JPS6332319A - Electrical displacement transmitter - Google Patents

Electrical displacement transmitter

Info

Publication number
JPS6332319A
JPS6332319A JP13195487A JP13195487A JPS6332319A JP S6332319 A JPS6332319 A JP S6332319A JP 13195487 A JP13195487 A JP 13195487A JP 13195487 A JP13195487 A JP 13195487A JP S6332319 A JPS6332319 A JP S6332319A
Authority
JP
Japan
Prior art keywords
coil
coil spring
spring
frequency
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13195487A
Other languages
Japanese (ja)
Inventor
ゲオルク・ハウプナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS6332319A publication Critical patent/JPS6332319A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/001Constructional details of gauge heads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2066Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to a single other coil

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特許請求の範囲第1項記載の上位概念による電
気的変位量発信器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrical displacement transmitter according to the generic concept of claim 1.

公知の従来技術 ドイツ連邦共和国特許公開筒3303738(R183
53)号明細書から公知の電気式変位量発信器では、軟
磁性(気)コイルばねが振動回路のインダクタンスとし
て利用される。この振動回路の共振周波数はコイルばね
の長さ変化に依存して、調整操作器による圧縮または伸
長により変化される。そのさいこの周波数変化が調整操
作器の変位量の尺度を形成し、これが評価回路に供給さ
れる。しかしコイルばねの巻回数が比較的に少ないため
振動回路が非常に小さいインダクタンスしか有しないこ
とがこのような解決策の欠点である。それにより測定周
波数はメガヘルツ領域にあり、かなりの費用を掛けなけ
れば、キロヘルツ領域で機能するマイクロプロセッサと
共に通常の評価回路用に使用できるように改良できない
からである。そのさい妨害作用を回避するため、周波数
変換段への導線接続路は非常に短くしなければならない
。そのため変位量発信器の発振器はその周波数変換段と
共にできるかぎシコイルばねに密接して配置しなければ
ならなくなる。それにより、この種の変位量発信器の使
用範囲は制限される。
Known prior art Patent publication number 3303738 of the Federal Republic of Germany (R183
In the electric displacement transmitter known from No. 53), a soft magnetic (magnetic) coil spring is used as the inductance of the oscillating circuit. The resonant frequency of this oscillating circuit is varied by compression or expansion by the adjusting actuator, depending on the length change of the coil spring. This frequency change forms a measure of the displacement of the regulating actuator, which is fed to an evaluation circuit. However, a disadvantage of such a solution is that the oscillating circuit has only a very small inductance due to the relatively small number of turns of the coil spring. As a result, the measurement frequency is in the megahertz range and cannot be modified without considerable expense for use in conventional evaluation circuits with microprocessors operating in the kilohertz range. In order to avoid interference effects in this case, the conductor connections to the frequency conversion stage must be kept very short. Therefore, the oscillator of the displacement oscillator, together with its frequency conversion stage, must be placed in close proximity to the resulting hook-and-loop spring. This limits the range of use of this type of displacement transmitter.

発明の目的 本発明による目的ないし課題は、前記の欠点を回避した
上に、測定信号を形成するコイルばねを有する、構造が
簡単な変位量発信器を、当該変位量発信器の中で形成さ
れる測定信号が付加的手段なしに、変位量発信器から空
間的に分離された評価回路でも処理されるようだ構成す
ることにある。
OBJECTS OF THE INVENTION It is an object of the present invention to avoid the above-mentioned drawbacks and to provide a displacement transmitter with a simple structure, which has a coil spring for forming a measurement signal. The object of the present invention is to provide such a configuration that the measured signals can also be processed without additional measures in an evaluation circuit that is spatially separated from the displacement transmitter.

発明の構成 上記課題ないし目的は特許請求の範囲1記載の構成要件
により解決される。
Structure of the Invention The above-mentioned problems and objects are solved by the constituent features recited in claim 1.

