JPS63312128A - Dwelling process control device of injection molder - Google Patents

Dwelling process control device of injection molder

Info

Publication number
JPS63312128A
JPS63312128A JP14685887A JP14685887A JPS63312128A JP S63312128 A JPS63312128 A JP S63312128A JP 14685887 A JP14685887 A JP 14685887A JP 14685887 A JP14685887 A JP 14685887A JP S63312128 A JPS63312128 A JP S63312128A
Authority
JP
Japan
Prior art keywords
dwelling
pressure
speed
holding
holding pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14685887A
Other languages
Japanese (ja)
Other versions
JPH053814B2 (en
Inventor
Yoshiya Taniguchi
吉哉 谷口
Seiichi Tsuchiya
土屋 征一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP14685887A priority Critical patent/JPS63312128A/en
Publication of JPS63312128A publication Critical patent/JPS63312128A/en
Publication of JPH053814B2 publication Critical patent/JPH053814B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To perform rational sectional change-over and enhance dimensional accuracy by a method wherein the change-over of dwelling section is automatically done by comparing dwelling speed with a plurality of preset forward speeds of an injection member and the dwelling is brought to an end at the time when the deceleration of the forward speed of the injection member since the application of dwelling pressure exceeds a certain value. CONSTITUTION:Dwelling speed (v) is inputted from data to comparators 28 and 29 and a processor 30. Further, a dwelling first speed critical value V1 and a dwelling second speed critical valve V2 are inputted respectively to the comparators 28 and 29. When the dwelling speed (v) lowers down to the dwelling first speed critical value V1, the trigger pulse sent from the comparator 28 is inputted to a gate 33, in which a dwelling pressure P2 is inputted, resulting in outputting a signal to a comparator 36 so as to control a servo motor 10 in order to make the measured injection pressure (p) equal to P2. Similarly, when the dwelling speed (v) lowers to the dwelling second speed critical value V2, the trigger pulse output sent from the comparator 29 is outputted through a gate 34 to a comparator 37 so as to act and control the servo motor 10 in order to make the injection pressure equal to P3, resulting in setting the dwelling pressure to P3. When the dwelling speed (v) lowers to V3, a stop signal is issued from the processor in order to input to the servo motor 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、射出成形機の射出充填(Filling)工
程に続く保圧(Packing)工程における保圧力の
多段制御装置の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a multi-stage control device for holding force in a packing process following an injection filling process of an injection molding machine.

〔従来の技術〕[Conventional technology]

射出成形機において、混ts溶融されたプラスチック原
料を金型キャビティに充填する射出工程に続いて、キャ
ビティ内でまだ流動性を保持している溶融樹脂をキャビ
ティの末端まで圧縮して、金型キャビティの形状どおり
のプラスチック成形品を仕上げるための保圧工程に入る
In an injection molding machine, following the injection process in which mixed molten plastic raw materials are filled into a mold cavity, the molten resin, which still maintains fluidity within the cavity, is compressed to the end of the cavity to fill the mold cavity. The pressure holding process begins to finish the plastic molded product according to the shape.

ここで、成形品が金型キャビティの寸法を正確に転写し
ているかどうか、即ち成形品の寸法精度を決定する要因
は、キャビティ内に充填された樹脂温度、保圧力の大き
さ、及びこの保圧力を印加する持続時間である。
Here, the factors that determine whether the dimensions of the mold cavity are accurately transferred to the molded product, that is, the dimensional accuracy of the molded product, are the temperature of the resin filled in the cavity, the magnitude of the holding force, and this holding force. This is the duration for which pressure is applied.

