JPS63314224A - Optical photopolymer composition - Google Patents

Optical photopolymer composition

Info

Publication number
JPS63314224A
JPS63314224A JP14979787A JP14979787A JPS63314224A JP S63314224 A JPS63314224 A JP S63314224A JP 14979787 A JP14979787 A JP 14979787A JP 14979787 A JP14979787 A JP 14979787A JP S63314224 A JPS63314224 A JP S63314224A
Authority
JP
Japan
Prior art keywords
polyfunctional
methacrylate
optical
polymeric substance
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14979787A
Other languages
Japanese (ja)
Inventor
Yushi Arai
雄史 新井
Yosuke Koizumi
洋介 小泉
Akihiko Ikeda
章彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14979787A priority Critical patent/JPS63314224A/en
Publication of JPS63314224A publication Critical patent/JPS63314224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a photopolymer composition which shows low light absorption and scattering loss over a wide temperature range, by mixing a specified polymeric substance and a specified polyfunctional (meth)acrylate at a specified ratio with a photopolymerization initiator. CONSTITUTION:A resin composition comprising a polymeric substance (a) free of an unsaturated carbon-carbon bond and having a weight-average MW >=5,000, a polyfunctional acrylate and/or a polyfunctional methacrylate (b) which, when cured by polymerization, has a refractive index which differs from that of said polymeric substance (b) by at most 0.015 and a photopolymerization initiator (c), wherein the composition ratio by weight of said polymeric substance to said polyfunctional acrylate and/or said polyfunctional methacrylate is 20/80-80/20. By using this optical photopolymer composition, an optical waveguide of an optical waveguide loss <=10dB/m, a low-loss holographic lens, a microprism, etc. can be easily obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、広い温度範囲にわたって光の吸収・散乱損失
の小さな光学用感光性樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical photosensitive resin composition that exhibits low light absorption and scattering loss over a wide temperature range.

本発明において光学用感光性樹脂組成物とは、光導波路
、ホログラフィックレンズ、微小プリズム、回折格子等
の光学素子をリングラフインクに形成し得る材料であり
、かつ、形成された上記素子の光の伝播損失が小さいも
のを言う。
In the present invention, the optical photosensitive resin composition is a material that can form optical elements such as optical waveguides, holographic lenses, microprisms, and diffraction gratings into phosphor graph ink, and that allows the formation of optical elements such as optical waveguides, holographic lenses, microprisms, diffraction gratings, etc. means that the propagation loss is small.

〔従来の技術〕[Conventional technology]

感光性樹脂を用いて光導波路を形成する方法としては、
例えば、オプティクス・コミュニケーションズ(Opt
ics Communications ) +17 
(tl、129゜1976、アプライド・フィジックス
・レターズ(Applied Physics Let
ters ) 、24 (21,72,1974、沖電
気研究開発4B (3)、73.1981、電子通信学
会論文誌J65−C(1υ、860.19B2 、アプ
ライド・オブティクス(Applied 0ptics
) 、17 (4)、646.1978等に開示された
ものがある。
As a method of forming an optical waveguide using photosensitive resin,
For example, Optics Communications (Opt
icsCommunications) +17
(tl, 129° 1976, Applied Physics Letters
ters), 24 (21,72,1974, Oki Electric Research and Development 4B (3), 73.1981, Journal of the Institute of Electronics and Communication Engineers J65-C (1υ, 860.19B2), Applied Optics
), 17 (4), 646.1978, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記文献開示の方法により形成される光導波路は、光導
波損失が10dB/m以上と大きく、導波路長が数米に
及ぶものが作成できない。又、アプライド・フィジック
ス・レターズ(八pplied PhysicsLet
ters ) 、24 (2)、72.1974、アプ
ライド・オプティクス(Applied 0ptics
) 、17 (4)、646.197B 、電子通信学
会論文誌J65−C(11) 、860.1982等に
述べられている方法では、現像時に七ツマ−を減圧で情
夫する工程があり、生産性が悪いと考えられる。
The optical waveguide formed by the method disclosed in the above-mentioned document has a large optical waveguide loss of 10 dB/m or more, and it is impossible to create a waveguide with a length of several meters. Also, Applied Physics Letters
ters), 24 (2), 72.1974, Applied Optics
), 17 (4), 646.197B, Journal of the Institute of Electronics and Communication Engineers J65-C (11), 860.1982, etc., there is a step in which the seven rollers are heated under reduced pressure during development, which reduces production. It is considered to be a bad thing.