特許請求の範囲従属項に記載された手段により特許請求
の範囲第1項に記載された構成要件の有利な変更および
改良が可能である。特に有利なのは、コイルばねの一端
を位置固定的に配置し、基準電位を印加し、他方の端を
コイルばねの軸方向に変位可能なないしは旋回可能な調
整操作器に直接または間接に接続することである。この
場合にはそれぞれたんに一つの接続線しか高周波コイル
用および測定コイルとしてのコイルばね用に存在しない
。特に好適なのは、コイルばねおよび調整操作器がコイ
ルばねの復帰力によりその停止位置でストッパに当接す
るようにして、コイルばねを同時に調整操作器用の復帰
ばねとしても用いることである。
Advantageous modifications and improvements of the features defined in claim 1 are possible by means of the measures defined in the dependent claims. It is particularly advantageous to arrange one end of the helical spring in a stationary manner, to which a reference potential is applied, and to connect the other end directly or indirectly to an axially displaceable or pivotable adjusting actuator of the helical spring. It is. In this case, only one connection wire is present in each case for the high-frequency coil and for the coil spring as measuring coil. It is particularly advantageous to use the coil spring at the same time as a return spring for the adjustment actuator, in such a way that the helical spring and the adjustment actuator come into contact with the stop in their rest position due to the restoring force of the helical spring.

実施例の説明 本発明の実施例が図面に示されており、以下の記述で詳
細に説明される。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the invention is shown in the drawings and is explained in detail in the description below.

第1図に、自動車のアクセルペダル12の位置を検出す
る発振器11を有する電気的変位量発信器10が示され
ている。発振器11は自動車の搭載電源回路のグラス端
子13に接続されている。発振器11は例えば20 k
Hzの周波数を有し、この周波数は第1の接続線14を
介して電気的変位量発信器10の高周波コイル15KX
接続されており、高周波コイル15はコイルばね16の
下部を同心的に取り囲んでいる。コイルばね16の下端
は位置固定の支持体17に支持されている。支持体17
は同時にコイルばね16の下端のアース電位を形成する
。高周波コイル15の他方の端もまた支持体17で、基
準電位としてアースに接続されている。コイルばね16
の前端はアクセルペダル12の背面の支持部材18て固
定され、空間的に分離されて配置された評価回路20に
、別の接続線19を介して接続されている。アクセルペ
ダル12は、圧縮ばねとして構成されたコイルばね16
により、破線で示されたアイドリング位置でストン・−
”21に押し付けられ、実線で示された加速弁全開時に
制限ストッパ22に当接スル。
FIG. 1 shows an electrical displacement transmitter 10 having an oscillator 11 for detecting the position of an accelerator pedal 12 of a motor vehicle. The oscillator 11 is connected to a glass terminal 13 of an on-board power supply circuit of the automobile. The oscillator 11 is, for example, 20k
Hz, and this frequency is transmitted via the first connection line 14 to the high-frequency coil 15KX of the electrical displacement transmitter 10.
The high frequency coil 15 concentrically surrounds the lower part of the coil spring 16. The lower end of the coil spring 16 is supported by a support 17 that is fixed in position. Support body 17
At the same time, the lower end of the coil spring 16 forms a ground potential. The other end of the high frequency coil 15 is also connected to the ground as a reference potential at a support 17. coil spring 16
The front end of the accelerator pedal 12 is fixed to the support member 18 on the back side of the accelerator pedal 12 and is connected via another connection line 19 to an evaluation circuit 20 arranged spatially separated. The accelerator pedal 12 has a coil spring 16 configured as a compression spring.
As a result, the stone--
21, and comes into contact with the limit stopper 22 when the acceleration valve is fully opened, as shown by the solid line.

アクセルペダル12の操作により、コイルばね16の前
端部が変位する変位量は、第1図にSで示されている。
The amount of displacement of the front end of the coil spring 16 due to the operation of the accelerator pedal 12 is indicated by S in FIG.