充分な保圧力でしかも必要な時間印加されないと、寸法
精度が低下し、所謂ヒケやシッートショットが発生する
。しかし、保圧力とそれを印加する持続時間を過大に設
定すると、成形品内部に圧縮歪が残る所謂オーバーパッ
ク状態が発生し、型開き直後の成形品精度は確保されて
いても、時間の経過と共にソリや変形が生じて精度が低
下してしまう、極端な場合には成形品の使用中に内部歪
によるクランクが生じることもある。このオーバーパッ
ク防止のために成形時に保圧力を何段かに区分して低下
させてゆく多段保圧方法が公知の技術として存在する。
If sufficient holding pressure is not applied for the necessary time, dimensional accuracy will deteriorate and so-called sink marks and seat shots will occur. However, if the holding force and the duration of applying it are set too high, a so-called overpack condition will occur where compressive strain remains inside the molded product, and even if the molded product accuracy is ensured immediately after opening the mold, it will deteriorate over time. Along with this, warpage and deformation occur, reducing accuracy. In extreme cases, internal strain may cause cranking during use of the molded product. In order to prevent this overpacking, a multi-stage pressure holding method exists as a known technique in which the holding pressure is lowered in several stages during molding.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第5図は上述した従来の多段保圧法の実施状態を示す。 FIG. 5 shows the implementation state of the conventional multi-stage pressure holding method described above.

同図において、従来の射出成形機では、保圧1、保圧2
、保圧3・・・の各工程の持続時間t1、t2、t3・
・・と、保圧力P、 、P! 、P2  ・・・を成形
機の設定装置を介して人手により入力することにより、
前記t6区間は保圧力P+、Lt区間は保圧力Pgとい
うように制御している。
In the same figure, in a conventional injection molding machine, holding pressure 1, holding pressure 2
, holding pressure 3... duration time t1, t2, t3.
...and holding pressure P, ,P! , P2... by manually inputting them through the setting device of the molding machine.
The t6 section is controlled to have a holding pressure of P+, and the Lt section is controlled to a holding pressure of Pg.

以上の制御を実現するために、操作者はキャビティ内に
射出充填された原料の状態を充分に把握した上で、その
原料の状態に最適な保圧mtrtt時間や保圧力を設定
しなければならなかった。また同じ原料樹脂を使用して
も、充填射出時の樹脂温度、樹脂流路の状態等によって
、保圧継続時間や保圧力はかなり異なってしまい、操作
者はこれらの条°件も考慮して入力を行わねばならない
。つまり従来の方法は多段保圧における各区分の移行を
、時間を基準にして行うことになり、キャビティ内の樹
脂流動の状態と必ずしも一致しないファクターにより行
っているため、結局操作者の経験と感に顧ることになり
、操作者に対して大きな負担を強いると共に、場合によ
っては不適切な操作となってしまう虞れもある。
In order to achieve the above control, the operator must fully understand the condition of the raw material injected into the cavity and set the optimal holding pressure mtrtt time and holding force for the condition of the raw material. There wasn't. Furthermore, even if the same raw material resin is used, the holding pressure duration and holding pressure will vary considerably depending on the resin temperature during filling injection, the condition of the resin flow path, etc., and the operator must take these conditions into account. input must be made. In other words, in the conventional method, the transition between each section in multi-stage holding pressure is performed based on time, and this is done based on factors that do not necessarily match the state of resin flow in the cavity. This imposes a heavy burden on the operator and may lead to inappropriate operation in some cases.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点に鑑み構成したものであり、「射
出成形時において、保圧力切換点を過ぎ、保圧工程に入
った後も、キャビティ内の樹脂には未だ流動性があるた
め、スクリュー先端に加わる保圧力で圧縮される。この
ためキャビティの微細部まで充填されてゆくにつれて、
スクリュー先端の位置は、保圧切替点より僅かではある
が前進を続け、キャビティ入口のゲート部が冷却、固化
して始めて完全に停止する」という事実に着目して構成
したものである。
The present invention has been constructed in view of the above-mentioned problems. ``During injection molding, even after the holding pressure switching point has passed and the holding pressure step has been entered, the resin in the cavity still has fluidity. It is compressed by the holding force applied to the tip of the screw.For this reason, as the cavity is filled to the finest parts,
This design focuses on the fact that the screw tip continues to move forward, albeit slightly, beyond the pressure retention switching point, and stops completely only after the gate at the cavity entrance cools and solidifies.

