JPS63313036A - Transitional absorption spectral method - Google Patents

Transitional absorption spectral method

Info

Publication number
JPS63313036A
JPS63313036A JP14983987A JP14983987A JPS63313036A JP S63313036 A JPS63313036 A JP S63313036A JP 14983987 A JP14983987 A JP 14983987A JP 14983987 A JP14983987 A JP 14983987A JP S63313036 A JPS63313036 A JP S63313036A
Authority
JP
Japan
Prior art keywords
measured
light
excitation light
substance
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14983987A
Other languages
Japanese (ja)
Inventor
Tetsuya Matsui
哲也 松井
Takehiko Kitamori
武彦 北森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14983987A priority Critical patent/JPS63313036A/en
Publication of JPS63313036A publication Critical patent/JPS63313036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable in-line measurement even in multicomponent mixed liquid by irradiating sample liquid with exciting light, further irradiating sample with exciting light having wavelength absorbed by the object material of measurement in an excited state, and measuring the quantity of the absorption of the exciting light. CONSTITUTION:The exciting light 21 from a pulse laser light source 1 shoe pulse intervals are controlled 7 is branched 9, and one is guided to a light source intensity detector 5 and the other is guided to a sample cell 3 to project on the sample 11. The exciting light 22 from a CW laser light source 2 is also guided to a light source intensity detector 6 and the sample 11 similarly. Then materials which do not transit an excited state from a base state with the exciting light 21 are excluded from a detection range, and materials which do not transit the excited state of further upper level with the exciting light 22 are also excluded from the detection range. Consequently, the concentration of a desired object material can be measured. Further, when there is a coexistent material which can not separated, variation in the absorption of the exciting light 22 with lapse of time is measured to find the light absorption quantity in a time area wherein the influence of the coexistent material is little, and the absorption intensity based upon only the contribution of the material to be measured is measured to determine the concentration of the object material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分光分析方法に係夛、特に多成分混合溶液中の
特定の物質の濃度測定に好適な分光分析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spectroscopic analysis method, and particularly to a spectroscopic analysis method suitable for measuring the concentration of a specific substance in a multi-component mixed solution.

〔従来の技術〕[Conventional technology]

従来、吸光分析による溶液中の物質濃度の測定法は、一
般に、測定対象物質の基底状態から励起状態への遷移の
際の光吸収を測定するものである。
Conventionally, the method of measuring the concentration of a substance in a solution by spectrophotometry generally measures light absorption during the transition from the ground state to the excited state of the substance to be measured.

そのうち、特に1多酸分混合溶液甲の物質濃度測定法に
ついては、柴田和雄著「スペクトル測定と分光光度計」
講談社刊、(1974年)第143頁から第145頁に
おいて論じられている。
Among them, the method for measuring the substance concentration of 1 polyacid mixed solution A is described in "Spectral Measurement and Spectrophotometer" by Kazuo Shibata.
Discussed in Kodansha, (1974), pp. 143-145.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は混合成分の数が2〜3種類と少ないとき
には有効であるが、混合成分の数が更に増加した場合に
は、吸収帯の重なシが複雑になシ解析ができなくなると
いう問題がありた。すなわち、環境分析、公害分析、あ
るいは化学プラントのプロセス溶液分析、食品分析、薬
品分析等の様様な溶液系においては、数多くの成分が共
存している場合が多く、その際、従来のような吸収スペ
クトルからは上記の従来技術では成分分析はできないた
め、通常は予め何らかの成分分離を行い、その後分析す
る方法がとられている。
The above conventional technology is effective when the number of mixed components is small, such as 2 to 3 types, but when the number of mixed components increases further, there is a problem that overlapping absorption bands become complicated and analysis becomes impossible. There was. In other words, in various solution systems such as environmental analysis, pollution analysis, process solution analysis of chemical plants, food analysis, and drug analysis, many components often coexist, and in such cases, conventional absorption Since it is not possible to analyze the components from the spectrum using the above-mentioned conventional techniques, a method is usually used in which some kind of component separation is performed in advance and then the analysis is performed.

本発明の目的は、多成分混合溶液中においても予め成分
分離することなく、測定対象物質の濃度を非接触かつイ
ンライン測定することを可能くすることKある。
An object of the present invention is to enable non-contact and in-line measurement of the concentration of a substance to be measured, even in a multi-component mixed solution, without separating the components in advance.

