JPS63316658A - Multipolar magnetization - Google Patents

Multipolar magnetization

Info

Publication number
JPS63316658A
JPS63316658A JP15268887A JP15268887A JPS63316658A JP S63316658 A JPS63316658 A JP S63316658A JP 15268887 A JP15268887 A JP 15268887A JP 15268887 A JP15268887 A JP 15268887A JP S63316658 A JPS63316658 A JP S63316658A
Authority
JP
Japan
Prior art keywords
permanent magnet
pole
magnetization
magnetizing
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15268887A
Other languages
Japanese (ja)
Inventor
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15268887A priority Critical patent/JPS63316658A/en
Publication of JPS63316658A publication Critical patent/JPS63316658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To extent the useful life of magnetized yokes, by bringing the magnetized yokes made of a gear-cut magnetic material into contact with both planes of a plate-type permanent magnet and by generating magnetic field with a field coil separately provided for multipolar magnetization. CONSTITUTION:A multipolar magnetizer is composed of a combination of a pole piece 2 with a field coil 1 attached with a DC electromagnet to cause current to flow from a DC power source separately provided, and is equipped with an upper frame 3 and a lower frame 4. To these upper and lower frames 3 and 4 upper and lower tables 6 and 7 with an upper-and-lower adjusting handle 5 are connected, at the tips of which upper and lower magnetized yokes 8 and 9 are coupled, so as to put a permanent magnet 10 between them. The teeth sections of both yokes 8 and 9 are positioned to face each other with the permanent magnet 10 put between them, while the magnet 10 can be slided with a guide table 11 and a positioning plate 12. The permanent magnet 10 is thereby moved and the sections engaged with the teeth of magnetized yokes 8 and 9 are shifted with precision for magnetization.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は平板状永久磁石の平面に多極着磁を行う方法に
閃する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to a method of multipole magnetizing a plane of a flat permanent magnet.

〔従来の技術〕[Conventional technology]

平板状永久磁石の平面に多極着磁を行いlJニアステッ
プモータの要素部品として使用する方法は最近のOA機
器の発達に伴い増加している。
With the recent development of office automation equipment, the method of magnetizing a flat permanent magnet with multiple poles and using it as an element part of an IJ near step motor is increasing.

このような平板状永久磁石の多極着磁には、特公昭58
−8589号公報に示されるような着磁ヨークを用い多
極着磁を行う方法が広く行われている。
The multipolar magnetization of such a flat permanent magnet was developed by
A method of performing multi-pole magnetization using a magnetizing yoke as shown in Japanese Patent No. -8589 is widely used.

まず多極着磁を行う平板状永久磁石の寸法に合せた軟磁
性材料を、着磁する極巾と極数に合せて溝切り加工をし
て絶縁電線を巻装し、絶縁フェス等により巻装した絶縁
電線を熱処理して固定し、多極着磁ヨークを一組製作す
る。
First, a soft magnetic material that matches the dimensions of the flat permanent magnet that is to be multipole magnetized is cut into grooves to match the pole width and number of poles to be magnetized, and then an insulated wire is wrapped around it. The insulated wires are heat-treated and fixed, and a set of multi-pole magnetized yokes is manufactured.

このようにして製作した多極着磁ヨークの溝切りした位
置を合せて、双方の着磁ヨークに平板状永久磁石を挟み
、巻装した絶縁電線に大電流を流して、この時発生する
磁力線により多極着磁を行っていた。
Align the grooved positions of the multi-pole magnetized yokes produced in this way, sandwich a flat permanent magnet between both magnetized yokes, and apply a large current to the wrapped insulated wire to generate magnetic lines of force. Multipole magnetization was performed using

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら最近では、高分割タイプのリニアステップ
モータの出現により多極着磁ヨークにも次のような問題
がクローズアップされてきた。
However, recently, with the advent of highly divided type linear step motors, the following problems have been brought into focus regarding multi-pole magnetized yokes.