具体的には、保圧工程中の射出部材の前進速度(保圧速
度)を検出して、予め設定した複数個の射出部材前進速
度と比較することにより複数個の保圧区間の切替を自動
的に行う手段と、この複数個の保圧区間毎に予め設定し
た複数個の保圧力を印加して保圧工程を進行させる手段
と、射出部材の前進速度の減速率が一定値を越えた時を
ゲートシールと判定して保圧工程を終了し次の工程に移
行させる手段とからなる装置である。
Specifically, by detecting the forward speed of the injection member during the pressure holding process (pressure holding speed) and comparing it with the advance speed of multiple injection members set in advance, the switching between multiple holding pressure sections is automatically performed. means for advancing the pressure holding process by applying a plurality of preset holding forces for each of the plurality of holding pressure sections; This device includes a means for determining that the time is gate seal, terminating the pressure holding process, and moving on to the next process.

〔作用〕[Effect]

射出充填を開始してからスクリュー位置をエンコーダ等
の位置センサにより制御部に入力し、このスクリューが
保圧の位置に達したか否かを判断し、保圧位置に達した
ならば射出充填圧から第一段の保圧に切替え、エンコー
ダパルス毎にその間の分周タクトパルス数をカウントし
、保圧速度に逆比例するそのカウント数が設定保圧速度
値と一敗したならば第二段の保圧とし、さらに第二段の
保圧速度実測値が設定値と一致したならば第三段の保圧
とし、所定時間経過した後保圧工程を終了して次の工程
に移る。
After starting injection filling, the screw position is input to the control unit using a position sensor such as an encoder, and it is determined whether or not this screw has reached the holding pressure position.If the screw reaches the holding pressure position, the injection filling pressure is Then, switch to the first stage holding pressure, count the number of divided tact pulses for each encoder pulse, and if the counted number, which is inversely proportional to the holding pressure speed, is equal to the set pressure holding speed value, the second stage starts. The holding pressure is set to 1, and when the measured value of the holding pressure speed in the second stage matches the set value, the holding pressure is set to the third stage, and after a predetermined period of time has passed, the holding pressure step is completed and the process moves to the next step.

〔実施例〕〔Example〕

先ず本発明の構成を全体的に概観すれば次のとおりであ
る。
First, an overall overview of the configuration of the present invention is as follows.

(1)射出スクリューの前進作動と連動するラックアン
ドピニオン機構を設置し、ピニオンと共軸に作動するエ
ンコーダ等の位置センサからの位置信号を、制御盤に入
力する手段(但し、最近のサーボモータ駆動の射出装置
ではサーボモータの回転駆動をスクリューの直線運動に
変換するボール精密ボールねじ機構を用いるので、上述
のラックアンドピニオン機構を介することなく、射出駆
動用サーボモータの回転角を検出するエンコーダからの
位置信号をそのまま使用することができる)と、 (2)上記入力位置信号パルス間に、制御盤のタクトパ
ルスが入る個数を計測するカウンタ手段と、(3)この
カウンタ手段によって演算される保圧速度の実測値と、
予め設定した複数個の保圧速度設定値とを比較し、一致
した時点で信号を出す比較器と、 (4)この比較器からの出力信号により、射出の保圧力
を切替る手段と、 (5)最終保圧区間に入った後、保圧速度が微小になっ
た後にその速度が急速に大きくなる時点を検出して信号
出力を出す手段と、 (6)この出力によって保圧工程を終了させ、次の工程
に入る操作をする手段、 とからなる制御装置である。
(1) A means of installing a rack and pinion mechanism that is linked to the forward movement of the injection screw and inputting position signals from a position sensor such as an encoder that operates coaxially with the pinion to the control panel (however, it is not possible to use a recent servo motor The drive injection device uses a ball precision ball screw mechanism that converts the rotational drive of the servo motor into linear motion of the screw, so an encoder is used to detect the rotation angle of the injection drive servo motor without going through the rack and pinion mechanism described above. (2) a counter means for counting the number of tact pulses from the control panel entered between the input position signal pulses; and (3) a counter means calculated by the counter means. The actual value of the holding pressure speed,
a comparator that compares a plurality of preset holding pressure speed settings and outputs a signal when they match; (4) means for switching the holding pressure for injection based on the output signal from the comparator; 5) A means for detecting the point in time when the speed of holding pressure becomes minute and then rapidly increases after entering the final holding pressure section and outputting a signal; (6) This output ends the holding process. This is a control device consisting of means for operating the machine to enter the next process.