〔問題点を解決するための手段〕 上記目的は、測定対象物質を励起状態にする波長の励起
光(第1励起光)を試料液体に照射して測定対象物質を
励起状態にし、更に、励起状態の測定対象物質が吸収す
る波長の励起光(第2励起光)を試料液体に照射し、そ
の第2励起光の光吸収(過渡吸収)の量を測定すること
Kよシ、また、場合によっては、上記光吸収の量の経時
変化を測定することにより、達成される。
[Means for solving the problem] The above purpose is to irradiate the sample liquid with excitation light (first excitation light) having a wavelength that excites the substance to be measured, to excite the substance to be measured, and to further excite the substance to be measured. In other cases, the sample liquid is irradiated with excitation light (second excitation light) at a wavelength that is absorbed by the substance to be measured, and the amount of optical absorption (transient absorption) of the second excitation light is measured. In some cases, this is accomplished by measuring changes in the amount of light absorption over time.

〔作用〕[Effect]

従来の通常の吸光分析では測定物質の基底状態からの吸
収を見るので、多成分が混合している状態では各成分の
吸収が重なってしまい、成る程度以上型なると濃度定量
は不可能になる。しかし、本発明では、まず、前記の第
1励起光で基底状態から励起状態に遷移されない物質が
検出範囲から除外され、次に、上記第1励起光で励起状
態に遷移する物質のうち、前記第2励起光により更に上
の励起状態に遷移されない物質が検出範囲から除外され
る。これKよシ所望の測定対象物質の#度だけを測定で
きる。この2つの過程を経ても検出範囲から分離できな
い共存物質がある場合には、第2励起光の光吸収の量の
経時変化を測定し、共存物質の影響がない時間領域にお
ける光吸収量を求めて、測定対象物質のみの寄与による
吸収強度を測定することにより、測定対象物質の濃度を
定量することができる。
Conventional normal absorption analysis looks at the absorption from the ground state of the substance to be measured, so when multiple components are mixed, the absorption of each component overlaps, and if the mixture exceeds this level, it becomes impossible to quantify the concentration. However, in the present invention, first, substances that are not transitioned from the ground state to the excited state by the first excitation light are excluded from the detection range, and then, among the substances that are transitioned to the excited state by the first excitation light, the substances are excluded from the detection range. Substances that are not transitioned to a higher excited state by the second excitation light are excluded from the detection range. In this way, only the degree of # of the desired substance to be measured can be measured. If there is a coexisting substance that cannot be separated from the detection range even after these two processes, measure the change over time in the amount of light absorption of the second excitation light and find the amount of light absorption in a time domain where there is no influence of the coexisting substance. By measuring the absorption intensity contributed only by the substance to be measured, the concentration of the substance to be measured can be quantified.

〔実施例〕〔Example〕

第1図は本発明の方法の実施に用いる装置を示し、この
装置は、測定対象物質を基底状態から励起状態に遷移さ
せる波長の第1励起光21を発する第1光源1、第1励
起光21を分岐させるビームスプリッタ9、第1励起光
21を反射するミラー10、測定対象物質を励起状態か
ら更に上の励起状態に遷移させる波長の第2励起光22
を発する第2光源2、第2励起光22を分岐させるビー
ムスプリッタ9′、測定試料11を入れた試料セル3、
第2励起光22が試料セル3を透過した透過光23の強
度を検出する検出器4、第1励起光21の強度をモニタ
する第1光源強度検出器5、第2励起光22の強度をモ
ニタする第2光源強反検出器6、第1光源1を制御し制
御信号を発する制御装置7、検出され九光強にと制御信
号とから測定対象物質の濃度を求めるデータ処理装置8
から成る。
FIG. 1 shows an apparatus used to carry out the method of the present invention, and this apparatus includes a first light source 1 that emits a first excitation light 21 having a wavelength that causes the substance to be measured to transition from a ground state to an excited state; 21, a mirror 10 that reflects the first excitation light 21, and a second excitation light 22 having a wavelength that causes the substance to be measured to transition from an excited state to an even higher excited state.
a second light source 2 that emits light, a beam splitter 9' that branches the second excitation light 22, a sample cell 3 containing a measurement sample 11,
A detector 4 detects the intensity of the transmitted light 23 that the second excitation light 22 passes through the sample cell 3, a first light source intensity detector 5 monitors the intensity of the first excitation light 21, and a first light source intensity detector 5 monitors the intensity of the second excitation light 22. A second light source strong anti-reflection detector 6 that monitors, a control device 7 that controls the first light source 1 and issues a control signal, and a data processing device 8 that calculates the concentration of the substance to be measured from the detected nine light sources and the control signal.
Consists of.

次に個々の構成要素の特徴並びに動作について説明する
Next, the characteristics and operations of individual components will be explained.