単位寸法当りの分割数が増加したため着磁の一極中が狭
くなり、■絶縁電線を巻装する溝加工が小さくなり加工
が難しくなった。■絶縁電線を細くするために銅線の断
面積が減少し、従って着磁電流も減少しなければならず
、着磁磁場が低下し永久磁石を完全に着磁できな(なっ
た。また、絶縁物も薄くする必要があった。■絶縁電線
の巻装延長が長(なり、抵抗が増え印加電圧を上げない
と着磁電流を設定の値まで流せなくなった。
As the number of divisions per unit dimension increased, the area within one pole of magnetization became narrower, and the groove processing for wrapping the insulated wire became smaller and processing became difficult. ■In order to make the insulated wire thinner, the cross-sectional area of the copper wire is reduced, and therefore the magnetizing current must also be reduced, which reduces the magnetizing magnetic field and makes it impossible to completely magnetize the permanent magnet. It was also necessary to make the insulator thinner. ■The winding extension of the insulated wire became long (which increased the resistance) and the magnetizing current could not flow to the set value unless the applied voltage was increased.

そのため絶縁物が薄くなった関係もあり、リークによる
着磁ヨークの破壊や、絶縁電線の溶断による破損が数多
く発生した。
As a result, the insulator became thinner, resulting in many damage to the magnetizing yoke due to leakage and damage due to melting of insulated wires.

そこで本発明は、このような問題点を解決するためのも
ので、その目的とするところは、今までとまったく異な
った、絶縁電線を直接着磁ヨークに巻装した方法を取ら
ずに、着磁ヨークの耐用数が高(、シかも従来技術によ
る多極着磁方法と同レベルの表面磁束密度の得られる多
極着磁の方法を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a completely different method of winding an insulated wire around a magnetizing yoke without having to wind it directly around a magnetizing yoke. The purpose of the present invention is to provide a multi-pole magnetization method that provides a magnetic yoke with a high durability and a surface magnetic flux density on the same level as the multi-pole magnetization method of the prior art.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の多極着磁の方法は、平板状永久磁石の両平面に
磁性材料よりなる一極中相当で複数個の歯切りを行った
着磁ヨークを接触させ別設の磁場コイルにより、 前記
した着磁ヨークを介して着磁磁場を発生させ多極着磁を
行うことを特徴とする。
The multi-pole magnetization method of the present invention involves contacting both planes of a flat permanent magnet with a magnetizing yoke made of a magnetic material and having a plurality of gears cut in the middle of one pole, and using a separate magnetic field coil. A magnetizing magnetic field is generated through a magnetizing yoke to perform multi-pole magnetization.

〔実施例〕〔Example〕

以下に本発明の実施例を図面にもとづいて説明する。 Embodiments of the present invention will be described below based on the drawings.

一般に樹脂結合型希土類永久磁石と呼ばれる、2−17
系Sm−Co磁石粉末と結合剤であるエポキシ樹脂との
混合物を磁場中加圧成形し、 熱固化処理を行い厚さ方
向に異方性を持つ長さ50mm中20mm厚さ1mmの
平板状永久磁石を得た。
Generally called resin bonded rare earth permanent magnet, 2-17
A mixture of Sm-Co magnet powder and epoxy resin as a binder is pressure-molded in a magnetic field and thermally solidified to form a permanent flat plate with anisotropy in the thickness direction of 20 mm in length and 1 mm in thickness. I got a magnet.

この平板状永久磁石の50X20mmの面に中1mmピ
ッチで50極の多極着磁を行った。
Multipole magnetization of 50 poles was performed on a 50×20 mm surface of this flat permanent magnet at a pitch of 1 mm.

第1図は多極着磁装置の今様を示す断面図であり第2図
は、第1図に示した多極着磁装置の着磁ヨーク部分を矢
印方向より見た断面図である。
FIG. 1 is a cross-sectional view showing the current state of the multi-pole magnetizing device, and FIG. 2 is a cross-sectional view of the magnetizing yoke portion of the multi-polar magnetizing device shown in FIG. 1, viewed from the direction of the arrow.

