JPS63313087A - Method for detecting buried metallic pipe or the like - Google Patents

Method for detecting buried metallic pipe or the like

Info

Publication number
JPS63313087A
JPS63313087A JP62148594A JP14859487A JPS63313087A JP S63313087 A JPS63313087 A JP S63313087A JP 62148594 A JP62148594 A JP 62148594A JP 14859487 A JP14859487 A JP 14859487A JP S63313087 A JPS63313087 A JP S63313087A
Authority
JP
Japan
Prior art keywords
pipe
sensor coils
magnetic
buried metallic
metallic pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62148594A
Other languages
Japanese (ja)
Inventor
Rikizo Senoo
妹尾 力造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissho Industry Co Ltd
Original Assignee
Nissho Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissho Industry Co Ltd filed Critical Nissho Industry Co Ltd
Priority to JP62148594A priority Critical patent/JPS63313087A/en
Publication of JPS63313087A publication Critical patent/JPS63313087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To eliminate the influence of the magnetic field of a main pipe even nearby a branch point of a duct by arranging two magnetic sensors which have equal characteristics coaxially, putting their outputs together differentially, and performing measurement so that sensitivity is high and an error is small. CONSTITUTION:A high-frequency current (10-100kHz) is supplied to a buried metallic pipe 1, etc., directly or inductively and a generated electromagnetic wave is detected by using two magnetic sensor coils L1 and L2. The sensor coils L1 and L2 which have equal characteristics are arranged coaxially at an interval (d) and connected differentially. Those sensor coils L1 and L2 are moved over the buried metallic pipe 1 to be measured and then the sensor coils L1 and L2 at respective positions on a center point O generate electromotive forces +M and -M. Therefore, it is found that the buried metallic pipe 1 is right below the point O where the composite reception output waveform is minimum. Further, when the buried metallic pipe 1 is a branch pipe, lines (p) of magnetic force by the current of the main pipe 2 are not cross-linked with the sensor coils L1 and L2, so only the lines (q) of magnetic force of the branch pipe generate electromotive force, so that a differential voltage is outputted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、埋設金属管あるいはケーブル等を探知する方
法およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for detecting buried metal pipes, cables, etc.

更に詳しくは、本発明は、埋設金属管や埋設ケーブル等
の埋設金属体に電磁波を与え、測定用信号電流の磁界の
みをピックアップし、感度の高い出力により、誤差の少
ない測定値が得られ、また管路の分岐点附近において、
本管の磁界の影響を受けずに分岐管の正確な測定か可能
な埋設金属管等の探知方法を提供するものである。
More specifically, the present invention applies electromagnetic waves to a buried metal body such as a buried metal pipe or a buried cable, picks up only the magnetic field of the measurement signal current, and provides a highly sensitive output to obtain measurement values with few errors. Also, near the branch point of the pipeline,
The present invention provides a method for detecting buried metal pipes, etc., which enables accurate measurement of branch pipes without being affected by the magnetic field of the main pipe.

[従来の技術] 埋設金属管等を探知する方法として、従来は一つの磁気
センサーを垂直に下げて、管路に直角に移動して出力の
最小点を探知する最小法、およびセンサーを水平にして
管路に直角に移動して出力の最大点を探知する最大法が
採用されている。
[Prior art] Conventional methods for detecting buried metal pipes, etc. include the minimum method, in which one magnetic sensor is lowered vertically and moved perpendicular to the pipe to detect the minimum point of output, and the other is the minimum method, in which the sensor is moved horizontally. The maximum method is used, in which the point of maximum output is detected by moving perpendicularly to the pipe.

すなわち、添付図面の第6図は最小法による探知方法を
示し、図中qは埋設金属管1から発生する磁力線を示し
、Ao 、A+ 、A2は磁気センサーコイルAを垂直
にして管路に直角に移動させた場合の各位置を示す。第
7図は前記Ao 、 A +、A2においてセンサーコ
イルAに誘起する電圧の相対関係を管路を中心として示
し、第8図は受信機出力を示す。この方法では、出力の
最小点が管路の直上である。第9図はセンサーコイルを
水平にして管路に直角に移動する最大法による探知方法
を示す。第10図には同センサーコイルの誘起電圧(受
信機出力)を示す。
That is, Fig. 6 of the attached drawings shows a detection method using the minimum method, in which q indicates the magnetic field lines generated from the buried metal pipe 1, and Ao, A+, and A2 are the magnetic sensor coils A perpendicular to the pipe line. The respective positions are shown when moved to . FIG. 7 shows the relative relationship between the voltages induced in the sensor coil A at Ao, A+, and A2, centering on the conduit, and FIG. 8 shows the receiver output. In this method, the minimum point of output is directly above the conduit. FIG. 9 shows a detection method using the maximum method in which the sensor coil is held horizontally and moved perpendicular to the pipe. FIG. 10 shows the induced voltage (receiver output) of the sensor coil.