まず第1光源IK用いる光源としては、単色性の良い波
長可変なパルス光源が適する。そのような光源としては
フラッジ島ランプを分光器で分光して用いることも可能
であるが、単色性が良く光強度が強いパルスレーザが望
ましい。波長を可変にするには、色素レーザや非線形結
晶等を組み合わせてやれば良い。第1光源1を構成する
このパルス光源のパルス間隔の制御は、制御装置7から
の制御信号(トリガ信号)で行なわれる。第1光源1か
らの第1励起光21はビームスプリッタ9で分岐され、
一方は試料セル3へ、他方は第1光源強度検出器5へ向
けられるが、このときの分岐比は試料セル3側へ大きく
シ、第1光源強度検出器5側へは小さくて良い。この分
岐比はあらかじめ測定しておき、これに基づき第1光源
強度検出器5の測定値により試料セル3に照射した光強
度をデータ処理装置で求める。ここで、第1光源強度検
出器5としては、単色な第1励起光21の強度を測定す
るため、波長依存性の明らかな検出器(例えばホトダイ
オード等)を用いる。
First, as the light source used for the first light source IK, a pulsed light source with good monochromaticity and variable wavelength is suitable. As such a light source, it is possible to use a Frudge Island lamp separated by a spectroscope, but a pulsed laser with good monochromaticity and high light intensity is desirable. To make the wavelength variable, a dye laser, a nonlinear crystal, etc. may be used in combination. The pulse interval of this pulsed light source constituting the first light source 1 is controlled by a control signal (trigger signal) from the control device 7. The first excitation light 21 from the first light source 1 is split by a beam splitter 9,
One side is directed toward the sample cell 3 and the other toward the first light source intensity detector 5, but the branching ratio at this time may be large toward the sample cell 3 side and small toward the first light source intensity detector 5 side. This branching ratio is measured in advance, and based on this, the intensity of the light irradiated onto the sample cell 3 is determined by the data processing device based on the measured value of the first light source intensity detector 5. Here, as the first light source intensity detector 5, in order to measure the intensity of the monochromatic first excitation light 21, a detector with clear wavelength dependence (for example, a photodiode, etc.) is used.

次に第2光源2に用いる光源としては、様々なものを用
いることが可能である。第1光源1と同様なパルス光源
を用いることもできるし、または連続光源を用いること
もできる。但し、パルス光源を用いる場合には第1光源
1との同期をとる必要があるため制御装置7でパルス発
生を制御しなければならない。連続光源の場合はそのよ
うな制御は必要ないが、光源の安定性が高くなければな
らない。連続光源としては、CWレーザやタングステン
ランプ、重水素ランプ等がある。CWレーザは単色性も
良く強度も強いので、測定物質の選択励起に適しておシ
、波長可変レーザを用いれば汎用性も高くなる。一方、
タングステン2ング、重水素ランプ等を用いる場合は分
光器により分光する必要がある。第2励起光22を分岐
させるビームスプリッタ9′及び第2励起光22の強度
を測定する第2光源強度検出器6は、前述したビームス
プリッタ9及び第1光源強匿検出器5と同様のものを用
いることができる。ビームスグリツタ9′の分岐比は予
め測定しておき、第2光源強虻検出器6の測定値により
試料セル3に照射した第2励起光強匿をデータ処理装置
で求める。
Next, various light sources can be used as the second light source 2. A pulsed light source similar to the first light source 1 can be used, or a continuous light source can be used. However, when using a pulsed light source, it is necessary to synchronize with the first light source 1, so the pulse generation must be controlled by the control device 7. Continuous light sources do not require such control, but the light source must be highly stable. Continuous light sources include CW lasers, tungsten lamps, deuterium lamps, and the like. Since the CW laser has good monochromaticity and strong intensity, it is suitable for selective excitation of the substance to be measured, and the use of a wavelength tunable laser increases the versatility. on the other hand,
When using a tungsten lamp, a deuterium lamp, etc., it is necessary to perform spectroscopy using a spectrometer. The beam splitter 9' that branches the second excitation light 22 and the second light source intensity detector 6 that measures the intensity of the second excitation light 22 are similar to the beam splitter 9 and the first light source enhanced detector 5 described above. can be used. The branching ratio of the beam sinter 9' is measured in advance, and the intensity of the second excitation light irradiated onto the sample cell 3 is determined by the data processing device based on the measured value of the second light source intensity detector 6.

試料セル3には、短波長の光の透過特性が良い石英ガラ
スを用いたガラスセルを使用する。
The sample cell 3 is a glass cell made of quartz glass that has good transmission characteristics for short wavelength light.

検出器4には、光電子増倍管やフォトダイオードを用い
る。透過光23の経時変化を測定する場合には光電子増
倍管をオシロスコープと組合わせたり、ゲート可能型の
フォトダイオードを用いると良い。第2光源2にタング
ステンランプや重水素ランプのような広帯域な光源を用
い、分光せずに試料セル3に照射した後にその透過光を
分光し、マルチチャンネル型のフォトダイオードアレイ
検出器を用いることも可能である。
The detector 4 uses a photomultiplier tube or a photodiode. When measuring changes over time in the transmitted light 23, it is preferable to combine a photomultiplier tube with an oscilloscope or use a gateable photodiode. A broadband light source such as a tungsten lamp or a deuterium lamp is used as the second light source 2, and after irradiating the sample cell 3 without spectroscopy, the transmitted light is spectrally separated, and a multi-channel photodiode array detector is used. is also possible.

