JPS63318526A - Liquid crystal optical element - Google Patents

Liquid crystal optical element

Info

Publication number
JPS63318526A
JPS63318526A JP15353887A JP15353887A JPS63318526A JP S63318526 A JPS63318526 A JP S63318526A JP 15353887 A JP15353887 A JP 15353887A JP 15353887 A JP15353887 A JP 15353887A JP S63318526 A JPS63318526 A JP S63318526A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer liquid
polymer
optical element
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15353887A
Other languages
Japanese (ja)
Inventor
Kenji Hashimoto
橋本 憲次
Toshiharu Uchida
内田 俊治
Kazuharu Morita
森田 和春
Satoshi Hachiya
聡 蜂屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP15353887A priority Critical patent/JPS63318526A/en
Priority to US07/209,937 priority patent/US4904065A/en
Priority to DE3888734T priority patent/DE3888734T2/en
Priority to EP88109950A priority patent/EP0296571B1/en
Publication of JPS63318526A publication Critical patent/JPS63318526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain an optical element which has a high response speed, is suitable for displaying moving pictures and is capable of making large-area display by using a stretched and oriented ferroelectric high-polymer liquid crystal having a chiral smectic C phase. CONSTITUTION:The stretched and oriented ferroelectric high-polymer liquid crystal which has the chiral smectic C phase and is held in place between two sheets of conductive films at least one of which is transparent. The number average mol.wt. of the high-polymer liquid crystal is preferably 2,000-400,000. An 'NESA(R)' film deposited with tin oxide, ITO film, etc., consisting of tin oxide and indium oxide, etc., are usable as the transparent conductive films. Since the excellent responsiveness as the display element is thereby provided to this liquid crystal display element, the displaying of the moving pictures is possible and the formation of the larger area element is easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大面積表示素子などに適する液晶光学素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal optical element suitable for large area display elements and the like.

〔従来の技術〕[Conventional technology]

従来、大面積表示を行うために、CRTや螢光表示管等
の小ブロックを積み重ねて大面積とする方式(アストロ
ビジョン等)が知られているが、駆動方式が複雑で莫大
な装置を必要とする。また、このような小ブロックを配
列する方式では接続部分ができるため高解像度のディス
プレイには不適であり、連続パターンの表示にも向かな
いなどの欠点がある。
Conventionally, in order to display a large area, a method has been known in which small blocks such as CRTs and fluorescent display tubes are stacked to create a large area (Astro Vision, etc.), but the drive method is complex and requires an enormous amount of equipment. shall be. Furthermore, this method of arranging small blocks has the disadvantage that it is unsuitable for high-resolution displays because of the formation of connecting parts, and it is also unsuitable for displaying continuous patterns.

そこで、大面積の表示が可能な表示素子が望まれており
、高分子液晶を用いたものが提案されているが(特開昭
59−10930号公報)、応答速度が遅く、動画表示
に適するものではなかった。
Therefore, a display element capable of displaying a large area is desired, and a display element using polymer liquid crystal has been proposed (Japanese Unexamined Patent Publication No. 10930/1983), but the response speed is slow and it is not suitable for displaying moving images. It wasn't something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は外的因子に対する応答速度が速く、動画表示に
適するとともに、大面積表示が可能な光学素子を提供す
ることを目的とするものである。
An object of the present invention is to provide an optical element that has a fast response speed to external factors, is suitable for displaying moving images, and is capable of displaying a large area.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は少なくとも1枚が透明である2枚の透明導電膜
に挟持された、延伸配向されたカイラルスメクチックC
相を有する強誘電性高分子液晶からなることを特徴とす
る液晶光学素子に関するものである。
The present invention relates to a stretched and oriented chiral smectic C sandwiched between two transparent conductive films, at least one of which is transparent.
The present invention relates to a liquid crystal optical element characterized by being made of a ferroelectric polymer liquid crystal having a phase.

本発明においてはカイラルスメクチックC相を有する強
誘電性高分子液晶を用いているので、得られた光学素子
は表示素子とした場合、外的因子に対する応答速度が速
く、動画表示に適したものとなる。
In the present invention, a ferroelectric polymer liquid crystal having a chiral smectic C phase is used, so when the obtained optical element is used as a display element, it has a fast response speed to external factors and is suitable for displaying moving images. Become.

カイラルスメクチックC相を有する強誘電性高分子液晶
としては種々のものが用いられるが、具体的には次のよ
うなものが好適に用いられる。
Various types of ferroelectric polymer liquid crystals having a chiral smectic C phase can be used, and specifically, the following are preferably used.

+1)  ポリアクリレート系高分子液晶下記一般式か
らなる繰り返し単位を有するポリアクリレート系高分子
およびその共重合体千C8χ−Cト丼 C00(CHzh−0−R’ (式中、kは1から30までの整数であり、であり、R
宜は−C00R3、−0COR’、−0R1、または−
R3であり、ここで1は +CHz)−C1l+CHz)y−CH:+であり、R
4は−CH,またはCIであり、がっmは0がら1oの
整数、nは0から10の整数であり、但し、R4が−C
H5であるときはnは0ではない。)(2)ポリシロキ
サン系高分子液晶 下記一般式からなる繰り返し単位を有するポリシロキサ
ン系高分子およびその共重合体S +0−Si+ (Clけ−1−0−R’ (式中、R%は低級アルキル基を表し、pは3〜30の
整数を表し、R1は前記と同じ意味を有する。) (3)  ポリエーテル系高分子液晶 下記一般式からなる繰り返し単位を有するポリエーテル
系高分子およびその共重合体 (式中、k、R1は前記と同じ意味を有する。)(4)
  ポリエステル系高分子液晶 下記一般式からなる繰り返し単位を有するポリエーテル
系高分子およびその共重合体 ÷CH□−C−CHzOC(CHzhCO+C1l+C
Hz) KO−R’ (式中、Rhは)I ScI3またはCtHs、lは1
〜20の整数、k、R’は前記と同じ意味を有する。)
(5)水素結合によって側鎖を主鎖に固定した高分子液
晶 このものの側鎖は一種類でも複数種類でもよい。
+1) Polyacrylate polymer liquid crystal Polyacrylate polymer and its copolymer having a repeating unit consisting of the following general formula is an integer up to and R
-C00R3, -0COR', -0R1, or -
R3, where 1 is +CHz)-C1l+CHz)y-CH:+, and R
4 is -CH or CI, m is an integer from 0 to 1o, n is an integer from 0 to 10, provided that R4 is -C
When H5, n is not 0. ) (2) Polysiloxane-based polymer liquid crystal Polysiloxane-based polymer and its copolymer S +0-Si+ (Cl ke-1-0-R' (in the formula, R% is represents a lower alkyl group, p represents an integer of 3 to 30, and R1 has the same meaning as above.) (3) Polyether polymer liquid crystal A polyether polymer having a repeating unit consisting of the following general formula and Copolymer thereof (wherein k and R1 have the same meanings as above) (4)
Polyester polymer liquid crystal Polyether polymer and its copolymer having repeating units consisting of the following general formula÷CH□-C-CHzOC(CHzhCO+C1l+C
Hz) KO-R' (wherein Rh is) IScI3 or CtHs, l is 1
An integer of ~20, k and R' have the same meanings as above. )
(5) The polymer liquid crystal in which the side chains are fixed to the main chain by hydrogen bonding may have one or more types of side chains.