[発明が解決しようとする問題点コ 航記最小法の長所は、中心点を比較的シャープに測定で
きることである。しかるに、雑音磁界(測定用の信号電
流による磁界以外の不要な妨害磁界)の影響を受は易い
。その結果、測定値に誤差を生ずる場合が多いことが欠
点である。一方、最大法は、雑音磁界による誤差を生ず
ることは少ないが、出力信号の最大値附近のピークの特
性がなだらかで、測定精度の点で劣る。一般的には、こ
の最小法と最大法とを併用して誤差を少なくしているが
、操作が煩雑であり、かつ、満足すべき結果を得ること
は困難である。
[Problems to be Solved by the Invention The advantage of the minimum method is that the center point can be measured relatively sharply. However, it is easily influenced by noise magnetic fields (unnecessary interfering magnetic fields other than the magnetic field caused by the signal current for measurement). As a result, a disadvantage is that errors often occur in measured values. On the other hand, the maximum method does not cause many errors due to noise magnetic fields, but the characteristics of the peak near the maximum value of the output signal are gentle, and the measurement accuracy is inferior. Generally, the minimum method and the maximum method are used together to reduce errors, but the operations are complicated and it is difficult to obtain satisfactory results.

[問題点を解決するための手段] 本発明はこれらの欠点を除去することを目的とする。す
なわち、不必要な雑音磁界は打ち消されて、埋設金属体
に流れる測定用信号電流の磁界のみをピックアップし、
かつシャープで感度の高い出力を得るものである。その
結果、誤差の少ない測定値が得られることを特徴とする
ものである。
[Means for solving the problems] The present invention aims to eliminate these drawbacks. In other words, unnecessary noise magnetic fields are canceled and only the magnetic field of the measurement signal current flowing through the buried metal body is picked up.
It also provides sharp and highly sensitive output. As a result, it is characterized in that measured values with few errors can be obtained.

また、管路の分岐点附近においても、本管の電流による
磁界の影響を受けないので、分岐点まで正確に測定する
ことが可能である。
Further, even near the branching point of the pipe, it is not affected by the magnetic field due to the current in the main pipe, so it is possible to accurately measure up to the branching point.

従って、前記の最小法および最大法の長所のみをとり、
短所を除去した方法ということができる。
Therefore, taking only the advantages of the minimum method and maximum method,
This can be said to be a method that eliminates the disadvantages.

すなわち、本発明の埋設金属管等の探知方法は埋設金属
管等に高周波電流(10KHz〜100に]1z)を直
接あるいは話導的に流して、発生する電磁波を受信し、
埋設管等の位置を探知する方式において、特性の等しい
磁気センサー2個を同軸上に配置し、その出力を差働的
に合成することによって探知することを特徴とするもの
である。
That is, the method for detecting buried metal pipes, etc. of the present invention involves passing a high frequency current (1 Hz from 10 KHz to 100 KHz) through the buried metal pipes, etc. directly or in a guided manner, and receiving the generated electromagnetic waves.
This method of detecting the position of buried pipes, etc. is characterized by arranging two magnetic sensors with the same characteristics on the same axis, and detecting by differentially combining their outputs.

[実施例] 以下に、本発明の埋設金属管等の探知方法を実施例によ
り詳細に説明する。
[Example] Below, the method for detecting a buried metal pipe, etc. of the present invention will be explained in detail with reference to an example.

第1図に示すように、本発明においては、特性の等しい
2個の磁気センサーコイルL1およびL2を間隔dを隔
て同軸Fに配置してあり、かつ両者のセンサーコイルL
、、L2は差働的に接続合成されている。このセンサー
コイルL1.L2を、測定すべき埋設金属体1の上で左
右に移動させた場合に、中心点O上の各位置における各
センサーコイルLl、L2の起電力は第2図に示すよう
になり、中心点0上ではそれぞれ十Mおよび−Mとなる
。即ち、これらを合成した受信機出力は第3図のように
なり、波形の最小点を示す0点の直下に埋設管があるこ
とが解る。
As shown in FIG. 1, in the present invention, two magnetic sensor coils L1 and L2 having the same characteristics are arranged on the same axis F with an interval d, and both sensor coils L
, , L2 are differentially connected and combined. This sensor coil L1. When L2 is moved left and right on the buried metal object 1 to be measured, the electromotive force of each sensor coil Ll and L2 at each position on the center point O becomes as shown in FIG. 0, they are 10M and -M, respectively. That is, the receiver output obtained by combining these becomes as shown in FIG. 3, and it can be seen that there is a buried pipe directly below the 0 point indicating the minimum point of the waveform.