第1図に示す多極着磁装置は、磁場コイル1にポールピ
ース2を組も合せ別設の直流電源から電流を流す直流電
磁石を用いたもので上フレーム3と下フレーム4は作業
性を良(するために片側に突き出している。
The multi-pole magnetizing device shown in Fig. 1 uses a DC electromagnet that combines a magnetic field coil 1 with a pole piece 2 and supplies current from a separate DC power supply. Good (protrudes to one side in order to do so.

この上下フレーム3と4に、上下調整/17ドル5の付
いた上テーブル6と下テール7がそれぞれ接続されてお
り、その先端には、永久磁石10を挟み込むように上着
磁ヨーク8と下着磁ヨーク9が接合されている。
An upper table 6 with a vertical adjustment/17 dollar 5 and a lower tail 7 are connected to the upper and lower frames 3 and 4, respectively, and an upper magnetic yoke 8 and an undergarment are attached to the tips of the upper table 6 and the lower tail 7 with a permanent magnet 10 sandwiched therebetween. A magnetic yoke 9 is joined.

第2図は永久磁石10と、上下着磁ヨーク8と9を第1
図に示す矢印方向より見た部分拡大断面図である。 上
下着磁ヨーク8と9の歯の部分は永久磁石10を介して
向き合うように位置しており、永久磁石10は、ガイド
テーブル11と位置決めプレート12により左右にスラ
イド可能となっている。 尚ガイドテーブル11と位置
決めプレート12は、非磁性材料は使用したが、他の装
置構成部品は磁場コイル1以外全て磁性材料である純鉄
を用いた。上下着磁ヨーク8と9の歯の寸法は、着磁極
中である1mmを越えないよう0゜95mm中として溝
の深さは1.4mmの二等辺三角形とした。
Figure 2 shows the permanent magnet 10 and the upper and lower magnetic yokes 8 and 9 placed in the first
FIG. 3 is a partially enlarged cross-sectional view seen from the direction of the arrow shown in the figure. The toothed portions of the upper and lower magnetic yokes 8 and 9 are positioned to face each other with a permanent magnet 10 in between, and the permanent magnet 10 is slidable left and right by a guide table 11 and a positioning plate 12. Although non-magnetic materials were used for the guide table 11 and the positioning plate 12, all other device components except the magnetic field coil 1 were made of pure iron, which is a magnetic material. The dimensions of the teeth of the upper and lower magnetic yokes 8 and 9 were 0.95 mm so as not to exceed 1 mm, which is in the magnetized pole, and the groove depth was an isosceles triangle with a depth of 1.4 mm.

つぎに着磁電流の調整であるが、上下着磁ヨーク8と9
の、向き合う歯の永久磁石10の入るスペースにホール
プローブを入れガラカメ−ターにより約16,500 
(Oe)の磁場が発生するように別設の磁場コイル1に
接続した直流電源を調整して着磁を開始した。
Next is the adjustment of the magnetizing current.The upper and lower magnetic yokes 8 and 9
Insert a Hall probe into the space where the permanent magnet 10 of the opposing teeth will fit, and measure approximately 16,500 yen with a galaca camera.
Magnetization was started by adjusting the DC power supply connected to the separately provided magnetic field coil 1 so that a magnetic field of (Oe) was generated.

まず上着磁ヨーク8側にN極を発生させ、下着磁ヨーク
9側にS極を発生させるように別設の直流電源により設
定の電流を磁場コイル1に流し、1回目の着磁を終了し
た。
First, a set current is passed through the magnetic field coil 1 using a separate DC power supply so as to generate an N pole on the upper magnetizing yoke 8 side and an S pole on the underwear magnetic yoke 9 side, completing the first magnetization. did.