以上(11〜(5)で述べ、たような本発明で用いられ
る高分子液晶の数平均分子量は、好ましくは2. 00
0〜400.000である。2,000未満であると該
高分子液晶のフィルム、塗膜としての成形性に支障を生
じる場合があり、一方、400゜000を越えると応答
速度が小さいなどの好ましくない効果の現れることがあ
る。そして、数平均分子量の特に好ましい範囲は置換基
の種類などに依存するので一概に規定できないが、3,
000〜200.000である。
The number average molecular weight of the polymer liquid crystal used in the present invention as described above (11 to (5)) is preferably 2.00.
0 to 400.000. If it is less than 2,000, the moldability of the polymer liquid crystal as a film or coating may be impaired, while if it exceeds 400°000, undesirable effects such as a slow response speed may appear. . The particularly preferable range of the number average molecular weight cannot be unconditionally defined because it depends on the type of substituent, etc., but 3.
000 to 200.000.

また、高分子液晶は、オレフィン系樹脂、アクリル系樹
脂、メタクリル系樹脂、ポリスチレン系樹脂、ポリエス
テル系樹脂、ポリカーボネート系樹脂、スチレン−ブタ
ジェン共重合体、塩化ビニリデン−アクリロニトリル共
重合体などの通常の樹脂と混合して使用して、高分子液
晶膜を作成することも可能である。しかしこれらの樹脂
を大量に入れると液晶性が低下するので高分子液晶に対
して重量比で2以下とすることが好ましい。
In addition, polymeric liquid crystals are made of ordinary resins such as olefin resins, acrylic resins, methacrylic resins, polystyrene resins, polyester resins, polycarbonate resins, styrene-butadiene copolymers, and vinylidene chloride-acrylonitrile copolymers. It is also possible to create a polymer liquid crystal film by mixing it with However, if a large amount of these resins is added, the liquid crystal properties will deteriorate, so it is preferable that the weight ratio to the polymer liquid crystal is 2 or less.

一方、応答性を改善するために強誘電性低分子液晶、例
えばp−デシルオキシベンジリデン−p−アミノ−2−
メチルブチルシンナメートのようなカイラルスメクチッ
クC相を有する液晶化合物を混合して使用することもで
きる。混合割合は重量比で5以下とすることが好ましい
On the other hand, in order to improve the response, ferroelectric low-molecular liquid crystals, such as p-decyloxybenzylidene-p-amino-2-
A liquid crystal compound having a chiral smectic C phase such as methyl butyl cinnamate may also be used in combination. The mixing ratio is preferably 5 or less in terms of weight ratio.

高分子液晶の延伸方法としては、プラスチックフィルム
の延伸に通常用いられる方法、例えば−軸延伸法、二軸
延伸法、プレス延伸法、およびインフレーション延伸法
等が挙げられる。これらの方法のうち一軸延伸法が好適
に用いられる。また、ロールコータ−、バーコーター、
スクリーン印刷機を用いて塗布延伸することもできる。
Examples of methods for stretching the polymeric liquid crystal include methods commonly used for stretching plastic films, such as -axial stretching, biaxial stretching, press stretching, and inflation stretching. Among these methods, the uniaxial stretching method is preferably used. Also, roll coater, bar coater,
Coating and stretching can also be performed using a screen printing machine.

延伸率は通常30〜1000%、好ましくは50〜60
0%である。延伸率が30%未満だと液晶の配向度が低
く良好なコントラスト比が得られない。また、1000
%を超えると連続性のある膜が得られない。
The stretching ratio is usually 30-1000%, preferably 50-60%
It is 0%. If the stretching ratio is less than 30%, the degree of orientation of the liquid crystal is low and a good contrast ratio cannot be obtained. Also, 1000
%, a continuous film cannot be obtained.

高分子液晶の延伸は、高分子液晶単独でおこなってもよ
いし、または2枚のプラスチックフィルムで挟んで行っ
てもよい。また、透明基板に高分子液晶を挟持した状態
でプレスすることにより延伸することもできる。
The polymer liquid crystal may be stretched by the polymer liquid crystal alone, or by sandwiching it between two plastic films. Alternatively, the polymer liquid crystal can be stretched by pressing the polymer liquid crystal sandwiched between transparent substrates.

強誘電性高分子液晶を挟持する二枚の導電膜ののうち少
なくとも一枚は透明導電膜とする。透明導電膜としては
酸化スズを被着させたNESA膜、酸化スズと酸化イン
ジウムよりなるITO膜等を用いることができる。そし
て、この透明性導電膜はガラス、プラスチック(ポリメ
チルメタクリレート、ポリカーボネート樹脂等)の透明
基板の内側に設けることが好ましい。本発明の光学素子
を表示素子として用いる場合は透明基板の外側に偏光板
や反射板を設けることが好ましい。
At least one of the two conductive films sandwiching the ferroelectric polymer liquid crystal is a transparent conductive film. As the transparent conductive film, a NESA film coated with tin oxide, an ITO film made of tin oxide and indium oxide, etc. can be used. This transparent conductive film is preferably provided inside a transparent substrate made of glass or plastic (polymethyl methacrylate, polycarbonate resin, etc.). When the optical element of the present invention is used as a display element, it is preferable to provide a polarizing plate or a reflecting plate on the outside of the transparent substrate.