データ処理装置8は、第1光源強度検出器5、第2光源
強式検出器6、検出器4及び制御装置7の信号を基に後
述する原理に従うて解析し、測定対象物質の濃度を算出
する。
The data processing device 8 analyzes the signals from the first light source intensity detector 5, the second strong light source detector 6, the detector 4, and the control device 7 according to the principle described later, and calculates the concentration of the substance to be measured. do.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

まず、第2図は物質の電子醜位を示したもので、この図
は、簡単のため、基底状態(So)%第1励起状態(S
l)及び第2励起状態(S、)の3準位系について示し
ており、σは励起断面積(吸光係数に相当)、■は励起
光強度、λは緩和速度を表わし、添字ijはSiからS
jへの遷移に関するものであることを示している。本発
明は、SlからS、への励起に着目して測定対象物質の
濃度を求める方法であり % N6 、81 、 S@
の状態で存在する単位体積当シの測定対象物質の原子(
−!たけ分子)の数をNo、  N、、  N、とする
と、N1の変化から測定対象中のアントラセンの基底状
態(So )からの吸収スペクトル(通常の吸収スペク
トル)と励起状態(St )からの吸収スペクトル(過
渡吸収スペクトル)を示した図である。この図かられか
るように過渡吸収のピークは通常基底状態からの吸収ピ
ークよシ長波長側に存在する。
First of all, Figure 2 shows the electron ugliness of a substance.For simplicity, this diagram shows the ground state (So)% first excited state (S
l) and the second excited state (S, ), where σ is the excitation cross section (corresponding to the extinction coefficient), ■ is the excitation light intensity, λ is the relaxation rate, and the subscript ij is Si From S
This indicates that it is related to the transition to j. The present invention is a method for determining the concentration of a substance to be measured by focusing on the excitation from Sl to S.%N6,81,S@
Atoms of the substance to be measured per unit volume existing in the state (
-! Assuming that the number of molecules) is No. It is a figure showing a spectrum (transient absorption spectrum). As can be seen from this figure, the peak of transient absorption usually exists on the longer wavelength side of the absorption peak from the ground state.

第4図はアントラセンの他に共存物質が多成分存在する
場合のベンゼン溶液子の通常の吸収スペクトルと過渡吸
収スペクトルを示したもので、観測される通常の吸収ス
ペクトルを実線で示し、観測される過渡吸収スペクトル
を点線で示している。
Figure 4 shows the normal absorption spectrum and transient absorption spectrum of benzene solution particles when there are multiple coexisting substances other than anthracene.The solid line shows the observed normal absorption spectrum, and the observed The transient absorption spectrum is shown by the dotted line.

通常の吸収スペクトルは多成分の吸収スペクトルが重な
シ合ってアントラセンの基底状態からの吸収スペクトル
(一点鎖線)が弁別不可能になっているのに対し、過渡
吸収スペクトルは通常の吸収スペクトルに更に上積みさ
れて観測できる(図中ハツチングの部分)ので、通常の
吸収スペクトルとの差をとれば過渡吸収のみのスペクト
ルを得ることができる。このように、本発明では、通常
の吸収の量をバックグラウンドとして引き去り、過渡吸
収の量のみを測定する。すなわち、本発明は一種の内部
標準法であるということができる。
In a normal absorption spectrum, the absorption spectra of multiple components overlap and the absorption spectrum from the ground state of anthracene (dotted chain line) becomes indistinguishable, whereas the transient absorption spectrum is further added to the normal absorption spectrum. Since they can be observed in an overlapping manner (hatched area in the figure), by taking the difference from the normal absorption spectrum, it is possible to obtain a spectrum of only transient absorption. Thus, in the present invention, the amount of normal absorption is subtracted as a background and only the amount of transient absorption is measured. In other words, the present invention can be said to be a kind of internal standard method.

次に過渡吸収分光法に訃ける濃度定食の方法について解
析する。
Next, we will analyze the method of concentration setting based on transient absorption spectroscopy.

まず、製置定量の方法の一つとして、第1光源°  l
にパルス光源(波長ω、)を用い、第2光源2に連続光
源(波長0重)を用いた場合について考える。
First, as one of the pre-quantitative methods, the first light source
Consider a case where a pulsed light source (wavelength ω,) is used for the second light source 2, and a continuous light source (wavelength 0x) is used for the second light source 2.