感光性樹脂組成物を該感光性樹脂組成物より屈折率の低
い基板上に塗布し、電磁波により露光し・現像液で現像
する方法は、導波路パターンを形成するためには、簡便
で生産性の高い方法である。
The method of coating a photosensitive resin composition on a substrate with a refractive index lower than that of the photosensitive resin composition, exposing it to electromagnetic waves, and developing it with a developer is a simple and productive method for forming a waveguide pattern. This is the most expensive way to go.

この方法に用い得る感光性樹脂組成物は、光ファイバー
等との結合のために50〜200μm程度の膜厚を維持
できることが望まれ、かつ、感度解像度が高いことが好
ましい。このような要請から、この方法に用い得る感光
性樹脂組成物は、高分子物質と多官能アクリレート及び
/又は多官能メタクリレートを含むことが好ましいが、
一般的にこのような組成物では、高分子物質と多官能ア
クリレート及び/又は多官能メタクリレートとが光によ
って開始される化学反応の進行に伴って各々独立したミ
クロ相に分離する結果、それを構成する個々の材料の吸
収損失の和に比べ、形成された導波路の光導波損失はミ
クロ相界面での光散乱のため異常に大きなものとなる。
The photosensitive resin composition that can be used in this method is desirably capable of maintaining a film thickness of about 50 to 200 μm for bonding with optical fibers, etc., and preferably has high sensitivity resolution. In view of these demands, the photosensitive resin composition that can be used in this method preferably contains a polymeric substance and a polyfunctional acrylate and/or a polyfunctional methacrylate.
Generally, in such compositions, the polymeric substance and the polyfunctional acrylate and/or polyfunctional methacrylate separate into independent microphases as a chemical reaction initiated by light progresses, resulting in the formation of Compared to the sum of absorption losses of individual materials, the optical waveguide loss of the formed waveguide becomes abnormally large due to light scattering at the microphase interface.

本発明の目的は、光導波損失がO″C〜80℃の温度範
囲において1OdB/m以下で、かつ、簡単な工程で、
高い生産性で、光導波路、ホログラフィックレンズ、微
小プリズム等が得られる光学用感光性樹脂組成物を提供
することである。
The purpose of the present invention is to reduce the optical waveguide loss to 1 OdB/m or less in the temperature range of O''C to 80C, and to achieve the same through a simple process.
An object of the present invention is to provide an optical photosensitive resin composition from which optical waveguides, holographic lenses, microprisms, etc. can be obtained with high productivity.

本発明者らは、上記目的達成のため鋭意研究の結果、本
発明を完成するに至った。
The present inventors have completed the present invention as a result of intensive research to achieve the above object.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、■重量平均分子量5000以上の不飽
和炭素−炭素結合を有しない高分子物質、■重合硬化後
膣高分子物質との屈折率差がO℃〜80℃の温度範囲に
おいて0.015以下の多官能アクリレート及び/又は
多官能メタクリレート、及び■光重合開始剤とからなり
、該高分子物質と多官能アクリレート及び/又は多官能
メタクリレートとの重量組成比が20/80〜80/2
0であることを特徴とする光学用感光性樹脂組成物に関
するものである。
That is, the present invention provides: (1) a polymeric material having a weight average molecular weight of 5,000 or more and having no unsaturated carbon-carbon bonds; .015 or less polyfunctional acrylate and/or polyfunctional methacrylate, and (1) a photopolymerization initiator, the weight composition ratio of the polymer substance and the polyfunctional acrylate and/or polyfunctional methacrylate is 20/80 to 80/ 2
The present invention relates to an optical photosensitive resin composition characterized in that:

但し、ここに言う多官能アクリレート及び/又は多官能
メタクリレートの重合硬化後の屈折率とは、該多官能ア
クリレート及び/又は多官能メタクリレートの100重
量部に対し1重量部のベンジルジメチルケタールを加え
、十分に光重合硬化させた測定用試料を作成し、ナトリ
ウムD線の波長において測定した屈折率の値を言う。
However, the refractive index after polymerization and curing of polyfunctional acrylate and/or polyfunctional methacrylate referred to herein means that 1 part by weight of benzyl dimethyl ketal is added to 100 parts by weight of the polyfunctional acrylate and/or polyfunctional methacrylate, It refers to the refractive index value measured at the wavelength of the sodium D line after preparing a measurement sample that has been sufficiently photopolymerized and cured.

本発明の多官能アクリレート及び/又は多官能メタクリ
レートとしては、実際に様々なものを用い得るが、好ま
しくは2官能アクリレート及び/又は2官能メタクリレ
ートである。又、単官能アクリレート及び/又は単官能
メタクリレートを、2官能以上のアクリレート及び/又
は2官能以上のメタクリレートと併用することができる
Various types of polyfunctional acrylate and/or polyfunctional methacrylate can be used in the present invention, but difunctional acrylate and/or difunctional methacrylate are preferred. Moreover, a monofunctional acrylate and/or a monofunctional methacrylate can be used in combination with a difunctional or more functional acrylate and/or a difunctional or more functional methacrylate.

本発明の高分子物質としては、種々のホモポリマーない
しコポリマーを用い得るが、特に好ましいのは、光学的
透明性が高く、かつ、機械的特性に優れたメタクリレー
ト系のホモポリマーないしコポリマーである。これらの
高分子物質の分子量は、5000以上であることが好ま
しく、5000以下の場合は感光性樹脂組成物の膜厚を
維持することが回能である。
Various homopolymers or copolymers can be used as the polymeric substance of the present invention, but particularly preferred are methacrylate-based homopolymers or copolymers that have high optical transparency and excellent mechanical properties. The molecular weight of these polymeric substances is preferably 5,000 or more, and when it is 5,000 or less, it is important to maintain the film thickness of the photosensitive resin composition.

高分子物質と多官能アクリレート及び/又は多官能メタ
クリレートとの組合せには様々なものが挙げられるが、
例えば、ポリ (メチルメタクリレート)と後掲の化合
物(1)で示す構造の2官能メタクリレート、ポリ (
1−メチルシクロヘキシルメタクリレート)と化合物(
2)で示す構造の2官能メタクリレート、ポリ (4−
メチルシクロへキシルメタクリレート)と化合物(3)
で示す構造の2官能アクリレート、ポリ (2−フェニ
ルエチルメタクリレート)と化合物(4)で示す構造の
2官能メタクリレート、等は好ましい組合せである。
There are various combinations of polymeric substances and polyfunctional acrylates and/or polyfunctional methacrylates, but
For example, poly(methyl methacrylate), bifunctional methacrylate having the structure shown in compound (1) below, poly(methyl methacrylate), and poly(methyl methacrylate).
1-methylcyclohexyl methacrylate) and the compound (
Bifunctional methacrylate with the structure shown in 2), poly(4-
methylcyclohexyl methacrylate) and compound (3)
Preferred combinations include a bifunctional acrylate having a structure shown by , poly (2-phenylethyl methacrylate) and a bifunctional methacrylate having a structure shown by compound (4).