以下本発明の実施例を詳細に説明する。Examples of the present invention will be described in detail below.

第1図はサーボモータ駆動方式による射出装置で、保圧
3段切替え型の装置に対して本発明を実施する状態を示
す。
FIG. 1 shows a state in which the present invention is applied to an injection device driven by a servo motor, which is a three-stage holding pressure switching type device.

射出装置の加熱シリンダ1の内部にはスクリュー2が配
置してあり、このスクリュー2はこのスクリューを回転
させるサーボモータ3、ロードセル4、推力軸受5を介
してスクリュー前進駆動のためのボールねじ6に固着さ
れている。このボールねじ6に螺合する推力ナフト7は
ベヤリング8で支承されており、推力ナソト7はギヤ変
速装置9を介してスクリュー前進用サーボモータ10で
駆動される。
A screw 2 is arranged inside the heating cylinder 1 of the injection device, and this screw 2 is connected to a ball screw 6 for driving the screw forward through a servo motor 3 that rotates the screw, a load cell 4, and a thrust bearing 5. It is fixed. A thrust shaft 7 screwed into the ball screw 6 is supported by a bearing 8, and the thrust shaft 7 is driven by a screw advance servo motor 10 via a gear transmission 9.

11はスクリュー2を前進させる部材に固定したブラケ
ットで、精密ラック12がこのプラケッ)11に固定し
である。13はラック12に係合する精密ピニオン、1
4はこの精密ピニオン13と共軸に回転するエンコーダ
である。なおこれらラックとピニオンの精密度は、例え
ばスクリュー2が0.001鶴前進する間に、エンコー
ダ14から1パルス程度発信できるぐらいの精密度が適
当である。
A bracket 11 is fixed to a member for advancing the screw 2, and a precision rack 12 is fixed to this bracket 11. 13 is a precision pinion that engages with the rack 12;
4 is an encoder that rotates coaxially with this precision pinion 13. The precision of these racks and pinions is appropriately such that, for example, the encoder 14 can transmit about one pulse while the screw 2 moves forward by 0.001 degrees.

この射出装置において、エンコーダ14からのスクリュ
ー前進位置信号パルスlは成形機に接続するマイクロコ
ンビエータ等の制御装?1t20の入力インターフェイ
ス21を介して比較器27とカウンタ22に分岐して入
力される。このうち比較器27はキーボード31からの
保圧切替位置の設定値しも入力され、前記信号パルスl
とこの保圧切替設定値りとが一敗した時点でトリガーパ
ルス出力がゲート32に出力され、ゲート32に準備さ
れている設定保圧力PLが比較器35に出力される。比
較器35には射出圧力の実測値pが、例えばロードセル
4からの信号として入力されており、比較器35でこの
実測値pと設定保圧力P1とが一致するように、増幅器
38を介してサーボモータIOをフィードバック制御し
、これにより設定保圧力P1を正確に維持する。
In this injection device, the screw forward position signal pulse l from the encoder 14 is transmitted to a control device such as a micro combinator connected to the molding machine. It is branched and input to the comparator 27 and counter 22 via the input interface 21 of 1t20. Of these, the comparator 27 also receives the set value of the holding pressure switching position from the keyboard 31, and the signal pulse l
When the holding pressure switching set value and the holding pressure switching setting value are defeated, a trigger pulse output is outputted to the gate 32, and the set holding pressure PL prepared in the gate 32 is outputted to the comparator 35. The actual measured value p of the injection pressure is input to the comparator 35 as a signal from the load cell 4, for example, and the comparator 35 inputs the measured value p of the injection pressure via the amplifier 38 so that the actual measured value p matches the set holding pressure P1. The servo motor IO is feedback-controlled, thereby accurately maintaining the set holding pressure P1.