第1光源1から試料セル3に入射した第1励起光の強度
を工@1.第2光源2から試料セル3に入射した第2励
起光の強度をIlmとする0このとき、第1図の3重位
系の電子準位モデルを用い、第1光源のパルス発生時を
i=Qとすると、各準位の測定対象物質の原子(または
分子)の存在数N0゜N1.N、の初期条件は、測定対
象物質の全原子(または分子)数をNとすると となる。そして、N、、  N1. N、の経時変化は
次の連立微分方程式で表わすことができる。
The intensity of the first excitation light incident on the sample cell 3 from the first light source 1 is calculated as follows: Let Ilm be the intensity of the second excitation light incident on the sample cell 3 from the second light source 2. At this time, using the electron level model of the triple-level system shown in Figure 1, the pulse generation time of the first light source is i. = Q, the number of atoms (or molecules) of the substance to be measured at each level is N0°N1. The initial condition for N is as follows, where N is the total number of atoms (or molecules) of the substance to be measured. And, N,, N1. The change over time of N can be expressed by the following simultaneous differential equations.

(2)式は(1)式の初期条件の下で解析的に解くこと
ができ、次のような式に表わすことができる。
Equation (2) can be solved analytically under the initial conditions of Equation (1), and can be expressed as the following equation.

e′″″(p−q)“)、、、、1.)、−<p−q>
 t)、、、、、、、5)ここで1 、さて、ここでNt (t) K着目し、Nt (t)
の対数をとると次のようKなる。
e'''''(p-q)''),,,,1.),-<p-q>
t) , , , , , 5) Here 1 , Now, here Nt (t) Focusing on K, Nt (t)
Taking the logarithm of , we get K as follows.

1nNt(t)=−(P Q)t+A!n(((1+r
)e−2qt+((1−r))qt−coでe−2qt
→0であるからとなり、znNt(りのある時間を越え
ると時間tに関する一次式で減少していき、その傾き−
(p−q)は第2励起光22の強度1**が一定のとき
、物質固有を値を示すことがわが石。
1nNt(t)=-(PQ)t+A! n(((1+r
)e-2qt+((1-r))qt-co to e-2qt
→0, and after a certain time znNt(), it decreases according to a linear equation related to time t, and its slope -
It is our principle that (p-q) indicates a value specific to the substance when the intensity 1** of the second excitation light 22 is constant.

そこで、観測される波長内における吸光& A (t)
は、試料セル3の光路長をtとすると A(t)−σ□zNt(t)l     −・・−(8
1すなわち よりて、求める測定対象物質のatは により求めることができる。A(りは第2光源20入射
光強度I1m及び透過光強度IS* (j)からで求め
られる。
Therefore, the absorption within the observed wavelength &A (t)
is A(t)−σ□zNt(t)l −・・−(8
1, that is, the at of the target substance to be measured can be determined by the following. A(ri) is determined from the incident light intensity I1m of the second light source 20 and the transmitted light intensity IS* (j).

以上は、第1励起光・21および第2励起光22によ)
過渡吸収を生ずる物質が一橋類のみ存在す’L  4J
I  Alr /%  I−+F−罎 −a  」L 
1*     −−1−ふル −−+−、+−−+、 
 、    。
The above is based on the first excitation light 21 and the second excitation light 22)
There are only Hitotsubashi substances that cause transient absorption.'L 4J
I Alr /% I−+F−罎−a”L
1* −−1−ful −−+−, +−−+,
, .

び第2励起光により過渡吸収を生ずる物質が多成分混在
している場合における測定対象物質の濃度測定について
第5図を用いて説明する。
The measurement of the concentration of a substance to be measured in a case where a plurality of substances that cause transient absorption by the second excitation light and the second excitation light are mixed will be explained with reference to FIG.

第1励起光21及び第2励起光22により過渡吸収を生
ずる物質がx、y、zの3種類あったとする。これらの
物質の励起断面積や緩和速には異なるので、各物質の8
8状態の存在数N1の経時変化は第5図のようになる。
Assume that there are three types of substances x, y, and z that cause transient absorption by the first excitation light 21 and the second excitation light 22. Since the excitation cross sections and relaxation speeds of these substances differ, the 8
The change over time in the number N1 of 8 states is shown in FIG.

さて、このとき測定される吸光f A (t)は、各物
質の過渡吸収の吸光度Ax (t) 、  Ay (t
) 、 Az (t)に、第2励起光22(波長ω、)
により共存物質の基底状態からの吸収が生じる際の吸光
度ABCを足したものとなる。すなわち、A (t) 
= Ax (t) + Ay (t) + Az (t
) + ABG −・・・−・α1ここで、ABCは第
1励起光21を照射していない時に測定することができ
る。すなわち、内部標準がとれるため、共存物質が変動
してもかまわない。
Now, the absorbance f A (t) measured at this time is the absorbance of transient absorption of each substance Ax (t), Ay (t
), Az (t), the second excitation light 22 (wavelength ω, )
It is the sum of the absorbance ABC when absorption occurs from the ground state of the coexisting substances. That is, A (t)
= Ax (t) + Ay (t) + Az (t
) + ABG −...−・α1 Here, ABC can be measured when the first excitation light 21 is not irradiated. In other words, since an internal standard can be obtained, it does not matter if the coexisting substances vary.