これらの高分子物質と多官能アクリレート及び又はメタ
クリレートの組合せを用いて得られる感光性組成物が、
特に広い温度範囲にわたって光学的に優れた特性を示す
理由は、これらの組合せにおいて高分子物質の屈折率と
多官能アクリレート及び/又は多官能メタクリレートの
屈折率の差が0.015以下と非常に小さいため、ミク
ロ相分離の効果が見掛は上現れないためであると考えら
れる・感光性樹脂組成物としては、上記の高分子物質と
多官能アクリレート及び/又は多官能メタクリレートの
ための光重合開始剤が必要である。光重合開始剤として
は、ラジカル重合開始型のものであればどのようなもの
でも用い得るが、導波光の吸収損失の点から、例えば、
ベンゾインイソブチルエーテルやベンジルジメチルケタ
ール等が好ましい0通常これらの光重合開始剤は、本発
明の感光性樹脂組成物100重量部に対して0.05〜
5重量部用いることが好ましい。
A photosensitive composition obtained using a combination of these polymeric substances and a polyfunctional acrylate and/or methacrylate is
The reason why it exhibits excellent optical properties over a particularly wide temperature range is that in these combinations, the difference between the refractive index of the polymer material and the refractive index of the polyfunctional acrylate and/or polyfunctional methacrylate is as small as 0.015 or less. This is thought to be due to the fact that the effect of microphase separation does not appear as it appears. ・As a photosensitive resin composition, photopolymerization initiation for the above-mentioned polymeric substance and polyfunctional acrylate and/or polyfunctional methacrylate agent is required. Any radical polymerization initiator can be used as the photopolymerization initiator, but from the viewpoint of absorption loss of guided light, for example,
Benzoin isobutyl ether, benzyl dimethyl ketal, etc. are preferred. Usually, these photopolymerization initiators are used in an amount of 0.05 to 100 parts by weight of the photosensitive resin composition of the present invention.
It is preferable to use 5 parts by weight.

本発明の組成物においては、光重合硬化後の内部の光学
的均一性が高く、光導波損失が10dB/m以下の光導
波路や、低損失のホログラフィックレンズ、微小プリズ
ム等が得られるようになる。
The composition of the present invention has high internal optical uniformity after photopolymerization and curing, so that optical waveguides with optical waveguide loss of 10 dB/m or less, low-loss holographic lenses, microprisms, etc. can be obtained. Become.

〔発明の効果〕〔Effect of the invention〕

本発明における光学用感光性樹脂組成物を用いることに
より光導波損失が10dB/n+以下の光導波路や、低
損失のホログラフィックレンズ、微小プリズム等が容易
に得られる。
By using the optical photosensitive resin composition of the present invention, optical waveguides with an optical waveguide loss of 10 dB/n+ or less, low-loss holographic lenses, microprisms, etc. can be easily obtained.

〔実施例〕〔Example〕

以下に実施例を示す。例中部は重量部を表す。 Examples are shown below. The middle part of the example represents parts by weight.

実施例1 ポリメチルメタクリレート(旭化成工業−裂、20℃に
おける屈折率1.492 ) 58部、2官能メタクリ
レ−’ ) HX−220M  (日本化薬GtI製、
化合物(1)、重合硬化後の20℃における屈折率1.
493 ) 42部、及びベンジルジメチルケタール1
部をメチルエチルケトン135部に溶解して均一溶液と
した。これを濾過してごみを除いた後、100μmの厚
みのポリ弗化ビニリデンのフィルム上にドクターブレー
ドで塗布し、乾燥して90μmの厚みの透明な塗膜を得
た。フォトマスクを通して紫外線を照射し=1゜1.1
− )リクロロエタンを用いて現像し、水洗によるリン
スを行って、幅140μm1長さ400mmの直線状光
導波路のパターンを得た。この直線状光導波路の損失係
数を波長632.8nmのHe−Ne レーザー(出力
2mW)を用いて測定したところ、o℃〜8゜、℃の温
度範囲において4〜10dB/mの良好な値を得た。ポ
リメチルメタクリレート及び重合硬化したHX−220
Mの屈折率をアツベの屈折針を用いて測定したところ、
それぞれ0℃において1.4940と1・4979.2
0℃において1.4920と1.4933.40℃にお
いて1.4901と1.4887.80℃において1 
、4860と1.4794であった。
Example 1 Polymethyl methacrylate (Asahi Kasei Co., Ltd., refractive index 1.492 at 20°C) 58 parts, difunctional methacrylate) HX-220M (manufactured by Nippon Kayaku GtI,
Compound (1), refractive index at 20°C after polymerization and curing: 1.
493) 42 parts, and benzyl dimethyl ketal 1
1 part was dissolved in 135 parts of methyl ethyl ketone to make a homogeneous solution. After filtering this to remove dust, it was applied onto a polyvinylidene fluoride film with a thickness of 100 μm using a doctor blade, and dried to obtain a transparent coating film with a thickness of 90 μm. Irradiate ultraviolet light through a photomask = 1°1.1
-) It was developed using dichloroethane and rinsed with water to obtain a linear optical waveguide pattern with a width of 140 μm and a length of 400 mm. When the loss coefficient of this linear optical waveguide was measured using a He-Ne laser (output 2 mW) with a wavelength of 632.8 nm, a good value of 4 to 10 dB/m was found in the temperature range of 0°C to 8°C. Obtained. Polymethyl methacrylate and polymerization cured HX-220
When the refractive index of M was measured using Atsube's refraction needle,
1.4940 and 1.4979.2 at 0°C, respectively.
1.4920 at 0℃ and 1.4933.1.4901 at 40℃ and 1.4887.1 at 80℃
, 4860 and 1.4794.