つぎに上下調整ハンドル5を永久磁石10がスムーズに
動かせるまでゆるめ、ガイドテーブル11と位置決プレ
ート12により、永久磁石10を着磁を一極中分スライ
ドさせ、再度上下調整/″11ンドルより上着磁ヨーク
8と下着磁ヨーク9により永久磁石10を狭んだ。
Next, loosen the vertical adjustment handle 5 until the permanent magnet 10 can be moved smoothly, slide the permanent magnet 10 by the middle of one pole using the guide table 11 and positioning plate 12, and adjust the vertical adjustment again/above the 11-pole position. A permanent magnet 10 is narrowed by a magnetizing yoke 8 and an undergarment magnetic yoke 9.

つまり、それぞれの着磁ヨークにより上側をN極、下側
をS極に着磁された永久磁石10を動かし、着磁ヨーク
の歯に当っていた部分を溝の部分に、溝の部分の着磁さ
れていない部分を歯に当るように精度良く移動した訳で
ある。
In other words, by moving the permanent magnet 10 whose upper side is magnetized with N pole and the lower side with S pole by each magnetizing yoke, the part that was in contact with the teeth of the magnetizing yoke becomes the groove part, and the part of the groove becomes The non-magnetized part was moved with high precision so that it touched the teeth.

更に、磁場コイル1の端子を切り替え、再度別設の直流
電源により設定の電流を磁場コイル1に上着磁ヨーク8
側にS極が、下着磁ヨーク9側にN極が発生するように
流し2回目の着磁を終了した。比較例として、同一の永
久磁石を従来技術の多極着方法で多極着磁したものを造
った。
Furthermore, the terminals of the magnetic field coil 1 are switched and the set current is again applied to the magnetic field coil 1 by the upper magnetizing yoke 8.
The second magnetization was completed by flowing so that an S pole was generated on the side of the underwear magnetic yoke 9 and an N pole was generated on the side of the underwear magnetic yoke 9. As a comparative example, the same permanent magnet was made with multiple poles magnetized using a conventional multi-pole attaching method.

着磁ヨークは、55X22X15mmの純鉄材料を機械
加工により溝切りして、 銅線の径がφ0.4mm絶縁
処理をした仕上外径がφ0.7mmの電線を巻装して絶
縁フェスにより処理をした着磁ヨークを1対用意した永
久磁石を挟み込み磁極合せを行った後パルス着磁電源装
置によりピークで約2500Aのパルス状の着磁電流を
流し多極着磁を行った。
The magnetizing yoke is made of 55 x 22 x 15 mm pure iron material with grooves cut by machining, copper wire diameter φ 0.4 mm insulated, finished outer diameter of φ 0.7 mm wire wrapped around it, and treated with an insulating face. A pair of magnetized yokes prepared above were sandwiched between permanent magnets to align the magnetic poles, and then a pulsed magnetizing current of about 2500 A at a peak was applied by a pulsed magnetizing power supply to perform multipolar magnetization.

上記の方法により多極着磁を行ったそれぞれの平板状永
久磁石は、多極着磁を行った片方の一面に磁性材料であ
る純鉄製の50X20X厚さ1mmの板を接合させ相対
する他の多極着磁面の表面磁束密度を測定した。
Each flat permanent magnet that has been multipole magnetized by the above method is made by bonding a 50 x 20 x 1 mm thick plate made of pure iron, which is a magnetic material, to one of the multi-pole magnetized surfaces. The surface magnetic flux density of the multipolar magnetized surface was measured.

第35Aの波形が各々の多極着磁永久磁石をX−Yテー
ブルを使用して、ホールプローブとガウスメーターによ
り測定した結果の一部で、A・・・本発明による多極着
磁の方法によるもの、B・・・従来技術の多極着磁の方
法によるものであり、はぼ同様の値を示している。
The 35th waveform A is a part of the results of measuring each multipolar magnetized permanent magnet using an X-Y table with a Hall probe and a Gauss meter.A...Multipole magnetization method according to the present invention B: This is based on the multi-pole magnetization method of the prior art, and shows almost the same values.