ここで、測定したい物質(測定対象物質)が2のときは
、第5図かられかるように2はN1の減衰がx、yに比
べ遅いため、時間t1〜1.の間では、2のみの寄与と
なるのでその時点における吸光度はA (t)≠Az 
(t) + ABG ・・・・・−αQ′となシ、zの
濃度を簡単〈求めることができる。
Here, when the substance to be measured (measurement target substance) is 2, as can be seen from FIG. 5, the attenuation of N1 is slower in 2 than in x and y, so the time t1 to 1. Between, the contribution is only 2, so the absorbance at that point is A (t)≠Az
(t) + ABG...-αQ' and the concentration of z can be easily found.

一方、測定したい物質がx、  yの場合は上記の方法
は不可能なため、時間t=Q〜1.間の吸光度変化を関
数フィッティングにより3成分く分解し、各々の濃度を
測定する方法をとることが可能である。
On the other hand, if the substances to be measured are x or y, the above method is not possible, so the time t=Q~1. It is possible to use a method of breaking down the absorbance change between the two components into three components by function fitting and measuring the concentration of each component.

本発明の別な実施例を第6図により説明する。Another embodiment of the present invention will be described with reference to FIG.

この実施例は、過渡吸収の量を検出する信号と、して試
料セル3忙取り付けた音響上ンサ12からの光音響信号
を測定するものである。この場合第2励起状態S、から
第1励起状態S8への無輻射緩和を検出することになる
。したがってその無輻射緩和速度を24重とすると、光
音響信号p (t)はp(t)−λ12□Nz(t) 
    ・・−・・α力と表わすことができ、これによ
り測定対象物質の濃11Nを求めることができる。
In this embodiment, a signal for detecting the amount of transient absorption and a photoacoustic signal from an acoustic sensor 12 attached to the sample cell 3 are measured. In this case, non-radiative relaxation from the second excited state S to the first excited state S8 is detected. Therefore, if the nonradiative relaxation rate is 24 times, the photoacoustic signal p (t) is p(t) - λ12□Nz(t)
. . . It can be expressed as α force, and from this the concentration 11N of the substance to be measured can be determined.

光音響信号の検出器としては、マイクロフォンや圧電振
動子等の音響上ンサ12を試料セル3に密着させて用い
、得られた信号を前置増幅器13で増幅してデータ処理
装置8に送る。
As a photoacoustic signal detector, an acoustic sensor 12 such as a microphone or a piezoelectric vibrator is used in close contact with the sample cell 3, and the obtained signal is amplified by a preamplifier 13 and sent to the data processing device 8.

本実施例では、光音響信号を検出することにより、透過
光強度測定法よシも検出感度を向上させることができる
In this embodiment, by detecting a photoacoustic signal, detection sensitivity can be improved compared to the transmitted light intensity measurement method.

本発明の更に別な実施例を第7図に示す。この実施例に
おいては、ビームスプリッタ9を2個組み合わせること
Kより、試料セル3に対して第1励起光21と第2励起
光22を同軸上にくるようにし、更に試料セル3の光路
長tを長くとるようにし、試料セル3からの透過光につ
いては、光吸収フィルタ14により第1励起光21を吸
収して第2励起光22の透過光23のみを検出器4に送
るようにする。この光吸収フィルタ14の代シに ・分
光器を設置し、透過光23のみを検出することも可能で
ある。本実施例のような方法をとることにより、第1励
起光21及び第2励起光23の励起効4を向上させ、検
出感度を向上させることができる。
Yet another embodiment of the invention is shown in FIG. In this embodiment, by combining two beam splitters 9, the first excitation light 21 and the second excitation light 22 are coaxial with respect to the sample cell 3, and the optical path length t of the sample cell 3 is As for the transmitted light from the sample cell 3, the first excitation light 21 is absorbed by the light absorption filter 14, and only the transmitted light 23 of the second excitation light 22 is sent to the detector 4. It is also possible to install a spectrometer in place of this light absorption filter 14 and detect only the transmitted light 23. By adopting the method of this embodiment, the excitation efficiency 4 of the first excitation light 21 and the second excitation light 23 can be improved, and the detection sensitivity can be improved.