実施例2〜4 高分子物質と多官能アクリレート及び/又は多官能メタ
クリレートとの組合せを変えた例を、実施例1の結果と
併せて第1表に示す。
Examples 2 to 4 Examples in which the combinations of polymeric substances and polyfunctional acrylates and/or polyfunctional methacrylates were changed are shown in Table 1 together with the results of Example 1.

第2表には、各実施例の高分子物質と多官能アクリレー
ト及び/又は多官能メタクリレート硬化物の屈折率を示
し、第3表には、使用した化合物(1)〜(4)の構造
式を示す。
Table 2 shows the refractive index of the polymer material and polyfunctional acrylate and/or polyfunctional methacrylate cured product of each example, and Table 3 shows the structural formulas of the compounds (1) to (4) used. shows.

比較例 実施例1のHX−220Mに代え、第3表の化合物(5
)で示す構造で表される2官能アクリレート(日本化薬
■製、商品名MANDA 、重合硬化後の20℃におけ
る屈折率1.509 )を用い、実施例1と同様の操作
により、幅140 μm、厚み90μm、長さ400m
mの直線状光導波路を得た。 He−Neレーザーを光
源として先導波路損失を測定したところ20℃において
80dB/mであった。
Comparative Example Instead of HX-220M in Example 1, the compound (5
) (manufactured by Nippon Kayaku ■, trade name: MANDA, refractive index at 20°C after polymerization and curing: 1.509) was used in the same manner as in Example 1 to form a sheet with a width of 140 μm. , thickness 90μm, length 400m
A linear optical waveguide of m length was obtained. When the leading wavepath loss was measured using a He-Ne laser as a light source, it was 80 dB/m at 20°C.

第1表 第2表 第3表 化合物(4)Table 1 Table 2 Table 3 Compound (4)

Claims (1)

【特許請求の範囲】[Claims] (1)[1]重量平均分子量5000以上の不飽和炭素
−炭素結合を有しない高分子物質、[2]重合硬化後該
高分子物質との屈折率差が0℃〜80℃の温度範囲にお
いて0.015以下の多官能アクリレート及び/又は多
官能メタクリレート、及び[3]光重合開始剤とからな
り、該高分子物質と多官能アクリレート及び/又は多官
能メタクリレートとの重量組成比が20/80〜80/
20であることを特徴とする光学用感光性樹脂組成物。
(1) [1] A polymeric substance having a weight average molecular weight of 5,000 or more and having no unsaturated carbon-carbon bonds, [2] A temperature range in which the refractive index difference with the polymeric substance after polymerization and curing is 0°C to 80°C. It consists of a polyfunctional acrylate and/or polyfunctional methacrylate of 0.015 or less, and [3] a photopolymerization initiator, and the weight composition ratio of the polymer substance and the polyfunctional acrylate and/or polyfunctional methacrylate is 20/80. ~80/
20. An optical photosensitive resin composition characterized in that the composition is
JP14979787A 1987-06-16 1987-06-16 Optical photopolymer composition Pending JPS63314224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14979787A JPS63314224A (en) 1987-06-16 1987-06-16 Optical photopolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14979787A JPS63314224A (en) 1987-06-16 1987-06-16 Optical photopolymer composition