透明導電膜を使用しない場合に用いられる不透明な導電
膜としては、アルミ、金の蒸着膜、スパッタリング膜等
が挙げられる。
Examples of the opaque conductive film used when a transparent conductive film is not used include aluminum, gold vapor deposited films, sputtering films, and the like.

このようにして得られた光学素子は表示素子、および記
憶素子として用いられ、優れた特性を有している。
The optical element thus obtained is used as a display element and a memory element, and has excellent properties.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて詳細に説明するが、本
発明はこれに限定されるものではない。
Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

なお、以下の実施例において、得られたポリマーの構造
は、NMRSIR1元素分析によりf!認し、また相転
移温度の測定および相の確認は、それぞれDSCおよび
偏光顕微鏡により行った。
In addition, in the following examples, the structure of the obtained polymer was determined by NMRSIR1 elemental analysis. The phase transition temperature was measured and the phase was confirmed using DSC and a polarizing microscope, respectively.

また、ポリマーの相状態は次の略号を用いて示した。(
Cry:結晶、Iso:等方性液体、SmA:スメクチ
ックA相液晶状態、SmC” :カイラルスメクチック
C相液晶状態、SI :同定困難なスメクチック液晶状
態、Glassニガラス状態)また、数字は相変化温度
を℃で表したものである。
Further, the phase state of the polymer is indicated using the following abbreviations. (
Cry: crystal, Iso: isotropic liquid, SmA: smectic A-phase liquid crystal state, SmC'': chiral smectic C-phase liquid crystal state, SI: smectic liquid crystal state that is difficult to identify, Glass glass state) In addition, the numbers indicate the phase change temperature. It is expressed in °C.

実施例1〜6において本発明の高分子液晶化合物を光学
表示素子とする場合を説明する。
In Examples 1 to 6, cases in which the polymeric liquid crystal compound of the present invention is used as an optical display element will be described.

実施例1 下記一般式で表される繰り返し単位を有する高分子液晶
化合物 アクリル酸0.21モル(14,8g)および水酸化テ
トラメチルアンモニウム(5水和物)0.23モル(4
1,8g)をDMF300ml中で2時間攪拌して均一
溶液にした後、1,12−ジブロモドデカン0.21モ
ル(77,4g)を加え、さらに10時間攪拌した。次
いで、反応液に水3001を加えてエーテル抽出したの
ちカラムクロマトグラフィーにより精製し、目的とする
ブロモエステル体(la)24.6g (収率37%)
を得た。
Example 1 0.21 mol (14.8 g) of polymeric liquid crystal compound acrylic acid having a repeating unit represented by the following general formula and 0.23 mol (4 mol) of tetramethylammonium hydroxide (pentahydrate)
1.8 g) was stirred in 300 ml of DMF for 2 hours to make a homogeneous solution, 0.21 mol (77.4 g) of 1,12-dibromododecane was added, and the mixture was further stirred for 10 hours. Next, water 3001 was added to the reaction solution, extracted with ether, and purified by column chromatography to obtain 24.6 g of the desired bromoester (la) (yield 37%).
I got it.

p−ヒドロキシ安息香酸0.29モル(40,0g)と
(S)−(−)−2−メチルブタノール0.35モル(
30,9g)を濃硫酸1 m Ilの存在下、トルエン
150mj!中で20時間還流した。反応液を濃縮後、
カラムクロマトグラフィーにより精製し、p−ヒドロキ
シ安息香酸2−メチルブチルエステル〔〔α〕。=+4
.95° (CHCI3))53.2g(収率88%)
を得た。
0.29 mol (40.0 g) of p-hydroxybenzoic acid and 0.35 mol (S)-(-)-2-methylbutanol (
30.9 g) in the presence of 1 m Il of concentrated sulfuric acid and 150 mj of toluene! The mixture was refluxed for 20 hours. After concentrating the reaction solution,
Purified by column chromatography to obtain p-hydroxybenzoic acid 2-methylbutyl ester [[α]]. =+4
.. 95° (CHCI3)) 53.2g (yield 88%)
I got it.

(3)4−カーボベンゾキシオキシ 吸  のム成p−
ヒドロキシ安息香酸55ミリモル(7,6g)、水酸化
ナトリウム65ミリモル(2,6g)の水200 m 
l水溶液に氷温下でカーボベンゾキシクロリド65ミリ
モル(10,6g)を滴下した。
(3) 4-Carbobenzoxyoxy p-
55 mmol (7,6 g) of hydroxybenzoic acid, 65 mmol (2,6 g) of sodium hydroxide in 200 m of water
65 mmol (10.6 g) of carbobenzoxy chloride was added dropwise to the aqueous solution under ice temperature.

24時間後、沈殿物を水洗、ろ過、乾燥し、カラムクロ
マトグラフィーにて精製し、4−カーボベンゾキシオキ
シ安息香酸15.Og(収率99%、m、p、  18
1.9〜183.1℃)を得た。
After 24 hours, the precipitate was washed with water, filtered, dried, and purified by column chromatography to obtain 15.4-carbobenzoxyoxybenzoic acid. Og (yield 99%, m, p, 18
1.9-183.1°C).

前記の4−カーボベンゾキシオキシ安息香酸27ミリモ
ル(7,3g)、五塩化リン27ミリモル(5,6g)
のエーテル50mf溶液を室温で24時間攪拌した。反
応後、脱エーテルを行い、結晶をヘキサンにて再結晶し
、4−カーボベンゾキシオキシ安息香酸クロリド4.5
g(収率57%、m。
27 mmol (7.3 g) of the above 4-carbobenzoxyoxybenzoic acid, 27 mmol (5.6 g) of phosphorus pentachloride
A solution of 50 mf of ether was stirred at room temperature for 24 hours. After the reaction, deetherification was performed, and the crystals were recrystallized from hexane to obtain 4-carbobenzoxyoxybenzoic acid chloride 4.5
g (yield 57%, m.

p、65.5〜67.4℃)を得た。p, 65.5-67.4°C).