また、埋設金属管としての分岐管1の附近における状態
を第4図に示す。すなわち、本管2の電流による磁力線
をpとすると、この磁力線pはセンサーコイルL、およ
びL2に平行しており鎖交しないから、センサーコイル
L、およびL2には起電力を生じない。従って、分岐管
1による磁力線9のみがセンサーコイルL、、L2と鎖
交して起電力を生じ、その差慟電圧が出力に現れる。
Further, FIG. 4 shows the state in the vicinity of the branch pipe 1 as a buried metal pipe. That is, if the magnetic line of force due to the current in the main pipe 2 is p, the line of magnetic force p is parallel to the sensor coils L and L2 and does not interlink with each other, so no electromotive force is generated in the sensor coils L and L2. Therefore, only the magnetic lines of force 9 caused by the branch pipe 1 interlink with the sensor coils L, L2 to generate an electromotive force, and the differential voltage appears in the output.

また、磁力線9に平行な雑音磁界も起電力を生ずるが、
それは差慟的に接続されたセンサーコイルLl、L2に
おいて常に反対方向の起電力を生ずるので、雑音磁界に
よる出力は互いに打ち消されて現れない。
In addition, a noise magnetic field parallel to the magnetic field lines 9 also generates an electromotive force,
Since it always produces electromotive forces in opposite directions in the differentially connected sensor coils L1 and L2, the outputs due to the noise magnetic field cancel each other out and do not appear.

第5図は第4図の側面を示し、本管2の磁力線Pがセン
サーコイルL、、L2には鎖交せず、分岐管1の磁力線
qのみかセンサーコイルLl、L2に鎖交していること
を示すものである。
Fig. 5 shows a side view of Fig. 4, and the magnetic field lines P of the main pipe 2 do not interlink with the sensor coils L, L2, but only the magnetic field lines q of the branch pipe 1 interlink with the sensor coils Ll, L2. This indicates that there is a

[発明の効果] 上記のように、特性の等しい磁気センサー2個を同軸上
に配置し、その出力を差慟的に合成するので、埋設金属
体の信号電流の磁界のみをピックアップし、雑音磁界の
影響は打ち消される。従って、感度が高く、誤差の少な
い測定値が可能であり、また管路の分岐点附近において
も、木管の磁界の影響を受けることがない。従って、埋
設金属管等の探知において非常に有効である。
[Effects of the invention] As described above, two magnetic sensors with the same characteristics are placed on the same axis and their outputs are differentially combined, so only the magnetic field of the signal current of the buried metal body is picked up, and the noise magnetic field is effect is canceled out. Therefore, it is possible to obtain measured values with high sensitivity and little error, and there is no influence from the magnetic field of the woodwind even near the branching point of the pipe. Therefore, it is very effective in detecting buried metal pipes, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第5図は、本発明の埋設金属管等の探知方法
を示す説明図であり、第1図は埋設金属管および磁気セ
ンサーコイルの位置関係を示す暗示縦断面図、第2図は
磁気センサーコイルの誘起電圧図、第3図は受(3機の
出力図、第4図は分岐管附近の暗示説明図、第5図は第
4図のV−V線における暗示縦断側面図、第6図は従来
の最小法による探知方法を示す暗示縦断面図、第7図は
センサーコイルAの誘起電圧図、第8図は同コイルの受
信機出力図、第9図は最大法による探知方法を示す暗示
縦断面図、および第10図は同コイルの受信機出力図で
ある。
1 to 5 are explanatory diagrams showing the method of detecting a buried metal pipe, etc. of the present invention. is an induced voltage diagram of the magnetic sensor coil, Figure 3 is an output diagram of the three receivers, Figure 4 is an implied explanatory diagram of the vicinity of the branch pipe, and Figure 5 is an implied longitudinal side view taken along the line V-V in Figure 4. , Fig. 6 is an implicit vertical cross-sectional view showing the conventional detection method using the minimum method, Fig. 7 is a diagram of the induced voltage of sensor coil A, Fig. 8 is a receiver output diagram of the same coil, and Fig. 9 is a diagram using the maximum method. An implicit longitudinal cross-sectional view showing the detection method, and FIG. 10 are receiver output diagrams of the same coil.