この変位量は電気式変位量発信器10により検出すべき
変位量であり、この変位量に係る、コイルばね16で形
成される測定信号が、コイルはね16の軸方向長さに依
存して変化する。
This amount of displacement is the amount of displacement to be detected by the electric displacement amount transmitter 10, and the measurement signal generated by the coil spring 16 related to this amount of displacement depends on the axial length of the coil spring 16. Change.

第2図に電圧Uaの時間変化が示されている。FIG. 2 shows the change in voltage Ua over time.

発振器11が投入されると、そのさい高周波コイル15
で形成される、第1図に23で示された高周波磁界がコ
イルばね16に誘起される。
When the oscillator 11 is turned on, the high frequency coil 15
A high frequency magnetic field, shown at 23 in FIG. 1, is induced in the coil spring 16.

接続線19を介して評価回路20に供給されるこの測定
電圧は、発振器11と同じ周波数を有する。しかし電圧
振幅は、コイルばね16のどの程度の巻回数にないしは
戸イルばね16の巻回体に、高周波コイル15の高周波
磁界23のどの程度の磁界強さが貫通しているかに依存
する。アクセルペダル12のキックダウン位置では、実
際にはコイルばね16の前方の巻回部のみが高周波コイ
ル15の外部に位置し、従って残りの巻回部は実際には
完全に磁界23により鎖交されている。そのさいコイル
ばね16て誘導される測定電圧Ua lは、第2図に示
すように、大きい振幅高さを有する。測定電圧Uaの振
幅高さは、平滑段を有する整流器により評価回路で測定
信号に変換されるのが好適である。この測定信号は直接
にマイクロプロセッサのA/D入力に導くことができる
This measuring voltage, which is supplied via connection line 19 to evaluation circuit 20, has the same frequency as oscillator 11. However, the voltage amplitude depends on how many turns of the coil spring 16 or how much magnetic field strength of the high-frequency magnetic field 23 of the high-frequency coil 15 penetrates the turns of the door coil spring 16 . In the kick-down position of the accelerator pedal 12, only the front winding of the coil spring 16 is actually located outside the high-frequency coil 15, so that the remaining windings are actually completely interlinked by the magnetic field 23. ing. The measured voltage Ual induced in the coil spring 16 then has a large amplitude height, as shown in FIG. The amplitude height of the measuring voltage Ua is preferably converted into a measuring signal in an evaluation circuit by means of a rectifier with a smoothing stage. This measurement signal can be routed directly to the A/D input of the microprocessor.

アクセル被ダル12が戻されると、それにしたがってコ
イルばね16は軸方向長さが変化される。コイルばね1
6は長くなり、従ってコイルばね16のそのほかの巻線
は高周波コイル15から前方に出てきて、もはや完全に
は高周波コイル15の磁界23により貫通されない。
When the accelerator lever 12 is returned, the axial length of the coil spring 16 is changed accordingly. coil spring 1
6 becomes longer, so that the other windings of the helical spring 16 come forward from the high-frequency coil 15 and are no longer completely penetrated by the magnetic field 23 of the high-frequency coil 15.

それによりコイルばね16の測定電圧Uaの振幅は減少
し、したがってアクセルにダル12のこの変化は評価回
路20で検出することができる。
As a result, the amplitude of the measured voltage Ua of the coil spring 16 decreases, so that this change in the accelerator pedal 12 can be detected in the evaluation circuit 20.

