealing material and manufacture thereof
JPH0240700B2 (en)
EP0855433B1 (en) Non-blooming polyester coating powder
JPS6086175A (en) Epoxy resin powder coating material composition