前記のp−ヒドロキシ安息香酸2−メチルブチルエステ
ル16ミリモル(3,3g)のTHF20ml、ピリジ
ン40mt!溶液を冷却し、前記の4−カーボベンゾキ
シオキシ安息香酸クロリド10ミリモル(2,9g)の
THF溶液を滴下した。温度を徐々に室温にもどし、8
時間攪拌した。反応後、エーテル抽出し濃縮後、カラム
クロマトグラフィーにて精製し、4−(4’−カーボベ
ンゾキシオキシベンゾイルオキシ)安息香酸2−メチル
ブチルエステル2.9g(収率63%、m、p、54.
4〜65.4℃)を得た。
16 mmol (3.3 g) of the above p-hydroxybenzoic acid 2-methylbutyl ester in 20 ml of THF and 40 mt of pyridine! The solution was cooled, and a THF solution of 10 mmol (2.9 g) of the above 4-carbobenzoxyoxybenzoic acid chloride was added dropwise. Gradually return the temperature to room temperature,
Stir for hours. After the reaction, it was extracted with ether, concentrated, and purified by column chromatography to obtain 2.9 g of 4-(4'-carbobenzoxyoxybenzoyloxy)benzoic acid 2-methylbutyl ester (yield 63%, m, p, 54.
4-65.4°C).

前記の4−(4’−カーボベンゾキシオキシベンゾイル
オキシ)安息香酸2−メチルブチルニステルロミリモル
(2,8g)、0.5gのパラジウムカーボン(5%触
媒)の酢酸エチル溶液を水素ガス雰囲気で4時間反応さ
せた0反応後、メンブランフィルタ−にてパラジウムカ
ーボンをろ過し、濃縮後カラムクロマトグラフィーによ
り精製し、4−(4’−ヒドロキシベンゾイルオキシ)
安息香酸2−メチルブチルエステル1.26 g (収
率64%、m、  p、90.8〜92.6℃)を得た
An ethyl acetate solution of the above 2-methylbutyl nisterromole 4-(4'-carbobenzoxyoxybenzoyloxy)benzoate (2.8 g) and 0.5 g of palladium on carbon (5% catalyst) was added in a hydrogen gas atmosphere. After 4 hours of reaction, palladium carbon was filtered off using a membrane filter, concentrated and purified by column chromatography to obtain 4-(4'-hydroxybenzoyloxy).
1.26 g (yield 64%, m, p, 90.8-92.6°C) of benzoic acid 2-methylbutyl ester was obtained.

(7)  4−(4’−(12−アクリロイロキシドブ
シロキシ)ベンゾイルオキシ〕 私書 2−メチ前記の
ブロモエステル体(la)3.9ミリモル(1,2g)
と前記の4−(4’−ヒドロキシベンゾキシ)安息香酸
2−メチルブチルエステル3.3ミリモル(1,1g)
と炭酸カリウム15ミリモル(2,1g)のアセトン溶
液を8時間還流した。反応後、ろ過、濃縮後、カラムク
ロマトグラフィーにより精製し、エタノールにて再結晶
を行い、目的とするモノマー〔〔α〕。−+2.11@
(CHCl、))0.99g(収率53%)を得た。
(7) 4-(4'-(12-acryloyloxide bucyloxy)benzoyloxy) P.O. 2-Methyl bromoester (la) 3.9 mmol (1.2 g)
and 3.3 mmol (1.1 g) of the above 4-(4'-hydroxybenzoxy)benzoic acid 2-methylbutyl ester.
and 15 mmol (2.1 g) of potassium carbonate in acetone was refluxed for 8 hours. After the reaction, filtration, concentration, purification by column chromatography, recrystallization with ethanol, and the desired monomer [[α]]. -+2.11@
(CHCl, )) 0.99 g (yield 53%) was obtained.

(8)  ±見ヱニ立会底 ガラスアンプルにモノマー1.1ミリモル(0,6g)
 、AIBNO,26agおよび乾燥THFを2ml入
れ、凍結脱気した後、60℃で15時間反応させた。冷
却後、反応物を濃縮し、クロロホルムで希釈(20ml
/g)した後、高速液体クロマトグラフィーにより精製
し、目的とする高分子液晶化合物0.3g(転化率50
%、Mn=5.300)を得た。
(8) ± 1.1 mmol (0.6 g) of monomer in a glass ampoule
, AIBNO, 26ag, and 2 ml of dry THF were added, and after freezing and degassing, the mixture was reacted at 60° C. for 15 hours. After cooling, the reaction mixture was concentrated and diluted with chloroform (20 ml
/g) and then purified by high performance liquid chromatography to obtain 0.3g of the target polymeric liquid crystal compound (conversion rate 50
%, Mn=5.300).

上記ポリマーを90℃で、lea/秒で一軸延伸配向処
理(250%)し、膜厚4μmにした。これを予めパタ
ーンニングした透明導電膜(ITO)付きガラス基板で
挟んでセルを構成した。相転移挙動および強誘電性を示
す温度域で電解応答速度を求めた。電解応答速度は交流
電場E=4×IQ’V/mをかけ、その際の透過光量の
変化(0−90%)の応答時間を測定した。
The above polymer was uniaxially stretched (250%) at 90° C. and lea/second to give a film thickness of 4 μm. This was sandwiched between glass substrates with transparent conductive films (ITO) patterned in advance to form a cell. The electrolytic response speed was determined in the temperature range showing phase transition behavior and ferroelectricity. The electrolytic response speed was measured by applying an alternating current electric field E=4×IQ'V/m and measuring the response time for a change in the amount of transmitted light (0-90%).

相転移挙動 実施例2 下記一般式で表される繰り返し単位を有する高分子液晶
化合物 アクリル酸0.15モル(10,8g)および水酸化テ
トラメチルアンモニウムの5水和物0.15モル(27
,2g)をDMF500nl中で2時間攪拌し、反応液
に1.14−ジブロモテトラデカン0.23モル(81
,9g)を加え、4時間攪拌した。
Phase transition behavior Example 2 0.15 mol (10.8 g) of a polymeric liquid crystal compound acrylic acid having a repeating unit represented by the following general formula and 0.15 mol (27 mol) of tetramethylammonium hydroxide pentahydrate
, 2 g) in 500 nl of DMF for 2 hours, and 0.23 mol (81
, 9g) and stirred for 4 hours.