最後にアクセルペダル12がアイドリング位置に達する
と、コイルばね16は変位量Sだけ変位し、コイルばね
16は最大軸方向長さに達する。第2図が示すように、
そのさいコイルばね16に磁界23により誘導される測
定信号Uaは、大幅に小さい振幅高さを有する。このよ
うにして振幅高さによりその都度のアクセルペダル位置
は検出される。そのさい、アクセルペダル位置に依存す
る測定信号Uaの振幅高さの特性を、評価回路20のメ
モリに入力された表(テーブル)により確定するのが好
適である。またそれにより振幅高さの非線型変化を変位
量Sないしは変位角度に依存して補償することが簡単に
可能である。′ 本発明は前記の実施例にのみ限定されない。
Finally, when the accelerator pedal 12 reaches the idling position, the coil spring 16 is displaced by a displacement amount S, and the coil spring 16 reaches its maximum axial length. As Figure 2 shows,
The measuring signal Ua induced by the magnetic field 23 in the coil spring 16 then has a significantly smaller amplitude height. In this way, the respective accelerator pedal position is detected from the amplitude height. In this case, the characteristic of the amplitude height of the measurement signal Ua as a function of the accelerator pedal position is preferably determined by means of a table entered into the memory of the evaluation circuit 20. It is also thereby possible to compensate for non-linear changes in the amplitude height in a simple manner as a function of the displacement amount S or the displacement angle. ' The invention is not limited only to the embodiments described above.

アクセルペダルに替えて、その位置ないしは調整操作変
位量が電気的変位量発信器により検出できる別の調整操
作器も使用されるからである。
This is because, instead of the accelerator pedal, another adjustment operation device whose position or adjustment operation displacement amount can be detected by an electrical displacement amount transmitter is also used.

ソノさいコイル圧縮ばねに替えてコイル引っ張りばねも
高周波コイル15の内部に設けることもできる。この場
合にも又、コイルばねの復帰力により調整操作器も停止
位置に変位されることが可能である。しかし同様にまた
コイルばねの復帰力を比較的弱く構成し、調整操作器を
付加的な戻しばね等により停止位置に変位することも可
能である。
A coil tension spring may also be provided inside the high frequency coil 15 instead of the small coil compression spring. In this case too, the adjusting actuator can also be displaced into the rest position by the restoring force of the coil spring. However, it is likewise possible to design the return force of the helical spring to be relatively weak and to displace the adjusting actuator into the rest position by means of an additional return spring or the like.

発振器周波数の反転、コイルばね16への供給および固
定コイル15を介しての信号の取り出しもまた可能であ
り、そのさいにはコイルばね16は固定コイル15に同
心に配置されるのが有利である。
It is also possible to invert the oscillator frequency, feed the helical spring 16 and take off the signal via the stationary coil 15, in which case it is advantageous for the helical spring 16 to be arranged concentrically to the stationary coil 15. .

発明の効果 特許請求の範囲第1項の構成要件を有する本え、れ、電
気(変。量え信おい、今や、11オ□圧が一方の、例え
ば位置固定的コイルを介して一定の周波数で他方のコイ
ル、例えばコイルばねに誘導され、したがってこの測定
電圧が今や直接に通常の評価回路に、例えばマイクロプ
ロセッサて供給できるという利点を有する。それにより
、変位量発信器の直ぐ近くに電子部品が必要とされない
。したがってこのような変位量発信器の使用範囲が拡大
され、このことは特に自動車の場合に有利である。この
ような変位量発信器は・変速機制御、燃料噴射、負荷依
存的点火時期調整、レベル制御、またはアクセルペダル
位置検出等になお一層多く使用される。さらに別の利点
と考えられるのが、このような変位量発信器は熱応力を
形成せず、それゆえ温度に依存せずに機能できるという
ことである。
EFFECT OF THE INVENTION The present invention having the features of claim 1 now allows 11 □ pressure to be applied at a constant frequency through one, e.g., position-fixed coil. is induced in the other coil, e.g. a coil spring, and thus has the advantage that this measured voltage can now be directly supplied to a customary evaluation circuit, e.g. a microprocessor. Therefore, the scope of use of such displacement transmitters is expanded, which is particularly advantageous in the case of automobiles.Such displacement transmitters are used for transmission control, fuel injection, load-dependent applications, etc. They are even more often used for target ignition timing adjustment, level control or accelerator pedal position detection, etc.A further possible advantage is that such displacement transmitters do not create thermal stresses and therefore This means that it can function without depending on.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアクセル被ダルの位置を検出するコイルばねを
有する電気的変位量発信器の構成図、第2図はいっばい
に踏込まれたないしは操作されてないアクセルペダルの
場合のコイルばねから取り出される測定電圧の電圧変化
を示す波形図である。 10・・・変位量発信器、11・・・発振器、12・・
・アクセルペダル。 FIG、 1 FIG、2
Fig. 1 is a block diagram of an electrical displacement transmitter having a coil spring that detects the position of the accelerator pedal, and Fig. 2 is a diagram showing the coil spring taken out when the accelerator pedal is pressed all at once or is not operated. FIG. 3 is a waveform diagram showing voltage changes in a measured voltage. 10... Displacement amount oscillator, 11... Oscillator, 12...
·Accelerator pedal. FIG, 1 FIG, 2