つぎに着磁ヨークの耐用数を各々着磁を行いながら調べ
たところ、従来技術により多極着磁ヨークは約11,0
00個で絶縁フェスに損傷が見られ、更に8,500個
着磁を行った時点でリークにより着磁ヨークが破壊し使
用不能となった。
Next, we investigated the durability of each magnetizing yoke while magnetizing each, and found that using conventional technology, the multipolar magnetizing yoke was approximately 11.0
Damage was seen on the insulating face after 00 pieces, and when 8,500 pieces were magnetized, the magnetization yoke was destroyed due to leakage and became unusable.

本発明による方法では、約50,000個着磁を行った
時点で着磁ヨークの歯の永久磁石に接する面に摩耗が見
られるものの、磁場コイルを始めとする各部分に異常は
皆無である。
In the method according to the present invention, after about 50,000 magnets were magnetized, wear was observed on the surface of the teeth of the magnetizing yoke in contact with the permanent magnet, but there was no abnormality in any part including the magnetic field coil. .

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の多極着磁の方法によれば、
平板状永久磁石の相対する平面に多極着磁を行う方法に
おいて、該平板状永久磁石の両平面に磁性材料よりなる
一極中相当で複数個の歯切りを行った着磁ヨークを接触
させ別設の磁場コイルにより、前記した着磁ヨークを介
して着磁磁場を発生させ多極着磁を行うようにしたこと
により従来の技術による多極着磁方法と同レベルの表面
磁束密度を得ることができ、しかも着磁ヨークの耐用数
の非常に高いものとなる効果を有する。
As described above, according to the multipolar magnetization method of the present invention,
In a method of multipole magnetizing opposing planes of a flat permanent magnet, a magnetizing yoke made of a magnetic material and having a plurality of gears corresponding to one pole is brought into contact with both planes of the flat permanent magnet. By using a separate magnetic field coil to generate a magnetizing magnetic field through the above-mentioned magnetizing yoke and performing multi-pole magnetization, it is possible to obtain the same level of surface magnetic flux density as the multi-pole magnetization method using conventional technology. Moreover, it has the effect of making the magnetizing yoke extremely durable.

尚、本実施例では樹脂結合型希土類永久磁石のSmCo
系についてのみ述べたが、Nd−Fe−B系の永久磁石
や、熱可塑性樹脂を用いた永久磁石の多極着磁について
も同様の効果を有するものである。
In this example, SmCo, a resin-bonded rare earth permanent magnet, is used.
Although only the system has been described, similar effects can be obtained for Nd-Fe-B system permanent magnets and multipolar magnetization of permanent magnets using thermoplastic resin.

【図面の簡単な説明】 第1図は、多極着磁装置の全裸を示す断面図。 第2図は、第1図に示す矢印方向より見た着磁ヨークの
一部を示す断面図。 第3図は、多極着磁品の測定結果の一部を示す波形図。 1・・・磁場コイル 2・・・ポールピース 3・・・上フレーム 4・・・下フレーム 5・・・上下調整ハンドル 6・・・上テーブル 7・・・下テーブル 8・・・上着磁ヨーク 9・・・下着磁ヨーク 10・・・永久磁石 11・・・ガイドテーブル 12・・・位置決めプレート A・・・本発明により多極着磁した測定結果。 B・・・従来方法により多極着磁した測定結果。 以  上
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing the multi-pole magnetizing device completely exposed. FIG. 2 is a sectional view showing a part of the magnetizing yoke as seen from the direction of the arrow shown in FIG. FIG. 3 is a waveform diagram showing part of the measurement results of a multi-pole magnetized product. 1...Magnetic field coil 2...Pole piece 3...Upper frame 4...Lower frame 5...Vertical adjustment handle 6...Upper table 7...Lower table 8...Top magnetization Yoke 9...Underwear magnetic yoke 10...Permanent magnet 11...Guide table 12...Positioning plate A...Measurement results of multi-pole magnetization according to the present invention. B...Measurement results of multi-pole magnetization using the conventional method. that's all