反応液に水300mj!を加えてエーテル抽出、乾燥、
濃縮後、カラムクロマトグラフィーにより精製し、目的
とするブロモエステル体(lb)32゜3g(収率62
%)を得た。
300 mj of water in the reaction solution! Add ether extraction, drying,
After concentration, it was purified by column chromatography to obtain 32.3 g of the desired bromoester (lb) (yield 62.
%) was obtained.

上記で得られたブロモエステル体(lb)13゜9ミリ
モル(4,8g)と実施例1で得られた1−(4′−ヒ
ドロキシベンゾイルオキシ)安息香酸2−メチルブチル
エステル3.3ミリモル(4,4g)と炭酸カリウム5
3ミリモル(7,4g)のアセトン溶液を8時間還流し
た。反応後、ろ過、濃縮後、カラムクロマトグラフィー
により精製し、エタノールにて再結晶を行い、目的とす
るモノマー〔〔α)D=+2.26° (CHC13)
 ) 2.53g(収率32%)を得た。
13.9 mmol (4.8 g) of the bromoester (lb) obtained above and 3.3 mmol (4.8 g) of 2-methylbutyl 1-(4'-hydroxybenzoyloxy)benzoate obtained in Example 1. 4.4g) and potassium carbonate5
A solution of 3 mmol (7.4 g) in acetone was refluxed for 8 hours. After the reaction, filtration, concentration, purification by column chromatography, recrystallization with ethanol, and the desired monomer [[α]D=+2.26° (CHC13)
) 2.53g (yield 32%) was obtained.

(3)±悲ヱニ■立底 モノマー1.0ミリモル(0,60g) 、AlBN2
.3■および乾燥T HF 9.5 m lを、凍結脱
気した後、60℃で16時間反応させた。反応後、濃縮
し、クロロホルムで希釈(20mf/g) した後、高
速液体クロマトグラフィーにより精製し、目的とする高
分子液晶化合物0.35g(転化率58%、Mn−6,
500)を得た。
(3)±Eni ■ Standing bottom monomer 1.0 mmol (0.60 g), AlBN2
.. After freezing and degassing 3■ and 9.5 ml of dry THF, the mixture was reacted at 60°C for 16 hours. After the reaction, it was concentrated, diluted with chloroform (20 mf/g), and purified by high performance liquid chromatography to obtain 0.35 g of the desired polymeric liquid crystal compound (conversion rate 58%, Mn-6,
500) was obtained.

上記ポリマーを用いて実施例1と同様にして相転移挙動
および強誘電性を示す温度域で電解応答速度を求めた。
Using the above polymer, electrolytic response speed was determined in the same manner as in Example 1 in a temperature range in which phase transition behavior and ferroelectricity were exhibited.

SmC” 応答時間 26℃、0.04秒 実施例3 下記一般式で表される繰り返し単位を有する高分子液晶
化合物 ?II。
SmC" Response time 26°C, 0.04 seconds Example 3 A polymeric liquid crystal compound having a repeating unit represented by the following general formula II.

底 6−ブロモ−1−ヘキセン 4.7g、4−ヒドロキシ
ビフェニル−4′−カルボン酸2−メチルブチルエステ
ル 6.3g、および炭酸カリウム3.1gをアセトン
中で20時間還流した。反応後、ジクロロメタンを加え
て希釈し、無機物を濾過により除いた。溶媒を減圧留去
し、残渣をカラムクロマトグラフィーにより精製し、上
記4− (7−ヘキセニルオキシ)ビフェニル−4′−
カルボン酸2−メチルブチルエステル 6.4gを得た
(収率79%)。
4.7 g of bottom 6-bromo-1-hexene, 6.3 g of 4-hydroxybiphenyl-4'-carboxylic acid 2-methylbutyl ester, and 3.1 g of potassium carbonate were refluxed in acetone for 20 hours. After the reaction, dichloromethane was added to dilute the reaction mixture, and inorganic substances were removed by filtration. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography to obtain the above 4-(7-hexenyloxy)biphenyl-4'-
6.4 g of carboxylic acid 2-methylbutyl ester was obtained (yield 79%).

(2)  里見二二鬼査底 (1)で得られた4−(7−へキセニルオキシ)ビフェ
ニル−4′−カルボン酸2−メチルブチルエステル 4
.0gおよびポリメチルヒドロシロキサン(Aldri
ch社製、no=1.3979、d=1.006、Mn
=2.900)0.6gを、トルエン20m1に溶解し
た。触媒として塩化白金酸6水和物2■を加え、アルゴ
ン雰囲気下で80℃にて24時間反応を行った。反応後
、メタノールへ再沈澱を行った。得られたポリシロキサ
ンを減圧乾燥した後、ジクロロメタンに溶解し、水洗し
た。ジクロロメタン相を集め、硫酸マグネシウム上で乾
燥した後、ジクロロメタンを減圧留去し、目的とする高
分子液晶化合物1.5gを得た。(Mn=16. 40
0) 上記ポリマーを90℃で、0.5 cm /秒で一軸延
伸配向処理(500%)し、膜厚2μmにした。
(2) 4-(7-hexenyloxy)biphenyl-4'-carboxylic acid 2-methylbutyl ester obtained by Satomi Nijiki Shodon (1) 4
.. 0g and polymethylhydrosiloxane (Aldri
Made by ch company, no=1.3979, d=1.006, Mn
=2.900) was dissolved in 20 ml of toluene. Chloroplatinic acid hexahydrate 2■ was added as a catalyst, and the reaction was carried out at 80° C. for 24 hours under an argon atmosphere. After the reaction, reprecipitation was performed in methanol. After drying the obtained polysiloxane under reduced pressure, it was dissolved in dichloromethane and washed with water. The dichloromethane phase was collected and dried over magnesium sulfate, and then dichloromethane was distilled off under reduced pressure to obtain 1.5 g of the desired polymeric liquid crystal compound. (Mn=16.40
0) The above polymer was uniaxially stretched (500%) at 90° C. and 0.5 cm 2 /sec to give a film thickness of 2 μm.