Claims (1)

【特許請求の範囲】[Claims] 埋設金属管等に高周波電流(10KHz〜100KHz
)を直接あるいは誘導的に流して、発生する電磁波を受
信し、埋設管等の位置を探知する方式において、特性の
等しい磁気センサー2個を同軸上に配置し、かつその出
力を差働的に合成することによって埋設金属管の位置を
探知することを特徴とする埋設金属管等の探知方法。
High frequency current (10KHz to 100KHz) in buried metal pipes, etc.
) is applied directly or inductively to receive the generated electromagnetic waves and detect the position of buried pipes, etc. In this method, two magnetic sensors with the same characteristics are placed coaxially and their outputs are differentially transmitted. A method for detecting buried metal pipes, etc., characterized in that the position of the buried metal pipes is detected by combining them.
JP62148594A 1987-06-15 1987-06-15 Method for detecting buried metallic pipe or the like Pending JPS63313087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62148594A JPS63313087A (en) 1987-06-15 1987-06-15 Method for detecting buried metallic pipe or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62148594A JPS63313087A (en) 1987-06-15 1987-06-15 Method for detecting buried metallic pipe or the like

Publications (1)

Publication Number Publication Date
JPS63313087A true JPS63313087A (en) 1988-12-21

Family

ID=15456245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62148594A Pending JPS63313087A (en) 1987-06-15 1987-06-15 Method for detecting buried metallic pipe or the like

Country Status (1)

Country Link
JP (1) JPS63313087A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123284U (en) * 1990-03-27 1991-12-16
JP2008209241A (en) * 2007-02-27 2008-09-11 Uchihashi Estec Co Ltd Method of sensing magnetic substance
JP2014215066A (en) * 2013-04-23 2014-11-17 高千穂産業株式会社 Method for measuring position of long-size article
WO2015141568A1 (en) * 2014-03-17 2015-09-24 フジテコム株式会社 Buried-metal detection method, and detection device therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420759A (en) * 1977-07-15 1979-02-16 Shimadzu Corp Metal detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420759A (en) * 1977-07-15 1979-02-16 Shimadzu Corp Metal detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123284U (en) * 1990-03-27 1991-12-16
JP2008209241A (en) * 2007-02-27 2008-09-11 Uchihashi Estec Co Ltd Method of sensing magnetic substance
JP2014215066A (en) * 2013-04-23 2014-11-17 高千穂産業株式会社 Method for measuring position of long-size article
US9664810B2 (en) 2013-04-23 2017-05-30 Takachiho Sangyo Co., Ltd. Method of locating the position of linear objects
WO2015141568A1 (en) * 2014-03-17 2015-09-24 フジテコム株式会社 Buried-metal detection method, and detection device therefor
JP2015175786A (en) * 2014-03-17 2015-10-05 大阪瓦斯株式会社 Buried metal search method and search device thereof
US9939546B2 (en) 2014-03-17 2018-04-10 Fuji Tecom Inc. Detection method and detection device of buried metal

Similar Documents

Publication Publication Date Title
US5623203A (en) Remote field flaw sensor including an energizing coil, first and second receiving coil groups oriented perpendicular and a third receiving coil oriented parallel to pipe
US6549011B2 (en) Conductor tracing system
EP0260355B1 (en) Apparatus for detecting inner surface flaw of each pipe constituting pipeline
JPH04340491A (en) Locating apparatus for buried substance
JPH10206390A (en) Method for detecting damage of covering of buried steel pipe
NO146218B (en) DEVICE FOR LOCATING A METAL OBJECT
JP2001516053A (en) Eddy current pipeline inspection apparatus and method
EP1360467B1 (en) Measurement of stress in a ferromagnetic material
EP0343590A3 (en) Eddy current probe
US5592078A (en) Method and apparatus for moving along a boundary between electromagnetically different materials
JPS63313087A (en) Method for detecting buried metallic pipe or the like
JP2865599B2 (en) Exploration methods for buried objects
JP3035724B2 (en) Metal detection method
JPH01250887A (en) Detecting method for buried conductor
JPH07248314A (en) Probe for eddy-current flaw detection
JP2001255304A (en) Method for detecting damage position of coating film of embedded coated piping
CN213023600U (en) Buried metal conductor accurate positioning detector
JPS586912B2 (en) Depth measurement method for underground metal tracks
JPS612065A (en) Flaw detector using eddy current
JPH0326983A (en) Method and apparatus for detecting position of ground embedded pipe
JPH04313097A (en) Measuring device for position of buried cable and measuring method
EP1217391A2 (en) Conductor tracing system
JPH06103291B2 (en) Pipe inspection device by remote field eddy current method
JP2693009B2 (en) Metal flaw detector
JPS5858488A (en) Detector for object buried in ground