Publications (1)

Publication Number Publication Date
JPS63314224A true JPS63314224A (en) 1988-12-22

Family

ID=15482927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14979787A Pending JPS63314224A (en) 1987-06-16 1987-06-16 Optical photopolymer composition

Country Status (1)

Country Link
JP (1) JPS63314224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086697A (en) * 2004-12-13 2007-04-05 Hitachi Chem Co Ltd Resin composition for optical material, resin film for optical material and optical waveguide using them
EP1818366A1 (en) * 2004-10-07 2007-08-15 Hitachi Chemical Company, Ltd. Resin composition for optical material, resin film for optical material and optical waveguide using same
JP2011052225A (en) * 2004-12-13 2011-03-17 Hitachi Chem Co Ltd Resin composition for optical waveguide material, resin film for optical waveguide material and optical waveguide using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818366A1 (en) * 2004-10-07 2007-08-15 Hitachi Chemical Company, Ltd. Resin composition for optical material, resin film for optical material and optical waveguide using same
EP1818366A4 (en) * 2004-10-07 2009-03-04 Hitachi Chemical Co Ltd Resin composition for optical material, resin film for optical material and optical waveguide using same
US7751678B2 (en) 2004-10-07 2010-07-06 Hitachi Chemical Company, Ltd. Resin composition for optical material, resin film for optical material and optical waveguide using same
EP2392619A1 (en) * 2004-10-07 2011-12-07 Hitachi Chemical Company, Ltd. Resin composition for optical material, resin film for optical material, and optical waveguide using same
US8326110B2 (en) 2004-10-07 2012-12-04 Hitachi Chemical Company, Ltd. Flexible optical waveguide having a cladding layer composed of a resin for forming a cladding layer and a base material film
JP2007086697A (en) * 2004-12-13 2007-04-05 Hitachi Chem Co Ltd Resin composition for optical material, resin film for optical material and optical waveguide using them
JP2011052225A (en) * 2004-12-13 2011-03-17 Hitachi Chem Co Ltd Resin composition for optical waveguide material, resin film for optical waveguide material and optical waveguide using the same

Similar Documents

Publication Publication Date Title
KR940000088B1 (en) Plate plastics optical wave guide
JPH03209442A (en) Multiplexer-demultiplexer for opticalic and its manufacture
EP0220652A2 (en) Method for manufacturing phase gratings of a combination pattern-refraction modification type
KR20000010541A (en) Nitrone compounds as photo-polymer polymerization inhibitors and contrast enhancing additives
Murase et al. Photo-optical control with large refractive index changes by photodimerization of poly (vinyl cinnamate) film
US4834480A (en) Composite channel waveguides
JP2599497B2 (en) Flat plastic optical waveguide
Kanokwijitsilp et al. Kinetics of Photocrosslinking and Surface Attachment of Thick Polymer Films
JPS63314224A (en) Optical photopolymer composition
EP0574519A1 (en) Polymeric nitrones having an acrylic backbone chain.
KR100705759B1 (en) Manufacturing Method for Planar Multimode Optical Waveguide by Direct Photo­patterning
JP2533859B2 (en) Optical photosensitive resin composition
US5213915A (en) Holographic recording material and method for holographic recording
JPS6381301A (en) Optical photosensitive resin composition
JP3057161B2 (en) Organic optical waveguide
JPH01302308A (en) Light waveguide, element for manufacture thereof and manufacture of the apparatus and element
US20040033423A1 (en) Holographic recording material
US20020192601A1 (en) Process for the production of film having refractive index distribution
KR100426959B1 (en) Menufacturing Method for Planar Optical Waveguide
JPH0412333A (en) Functional plastic optical waveguide
JPS61290444A (en) Photosetting resin composition
JPH05119203A (en) Microoptical lens and production of optical waveguide
JPS6113201B2 (en)
JPH03288103A (en) Plastic optical waveguide
JPH01273010A (en) Thick-film light guide