これを予めパターンニングした透明導電膜(ITO)付
きガラス基板で挟んでセルを構成した。相転移挙動およ
び強誘電性を示す温度域で電解応答速度を求めた。電解
応答゛速度は交流電場E=4×10’V/mをかけ、そ
の際の透過光量の変化(0−90%)の応答時間を測定
した。
This was sandwiched between glass substrates with transparent conductive films (ITO) patterned in advance to form a cell. The electrolytic response speed was determined in the temperature range showing phase transition behavior and ferroelectricity. The electrolytic response speed was measured by applying an alternating current electric field E = 4 x 10'V/m and measuring the response time for a change (0-90%) in the amount of transmitted light.

応答速度  84℃、0.3秒 実施例4 下記一般式で表される繰り返し単位を有する高分子液晶
化合物 CH。
Response speed: 84° C., 0.3 seconds Example 4 A polymeric liquid crystal compound CH having a repeating unit represented by the following general formula.

底 実施例3(+>で用いた6−プロモー1−ヘキセンの代
わりに、8−プロモー1−オクテン 5.1gを用い、
他は、実施例3(1)と同じ物質、すなわち4−ヒドロ
キシビフェニル−41−カルボン酸2−メチルブチルエ
ステル 6.3gおよび炭酸カリウム 4.0gを用い
て、実施例3と同様の操作を行い、上記4−(7−オク
チニルオキシ)ビフェニル−4′−カルボン酸2−メチ
ルブチルエステル 8.1gを得た(収率 77%)。
In place of the 6-promo-1-hexene used in Example 3 (+), 5.1 g of 8-promo-1-octene was used,
Otherwise, the same operation as in Example 3 was carried out using the same substances as in Example 3 (1), that is, 6.3 g of 4-hydroxybiphenyl-41-carboxylic acid 2-methylbutyl ester and 4.0 g of potassium carbonate. , 8.1 g of the above 4-(7-octynyloxy)biphenyl-4'-carboxylic acid 2-methylbutyl ester was obtained (yield: 77%).

(2)ヱ1ヱニ曵金底 +1)で得られた4−(7−へキセニルオキシ)ビフェ
ニル−41−カルボン酸2−メチルブチルエステル 4
.0gおよび実施例3(2)で用いたポリメチルヒドロ
シロキサン 0.5gをトルエン50m1に溶解した。
(2) 4-(7-hexenyloxy)biphenyl-41-carboxylic acid 2-methylbutyl ester obtained in (1) 4-(7-hexenyloxy)biphenyl-41-carboxylic acid 4
.. 0 g and 0.5 g of the polymethylhydrosiloxane used in Example 3 (2) were dissolved in 50 ml of toluene.

触媒の塩化白金酸6水和物5■を加え、アルゴン雰囲気
下で80℃にて27時間反応を行った。その後は実施例
3(2)と同様の処理を行い、目的とする高分子液晶化
合物 2.1gを得た。(Mn=15,000) 応答速度 80℃、0.35秒 実施例5 下記一般式で表される繰り返し単位を有する高分子液晶
化合物 (1)4’−ヒドロキシビフェニル−4−カルボン4′
−ヒドロキシビフェニル−4−カルボン酸93ミリモル
(20g)および(S)−(−) −2−メチルブタノ
ール4ロアミリモル(41g)を濃硫酸2mlの存在下
、ベンゼン150m1t中で、水を除去しながら25時
間還流した。反応液を濃縮後、トルエン−ヘキサン混合
溶媒より再結晶し、目的とするエステル26.0g (
m、p、116〜117.8、〔α)n=+4.35°
 (CHC13)〕を得た。(収率98%) (2110−クロロ−1−デセンの人 9−デセンー1−オール26.0 gにとりシフ10滴
を加え、ナスフラスコに入れた。水冷下、塩化チオニル
24.0 gを滴下した。滴下後、70℃で8.5時間
反応を行った。反応後、ジクロロメタンで希釈し、炭酸
カリウム水溶液で洗浄した。硫酸マグネシウム上で乾燥
した後、減圧濃縮した。
5 kg of chloroplatinic acid hexahydrate as a catalyst was added, and the reaction was carried out at 80° C. for 27 hours under an argon atmosphere. Thereafter, the same treatment as in Example 3 (2) was performed to obtain 2.1 g of the desired polymeric liquid crystal compound. (Mn=15,000) Response speed 80°C, 0.35 seconds Example 5 Polymer liquid crystal compound having repeating units represented by the following general formula (1) 4'-hydroxybiphenyl-4-carboxylic 4'
93 mmol (20 g) of -hydroxybiphenyl-4-carboxylic acid and 4 mmol (41 g) of (S)-(-)-2-methylbutanol were dissolved in 150 ml of benzene in the presence of 2 ml of concentrated sulfuric acid, while removing water. Refluxed for an hour. After concentrating the reaction solution, it was recrystallized from a toluene-hexane mixed solvent to obtain 26.0 g of the desired ester (
m, p, 116-117.8, [α)n=+4.35°
(CHC13)] was obtained. (Yield 98%) (2110-Chloro-1-decene) 10 drops of Schiff were added to 26.0 g of 9-decen-1-ol and placed in an eggplant flask. Under water cooling, 24.0 g of thionyl chloride was added dropwise. After the dropwise addition, the reaction was carried out at 70°C for 8.5 hours. After the reaction, it was diluted with dichloromethane and washed with an aqueous potassium carbonate solution. After drying over magnesium sulfate, it was concentrated under reduced pressure.