Claims (1)

【特許請求の範囲】 1. 電気的変位量発信器に高周波振動を供給する発振
器ならびにコイルばねとして構成された軟磁性コイルを
有し、このコイルはその軸方向長をその復帰力に抗して
、測定すべき変位量に依存して軸方向に変化し得るよう
にした電気的変位量発信器において、位置固定的に配置
された高周波コイル(15)がコイルばね(16)の一
部に同心的に配置されており、2つのコイル(15,1
6)の一方には、他方のコイル(16,15)を貫通す
る高周波磁界(23)を形成するため発振器(11)に
より一定の周波数が供給され、当該磁界により前記の他
方のコイル(16,15)に形成される測定電圧(U_
a)の振幅高さが測定量として評価され、この測定量は
コイルばね (16)として構成されたコイルの軸方向長さに依存し
て変化することを特徴とする電気的変位量発信器。 2. 発振器(11)は位置固定的高周波コイル(15
)に、かつコイルばね(16)は評価回路(20)に接
続されている、特許請求の範囲第1項記載の電気的変位
量発信器。 3. コイルばね(16)の一方の端が位置固定的に配
置され、基準電位が印加されており、他方の端が、軸方
向に変位可能な調整操作器(12)に連結されている、
特許請求の範囲第1項または第2項に記載の電気式変位
量発信器。 4. コイルばね(16)および調整操作器(12)が
コイルばね(16)の復帰力により該ばねの停止位置で
ストツパ(21)に当接している、特許請求の範囲第3
項記載の電気的変位量発信器。
[Claims] 1. It has an oscillator that supplies high-frequency vibrations to the electrical displacement transmitter and a soft magnetic coil configured as a coil spring, the axial length of which depends on the displacement to be measured against its restoring force. In the electric displacement transmitter that can change in the axial direction, a high frequency coil (15) arranged in a fixed position is arranged concentrically on a part of the coil spring (16), and 2 1 coil (15, 1
One of the coils (16, 6) is supplied with a constant frequency by an oscillator (11) in order to form a high frequency magnetic field (23) that penetrates the other coil (16, 15). 15) The measurement voltage (U_
Electrical displacement transmitter, characterized in that the amplitude height of a) is evaluated as a measured variable, which measured variable varies depending on the axial length of a coil configured as a helical spring (16). 2. The oscillator (11) is a position-fixed high-frequency coil (15).
), and the coil spring (16) is connected to the evaluation circuit (20). 3. One end of the coil spring (16) is arranged in a fixed position and a reference potential is applied, and the other end is connected to an axially displaceable adjustment actuator (12).
An electrical displacement transmitter according to claim 1 or 2. 4. Claim 3, wherein the coil spring (16) and the adjusting device (12) are in contact with the stopper (21) at the stop position of the spring due to the return force of the coil spring (16).
Electrical displacement transmitter as described in section.
JP13195487A 1986-07-25 1987-05-29 Electrical displacement transmitter Pending JPS6332319A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863625273 DE3625273A1 (en) 1986-07-25 1986-07-25 Electrical displacement sensor
DE3625273.5 1986-07-25

Publications (1)