Claims (1)

【特許請求の範囲】[Claims] 平板状永久磁石の相対する平面に多極着磁を行う方法に
おいて、該平板状永久磁石の両平面に磁性材料よりなる
一極巾相当で複数個の歯切りを行った着磁ヨークを接触
させ別設の磁場コイルにより、前記した着磁ヨークを介
して着磁磁場を発生させ多極着磁を行うことを特徴とす
る多極着磁の方法。
In a method of multipole magnetizing opposing planes of a flat permanent magnet, a magnetizing yoke made of a magnetic material and having a plurality of gears cut in a width equivalent to one pole is brought into contact with both planes of the flat permanent magnet. A method of multi-pole magnetization, characterized in that multi-pole magnetization is performed by generating a magnetizing magnetic field via the above-mentioned magnetizing yoke using a separate magnetic field coil.
JP15268887A 1987-06-19 1987-06-19 Multipolar magnetization Pending JPS63316658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15268887A JPS63316658A (en) 1987-06-19 1987-06-19 Multipolar magnetization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15268887A JPS63316658A (en) 1987-06-19 1987-06-19 Multipolar magnetization

Publications (1)

Publication Number Publication Date
JPS63316658A true JPS63316658A (en) 1988-12-23

Family

ID=15545956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15268887A Pending JPS63316658A (en) 1987-06-19 1987-06-19 Multipolar magnetization

Country Status (1)

Country Link
JP (1) JPS63316658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158098A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Manufacturing method of radial anisotropic magnet motor
US20110006865A1 (en) * 2009-07-09 2011-01-13 General Electric Company In-situ magnetizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158098A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Manufacturing method of radial anisotropic magnet motor
JP4635583B2 (en) * 2004-11-30 2011-02-23 パナソニック株式会社 Manufacturing method of radial anisotropic magnet motor
US20110006865A1 (en) * 2009-07-09 2011-01-13 General Electric Company In-situ magnetizer
CN101958174A (en) * 2009-07-09 2011-01-26 通用电气公司 The In-situ Magnetization device
US8766753B2 (en) 2009-07-09 2014-07-01 General Electric Company In-situ magnetizer

Similar Documents

Publication Publication Date Title
KR20010006239A (en) Improved linear actuator
WO2005124979A1 (en) Linear motor and method of producing linear motor
JP3916048B2 (en) Linear motor
Hsieh et al. Modeling and effects of in situ magnetization of isotropic ferrite magnet motors
JPH1098868A (en) Pole layout system for electromagnetic brake
JPS63316658A (en) Multipolar magnetization
JPS55106074A (en) Moving-coil type linear motor
Wakiwaka et al. Simplified thrust limit equation of linear DC motor
JPH10270247A (en) Multiple polar magnetizing device of permanent magnet
JP2508093Y2 (en) Magnetizing device
JPS6237912A (en) Magnetic fixture
JPS57145556A (en) Electric rotary machine
JP3127239B2 (en) Method and apparatus for magnetizing a metal magnet
JP2696417B2 (en) Bipolar magnetizer
JP3445303B2 (en) Magnetic field generator for MRI
JP2572299Y2 (en) Two-pole magnetized permanent magnet for flat coil vibration type voice coil motor
JPH01105507A (en) Multipole magnetization
JPH05144628A (en) Magnetic field generator
JPH03173406A (en) Multipolar magnetizer
RU2138110C1 (en) Stator of permanent-magnet machine
JPS6153843B2 (en)
JP2536190Y2 (en) Partial magnetizing device for manufacturing erase head
JPH01103811A (en) Magnetization of permanent magnet
JPS6348807A (en) Method of magnetization for rotor magnet
JPS626864Y2 (en)