残渣をカラムクロマトグラフィーにより精製し、10−
クロロ−1−デセン27.7 gを得た。(収率95%
) (2)で得たlO−クロロ−1−デセン2.5g、ヨウ
化ナトリウム6.5gを2−ブタノンに溶解させ、80
℃で17時間攪拌した。反応後、ジクロロメタンで希釈
し、水洗した。硫酸マグネシウム上で乾燥した後、溶媒
を減圧留去した。残渣に(11で得た4′−ヒドロキシ
ビフェニル−4−カルボン酸2−メチルブチルエステル
4.8g、炭酸カリウム2.4gを加え、2−ブタノン
中で80℃にて20時間反応を行った。反応後、無機物
をろ過により除き、減圧濃縮した後、カラムクロマトグ
ラフィーにより精製し、目的とするビフェニル誘導体4
.6gを得た。(収率76%) (4)土土之iヱ止 (3)  で得たビフェニル誘導体3.0g、m−クロ
ロ過安息香酸1.5gをジクロロメタンに溶解させ、系
をアルゴン置換し、次いで室温で1日攪拌した0反応後
、炭酸カリウム水溶液で洗浄し、さらに水洗した。硫酸
マグネシウム上で乾燥した後、溶媒を減圧留去し、目的
とする下式で表されるモノマー3.0gを得た。(収率
97%)(4)  で得たモノマー0.5gをジクロロ
メタン5 m 12に溶解し、系をアルゴン置換した。
The residue was purified by column chromatography to obtain 10-
27.7 g of chloro-1-decene was obtained. (Yield 95%
) 2.5 g of lO-chloro-1-decene obtained in (2) and 6.5 g of sodium iodide were dissolved in 2-butanone,
Stirred at ℃ for 17 hours. After the reaction, it was diluted with dichloromethane and washed with water. After drying over magnesium sulfate, the solvent was distilled off under reduced pressure. To the residue were added 4.8 g of 4'-hydroxybiphenyl-4-carboxylic acid 2-methylbutyl ester obtained in step 11 and 2.4 g of potassium carbonate, and the mixture was reacted in 2-butanone at 80°C for 20 hours. After the reaction, inorganic substances were removed by filtration, concentrated under reduced pressure, and purified by column chromatography to obtain the desired biphenyl derivative 4.
.. 6g was obtained. (Yield 76%) (4) 3.0 g of the biphenyl derivative obtained in (3) and 1.5 g of m-chloroperbenzoic acid were dissolved in dichloromethane, the system was purged with argon, and then heated to room temperature. After the reaction was stirred for one day, the mixture was washed with an aqueous potassium carbonate solution and further washed with water. After drying over magnesium sulfate, the solvent was distilled off under reduced pressure to obtain 3.0 g of the desired monomer represented by the following formula. (Yield 97%) 0.5 g of the monomer obtained in (4) was dissolved in 5 m 12 of dichloromethane, and the system was purged with argon.

塩化第二スズ0.015gを加え、室温で6日間重合反
応を行った0反応後、反応溶液をメタノールへ注いだ。
After 0.015 g of stannic chloride was added and a polymerization reaction was carried out at room temperature for 6 days, the reaction solution was poured into methanol.

生じた沈殿を再沈殿を繰り返して精製し、目的とする高
分子液晶化合物0.4g(収率80%、Mn=2,80
0)を得た。
The resulting precipitate was purified by repeating reprecipitation to obtain 0.4 g of the desired polymeric liquid crystal compound (yield 80%, Mn = 2,80
0) was obtained.

SmC” 応答時間 45℃、0.06秒 実施例6 下記一般式で表される繰り返し単位を有する高分子液晶
化合物 10−デセン−1−オールの代わりに12−ドデセン−
1−オール6.0gを用いたことを除いて実施例5の(
2)と同様の操作を行って、12−クロロ−1−ドデセ
ン5.2g(収率79%)を得た。
SmC" response time 45°C, 0.06 seconds Example 6 A polymeric liquid crystal compound having a repeating unit represented by the following general formula 12-dodecen-1-ol instead of 10-decen-1-ol
( of Example 5 except that 6.0 g of 1-ol was used)
The same operation as in 2) was performed to obtain 5.2 g (yield: 79%) of 12-chloro-1-dodecene.

10−クロロ−1−デセンの代わりに(1)で得た12
−クロロ−1−ドデセン5.2gを用いたことを除いて
実施例5の(3)と同様の操作を行って、目的とするビ
フェニル誘導体8.8g(収率76%)を得た。
12 obtained in (1) instead of 10-chloro-1-decene
The same operation as in Example 5 (3) was performed except that 5.2 g of -chloro-1-dodecene was used to obtain 8.8 g (yield 76%) of the desired biphenyl derivative.

(3)  主土之孟ヱ上 (2)で得たビフェニル誘導体8.8gに対し、実施例
5の(4)と同様の操作を行い、下式で表されるモノマ
ー8.8g(収率95%)を得た。
(3) 8.8 g of the biphenyl derivative obtained in (2) above was subjected to the same operation as in (4) of Example 5, and 8.8 g of the monomer represented by the following formula (yield: 95%).

(3)で得たモノマー2.3gに、実施例4の(5)と
同様の操作を行って重合させ、目的とする高分子液晶化
合物1.5g(収率65%、Mn=3,200)を得た
2.3 g of the monomer obtained in (3) was polymerized in the same manner as in (5) of Example 4, and 1.5 g of the desired polymeric liquid crystal compound (yield 65%, Mn = 3,200 ) was obtained.

Cry      SmA   ISO3mC” 応答時間 40℃、0.05秒 実施例7〜18 本発明の高分子液晶化合物は実施例1〜6のような電界
応答を利用した光学表示素子として用いるほかに半導体
レーザーを用いて記憶素子とじて利用することもできる
Cry SmA ISO3mC" Response time 40°C, 0.05 seconds Examples 7 to 18 The polymeric liquid crystal compound of the present invention can be used as an optical display element using electric field response as in Examples 1 to 6, as well as using a semiconductor laser. It can also be used as a memory element.

第1図は本発明の光学素子を記憶素子に適用した一例の
断面図を示すもので、この高分子液晶層1を、ITO導
電膜2を蒸着した基板3間に配設することにより作成さ
れている。
FIG. 1 shows a cross-sectional view of an example in which the optical element of the present invention is applied to a memory element, and is created by disposing this polymer liquid crystal layer 1 between substrates 3 on which an ITO conductive film 2 is deposited. ing.

実施例1〜6で用いた液晶ポリマーについて75〜85
℃において、表1に示す延伸率で一軸延伸を行い膜厚を
4μmとした。この記憶素子の書き込みの光源としては
、波長800nmの半導体レーザーを用い、光学系によ
ってビーム径10μmに絞ったものを照射した。書き込
みに要したエネルギー密度の測定結果を表1に示した。
75 to 85 for the liquid crystal polymer used in Examples 1 to 6
℃, uniaxial stretching was carried out at the stretching ratio shown in Table 1 to give a film thickness of 4 μm. A semiconductor laser with a wavelength of 800 nm was used as a light source for writing into this memory element, and irradiation was performed with a beam focused to a beam diameter of 10 μm using an optical system. Table 1 shows the measurement results of the energy density required for writing.