前述までに述べた装置において、第1光源1及び第2光
#、2に半導体レーザ等の非常に小さ々光源を利用し、
一方、検出器4等にフォトダイオードのような小さな検
出器を用いることKより、装置は小型化が可能であ夛、
−人で自由に持ち運ぶことのできる大きさくすることが
できる。このようにすることにより、河川の汚染状況の
調査等をその場で簡単に行なえるようにすることができ
る。
In the apparatus described above, very small light sources such as semiconductor lasers are used as the first light source 1 and the second lights #2,
On the other hand, by using a small detector such as a photodiode as the detector 4, the device can be made smaller.
- Can be made large enough to be carried freely by a person. By doing this, it is possible to easily conduct an investigation of the pollution situation of a river on the spot.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多成分共存物質存在下における溶液中
の測定対象物質の寄与のみによる信号を取シ出し測定対
象物のa度を測定することができる。また測定対象物質
のa式定量を非接触かつインラインで行うことができる
という効果がある。
According to the present invention, it is possible to extract a signal due only to the contribution of a substance to be measured in a solution in the presence of a multi-component substance and measure the a degree of the substance to be measured. Another advantageous effect is that the a-type quantification of the substance to be measured can be performed non-contact and in-line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いる装置の構成図、第2図は
測定物質の電子準位モデル図、第3図は共存物質がない
場合におけるアントラセンの吸収及び過渡吸収スペクト
ルの図、第4図は共存物質がある場合におけるアントラ
センの吸収及び過渡吸収スペクトルの図、第5図は本発
明の別の実施例の測定原理図、第6図は本発明の別の実
施例に用いる装置の構成図、第7図は本発明の更に別の
実施例に用いる装置の構成図である。 1・・・第1光源    2・・・第2光源3・・・試
料セル    4・・・検出器5・・・第1光源強直検
出器 6・・・第2光源強度検出器7・・・制御装置 
   8・・・データ処理装置9.9′・・・ビームス
プリッタ 10・・・ミラー11・・・測定試料   
12・・・音響センサ13・・・前置増幅器  14・
・・光吸収フィルタ31.32.33・・・信号伝送ケ
ーブル。 波 長 (1匍
Figure 1 is a configuration diagram of the apparatus used to carry out the present invention, Figure 2 is an electronic level model diagram of the measured substance, Figure 3 is an illustration of the absorption and transient absorption spectrum of anthracene in the absence of coexisting substances, and Figure 4 The figure shows the absorption and transient absorption spectrum of anthracene in the presence of coexisting substances, Figure 5 shows the measurement principle of another embodiment of the present invention, and Figure 6 shows the configuration of the apparatus used in another embodiment of the present invention. 7 are configuration diagrams of an apparatus used in yet another embodiment of the present invention. 1... First light source 2... Second light source 3... Sample cell 4... Detector 5... First light source rigidity detector 6... Second light source intensity detector 7... Control device
8...Data processing device 9.9'...Beam splitter 10...Mirror 11...Measurement sample
12...Acoustic sensor 13...Preamplifier 14.
...Light absorption filter 31.32.33...Signal transmission cable. Wavelength (1 liter)

Claims (1)

【特許請求の範囲】 1 測定対象物質を励起状態にする波長の励起光(第1
励起光)を試料液体に照射して測定対象物質を励起状態
にし、更に、励起状態の測定対象物質が吸収する波長の
励起光(第2励起光)を前記試料液体に照射し、その第
2励起光の光吸収量を測定して、前記試料液体中の測定
対象物質の濃度を定量することを特徴とする過渡吸収分
光方法。 2 前記第2励起光の光吸収量の経時変化を測定し、光
吸収量に含まれる測定対象物質以外の共存物質の寄与に
よる影響を減衰時間の違いまたは関数フィッティングを
用いて除去し、前記試料液体中の測定対象物質濃度を定
量することを特徴とする特許請求の範囲第1項記載の過
渡吸収分光方法。 3 前記第2励起光の光吸収量測定を、第2励起光が試
料液体を透過した後の透過光強度を光検出器により測定
して行うことを特徴とする特許請求の範囲第1項又は第
2項記載の過渡吸収分光方法。 4 前記第2励起光の光吸収量測定を、第2励起光を試
料液体に照射したときに発生する光音響信号を音響セン
サーにより検出することによって行うことを特徴とする
特許請求の範囲第1項又は第2項記載の過渡吸収分光方
法。
[Claims] 1. Excitation light of a wavelength that excites the substance to be measured (first
The sample liquid is irradiated with excitation light to excite the substance to be measured, and the sample liquid is further irradiated with excitation light (second excitation light) having a wavelength that is absorbed by the substance to be measured in the excited state. A transient absorption spectroscopy method characterized in that the concentration of a substance to be measured in the sample liquid is determined by measuring the amount of light absorption of excitation light. 2. Measure the change over time in the light absorption amount of the second excitation light, remove the influence of the contribution of coexisting substances other than the measurement target substance included in the light absorption amount by using a difference in decay time or function fitting, and The transient absorption spectroscopy method according to claim 1, characterized in that the concentration of a substance to be measured in a liquid is determined. 3. The light absorption amount of the second excitation light is measured by using a photodetector to measure the transmitted light intensity after the second excitation light passes through the sample liquid. 2. The transient absorption spectroscopy method according to item 2. 4. The light absorption amount of the second excitation light is measured by using an acoustic sensor to detect a photoacoustic signal generated when the sample liquid is irradiated with the second excitation light. The transient absorption spectroscopy method according to item 1 or 2.
JP14983987A 1987-06-16 1987-06-16 Transitional absorption spectral method Pending JPS63313036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14983987A JPS63313036A (en) 1987-06-16 1987-06-16 Transitional absorption spectral method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14983987A JPS63313036A (en) 1987-06-16 1987-06-16 Transitional absorption spectral method