Publication Number Publication Date
JPS6332319A true JPS6332319A (en) 1988-02-12

Family

ID=6306018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13195487A Pending JPS6332319A (en) 1986-07-25 1987-05-29 Electrical displacement transmitter

Country Status (3)

Country Link
JP (1) JPS6332319A (en)
DE (1) DE3625273A1 (en)
FR (1) FR2602047B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808882B2 (en) 2010-05-26 2020-10-20 Intouch Technologies, Inc. Tele-robotic system with a robot face placed on a chair

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141545A1 (en) * 1991-12-17 1993-06-24 Teves Gmbh Alfred Arrangement for measuring distances, position or angle variations - contains coil sensor element in form of spring expanding or contracting with variations in measurement parameter, evaluation circuit detecting self-induction coefficient variations
CA2143768C (en) * 1994-03-17 1999-12-14 Arthur L. Dean Sensorless measurement of electromagnetic actuator displacement device
DE102006040877A1 (en) * 2006-08-31 2008-03-06 Bayerische Motoren Werke Ag Actuator, has evaluation circuit measuring physical parameter during current flow through coil spring i.e. circular cylinder-like wound coil spring, where circuit determines momentary position of actuator based on measured parameter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI53512C (en) * 1975-02-06 1978-05-10 Erkki O T Huhmar INDUCTIVE MACHINERY FOR REGISTRATION AV EN ENKELRIKTAD VIDSTRAECKT MEKANISKT ROERELSE
DE3303738A1 (en) * 1983-02-04 1984-08-09 Robert Bosch Gmbh, 7000 Stuttgart Electric displacement sensor with an oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808882B2 (en) 2010-05-26 2020-10-20 Intouch Technologies, Inc. Tele-robotic system with a robot face placed on a chair

Also Published As

Publication number Publication date
FR2602047B1 (en) 1992-04-24
FR2602047A1 (en) 1988-01-29
DE3625273A1 (en) 1988-02-04

Similar Documents

Publication Publication Date Title
US5172298A (en) Electromagnetic actuator
US4973912A (en) Method for contactless measurement of a resistance arranged in the secondary circuit of a transformer and device for carrying out the method
JP4200011B2 (en) Device for wireless information transmission and / or wireless energy transmission between detachable vehicle seat and car body
US4254354A (en) Interactive piezoelectric knock sensor
JP2568242B2 (en) Circuit device for processing signals of inductive measurement sensor
GB2042772A (en) Apparatus for damping oscillations of an ic engine
US4242606A (en) Magnetic final control element for a regulator apparatus
US5170496A (en) Circuit arrangement for matching the resonant frequency of an antenna resonant circuit to the output frequency of a transmitter output stage
JPS6118209B2 (en)
JPS6332319A (en) Electrical displacement transmitter
JPH11135322A (en) Method for operating electromagnetic actuator taking armature motion into consideration
US5365168A (en) Measuring instrument for contactless determination of an angle of rotation of an adjusting shaft
US4523562A (en) Method for controlling the fuel metering for an internal combustion engine
JP2649934B2 (en) Control device for proportional solenoid valve
US20020014859A1 (en) Driver of a magnetic-field sending antenna with RLC circuit
JPH1173226A (en) Control circuit generating control signal proportional to position of input device
US6288551B1 (en) System for controlling the resistance of a load connected to a transformer
US6087828A (en) Displacement detection sensor using magnetostriction
US6375168B2 (en) Air spring having two end members and a distance sensor mounted therebetween
CN101557884A (en) Circuit arrangement for evaluating and/or for activating sound transducers
US6275024B1 (en) Device for electronically transforming displacement of automobile accelerator lever
US4566418A (en) Electronically controlled internal combustion engine provided with an accelerator position sensor
US4856098A (en) Inductance sensor and circuit arrangement for the detection of vehicle attitude
US7543569B2 (en) Arrangement for controlling an internal combustion engine
US20100182016A1 (en) Electronic status detection device