なお、実施例1〜6に使用し、た高分子液晶をそれぞれ
液晶I〜■とする。
The polymer liquid crystals used in Examples 1 to 6 are referred to as liquid crystals I to II, respectively.

表1 実施例 液晶 延伸率m1 (%)エネルギー密度09
   I+   100     19io   n 
  200     1711   I[[10022 12III   200     1713  1V 
  100     2214   rV   200
     1315   V   100     1
316   V   200     1417   
Vl   100     1418   VI   
200     121−回目の延伸率0エネルギー密
度は10μ秒間の照射でコントラスト比10に達せしめ
るのに必要な光ビームのパワー密度(単位はm J /
cj)で示す。
Table 1 Example Liquid crystal Stretching ratio m1 (%) Energy density 09
I+ 100 19ion
200 1711 I[[10022 12III 200 1713 1V
100 2214 rV 200
1315 V 100 1
316 V 200 1417
Vl 100 1418 VI
200 121-th stretching rate 0 energy density is the power density of the light beam (unit: m J /
cj).

〔発明の効果〕〔Effect of the invention〕

本発明の液晶光学素子は表示素子として応答性に優れて
いるため動画表示が可能である。また素子の大面積化が
容易であり、情報表示素子、記憶素子として極めて優れ
たものである。
Since the liquid crystal optical element of the present invention has excellent responsiveness as a display element, it is possible to display moving images. Furthermore, it is easy to increase the area of the device, and it is extremely excellent as an information display device and a memory device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液晶光学素子からなる記憶素子の断面
図であり、図中、1は高分子液晶層、2は透明導電膜、
3は透明基板である。
FIG. 1 is a cross-sectional view of a memory element made of a liquid crystal optical element of the present invention, in which 1 is a polymer liquid crystal layer, 2 is a transparent conductive film,
3 is a transparent substrate.

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも1枚が透明である2枚の導電膜に挟持さ
れた、延伸配向されたカイラルスメクチックC相を有す
る強誘電性高分子液晶からなることを特徴とする液晶光
学素子。
1. A liquid crystal optical element comprising a ferroelectric polymer liquid crystal having a stretched and oriented chiral smectic C phase sandwiched between two conductive films, at least one of which is transparent.
JP15353887A 1987-06-22 1987-06-22 Liquid crystal optical element Pending JPS63318526A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15353887A JPS63318526A (en) 1987-06-22 1987-06-22 Liquid crystal optical element
US07/209,937 US4904065A (en) 1987-06-22 1988-06-22 Liquid crystal optical element and method of producing the same using ferroelectric polymer liquid crystal
DE3888734T DE3888734T2 (en) 1987-06-22 1988-06-22 Manufacturing method for an optical liquid crystal element.
EP88109950A EP0296571B1 (en) 1987-06-22 1988-06-22 Method of producing a liquid crystal optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15353887A JPS63318526A (en) 1987-06-22 1987-06-22 Liquid crystal optical element

Publications (1)

Publication Number Publication Date
JPS63318526A true JPS63318526A (en) 1988-12-27

Family

ID=15564706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15353887A Pending JPS63318526A (en) 1987-06-22 1987-06-22 Liquid crystal optical element

Country Status (1)

Country Link
JP (1) JPS63318526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217820A (en) * 1989-02-20 1990-08-30 Canon Inc Ferroelectric high-polymer liquid crystal element
US5316806A (en) * 1990-06-12 1994-05-31 Canon Kabushiki Kaisha Information memory medium and information recording/holding process making use of the medium
US5638194A (en) * 1992-12-17 1997-06-10 Sharp Kabushiki Kaisha Polymer dispersed ferroelectric liquid crystal display device and a method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217820A (en) * 1989-02-20 1990-08-30 Canon Inc Ferroelectric high-polymer liquid crystal element
US5316806A (en) * 1990-06-12 1994-05-31 Canon Kabushiki Kaisha Information memory medium and information recording/holding process making use of the medium
US5638194A (en) * 1992-12-17 1997-06-10 Sharp Kabushiki Kaisha Polymer dispersed ferroelectric liquid crystal display device and a method for producing the same

Similar Documents

Publication Publication Date Title
US4844835A (en) Ferroelectric liquid crystal polymer
JP3228348B2 (en) Polymer liquid crystal compound, liquid crystal composition and liquid crystal element
US6335409B1 (en) Cross-linkable photoactive polymer materials
EP0871922B1 (en) Methods of making electro-optic and electro-active liquid crystal devices, and devices obtained by such methods
EP0297554B1 (en) Liquid-crystalline polymer composition
EP0296571A2 (en) Method of producing a liquid crystal optical element
JP3948799B2 (en) Trifunctional compounds and polymer liquid crystals
EP0261712A1 (en) Picture display cell, method of forming an orientation layer on a substrate of the picture display cell and monomeric compounds for use in the orientation layer
TW201231476A (en) Photoactive polymer materials
JP2786919B2 (en) Ferroelectric liquid crystal polymers, their preparation and use in electro-optical components
KR100711901B1 (en) Polymer for liquid crystal aligning and liquid crystal display using the same
JP2003513107A (en) Liquid crystal polymer devices and materials
JPH11116534A (en) Di(meth)acrylate compound
JPH0782183A (en) Liquid crystal instermediate compound, liquid crystal compound, high molecular liquid crystal compound, liquid crystal copolymer, composition thereof, liquid crystal element and recorder
JPS63318526A (en) Liquid crystal optical element
JPS6399204A (en) Polymer
JPS62277412A (en) Novel polymer
JP2599917B2 (en) Manufacturing method of liquid crystal optical element
KR0147616B1 (en) Liquid crystal display device with the side chain type polymer
JPS63161005A (en) Polymer
JPH0199025A (en) Liquid crystal optical element and production thereof
JP2765942B2 (en) Liquid crystalline polymer and epoxy compound used for its production
JPH01234414A (en) Crosslinked polymer with liquid crystal nature
JP2794469B2 (en) Organic polymer liquid crystal
JP3677102B2 (en) Non-optically active low-molecular liquid crystal compound, liquid crystal composition containing the same, and liquid crystal display device