Publications (1)

Publication Number Publication Date
JPS63313036A true JPS63313036A (en) 1988-12-21

Family

ID=15483783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14983987A Pending JPS63313036A (en) 1987-06-16 1987-06-16 Transitional absorption spectral method

Country Status (1)

Country Link
JP (1) JPS63313036A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278441A (en) * 1991-03-06 1992-10-05 Agency Of Ind Science & Technol Method for measuring absorption quantity of light
JP2007212145A (en) * 2006-02-07 2007-08-23 Toyota Central Res & Dev Lab Inc Transient absorption measuring instrument
WO2015178400A1 (en) * 2014-05-22 2015-11-26 株式会社ユニソク Transient absorption measurement method and transient absorption measurement device
JP2016154584A (en) * 2015-02-23 2016-09-01 日本電信電話株式会社 Constituent concentration measuring apparatus and measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278441A (en) * 1991-03-06 1992-10-05 Agency Of Ind Science & Technol Method for measuring absorption quantity of light
JP2007212145A (en) * 2006-02-07 2007-08-23 Toyota Central Res & Dev Lab Inc Transient absorption measuring instrument
WO2015178400A1 (en) * 2014-05-22 2015-11-26 株式会社ユニソク Transient absorption measurement method and transient absorption measurement device
JP2015222192A (en) * 2014-05-22 2015-12-10 株式会社ユニソク Transient absorption measuring method and transient absorption measuring device
US9709497B2 (en) 2014-05-22 2017-07-18 Unisoku Co., Ltd. Transient absorption measurement method and transient absorption measurement apparatus
JP2016154584A (en) * 2015-02-23 2016-09-01 日本電信電話株式会社 Constituent concentration measuring apparatus and measuring method

Similar Documents

Publication Publication Date Title
US7745789B2 (en) Measuring technique
US8693004B2 (en) Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source
US5949532A (en) Method and apparatus for Raman correlation spectroscopy
US20070096039A1 (en) Evaluation Of Multicomponent Mixtures Using Modulated Light Beams
KR100793517B1 (en) Method and apparatus for spectrometric analysis of turbid, pharmaceutical samples
GB1495057A (en) Simultaneous transmission of periodic spectral components by plural interferometric means
US7292342B2 (en) Entangled photon fourier transform spectroscopy
JPH06174640A (en) Transient diffraction grating spectorscopy
AU2002243137A1 (en) New measuring technique
US20030205682A1 (en) Evaluation of multicomponent mixtures using modulated light beams
US9664561B2 (en) Technique to discriminate against ambient and scattered laser light in Raman spectrometry
Lewis et al. A novel multiplex absorption spectrometer for time-resolved studies
CN109991197A (en) Measure the spectrophotometer and method of fluorescent characteristic
JPS63313036A (en) Transitional absorption spectral method
EP0016303A1 (en) Photoacoustic rotational Raman spectroscopy
RU2478192C2 (en) Method for optical remote detection of compounds in medium
US11781978B2 (en) Spectroscopic measurement device
Beadie et al. Towards a FAST-CARS anthrax detector: analysis of cars generation from DPA
KR970047965A (en) Simultaneous Measurement Device and Method of Molten Steel Component and Molten Steel Temperature
JPS58100741A (en) Laser raman spectroscopic apparatus removing fluorescence
WO2004027398A1 (en) Method and apparatus for quantitative analysis of a turbid, pharmaceutical sample
SU1267232A1 (en) Method of determining sign of non-resonance non-linear cubic susceptibility of substance
Czyzewski et al. Study of optoelectronic NO 2 detector using cavity enhanced absorption spectroscopy
Makogon et al. Absorption and fluorescence laser spectroscopy and its application for environmental monitoring
JPS5788348A (en) Method and device for spectral fluorescence