一方、スクリュー2の前進0.001n毎に、カウンタ
22に入力するパルスとパルスの間に、制御装置20の
中央演算処理装置(CPU)24に付設されかつM御の
タクトを決定するタクトパルス発振装置25から出力さ
れる周期1.tl(10′秒)のパルスが何個入るかを
カウントする。但し、この周期ではタクトパルス数が過
大であるため、分周器23ににおいて、例えば10−4
秒程度に分周した後にカウンタ22でカウントし、エン
コーダ14からの入力パルス毎に上記のカウント数をメ
モーリ機構(RAM)39に書き込む。
On the other hand, every 0.001n of forward movement of the screw 2, between the pulses input to the counter 22, a tact pulse oscillation is generated which is attached to the central processing unit (CPU) 24 of the control device 20 and which determines the tact of M control. Period 1 outputted from the device 25. Count how many pulses of tl (10' seconds) are received. However, since the number of tact pulses is excessive in this cycle, the frequency divider 23 is set to 10-4, for example.
After dividing the frequency into seconds, the counter 22 counts the frequency, and writes the above-mentioned count number into the memory mechanism (RAM) 39 for each input pulse from the encoder 14.

一方ROM40には第3図に示すような制御のフローチ
ャートに対応するデータ(プログラム)が予め入力して
あり、そのプログラムの指令により、CPU24はRA
M39に書き込まれたデータからその時点の保圧速度V
を演算し、出力インターフェイス26を介して比較器2
8.29及び処理装置30に入力される。この速度Vは
通常はキャビティの樹脂の固化と共に遅くなってゆく。
On the other hand, the data (program) corresponding to the control flowchart as shown in FIG.
From the data written in M39, the holding pressure velocity V at that time
is calculated and sent to the comparator 2 via the output interface 26.
8.29 and is input to the processing device 30. This speed V normally slows down as the resin in the cavity solidifies.

比較器28.29にはキーボード31により入力された
保圧1速限値Vl、保圧2速限値Vt、が入力されてい
る。ここで保圧1速限値とは、保圧速度Vが徐々に遅く
なるが、どこまで遅くなった時点で保圧P、から保圧P
8に切替るかを決定する限界時点の保圧速度を意味し、
ここでは前述のように■1と表記する。
The holding pressure 1st speed limit value Vl and the holding pressure 2nd speed limit value Vt inputted from the keyboard 31 are input to the comparators 28 and 29. Here, the holding pressure 1st speed limit value means that the holding pressure speed V gradually slows down, but at what point does it slow down from holding pressure P to holding pressure P?
It means the pressure holding speed at the limit point that determines whether to switch to 8,
Here, as mentioned above, it is written as ■1.

保圧速度Vが保圧1速限値V、にまで低下すると、比較
器28からのトリガーパルス出力がゲート33に入力す
る。ゲート33にはキーボード31で設定した保圧力P
8が入力しであるので、このP!が比較器36に出力さ
れる。比較器36によって射出圧力の実測値pがPRと
一致するようにサーボモータ10を制御して保圧力P!
を正確に維持する。同様にしてして保圧速度Vが保圧2
速限値V2まで低下すると比較器29からのトリガーパ
ルス出力がゲート34を介して比較器37に出力されて
この比較器37が作動し、射出圧力はP、になるように
サーボ−モータ1oを制御し、保圧はP2からP、に切
り替わる。ここで、保圧速度Vが徐々に減速してゲート
シールに達すると急激に0まで落ちるが、処理装置30
はこれを捉えるための装置であり、その構成は比較器を
主体とし、またその判定基準はROM40に入力しであ
るので、CPU24を介してこのROM40に連結して
いる。
When the pressure holding speed V decreases to the pressure holding first speed limit value V, a trigger pulse output from the comparator 28 is input to the gate 33. The gate 33 has a holding force P set on the keyboard 31.
Since 8 is input, this P! is output to the comparator 36. The servo motor 10 is controlled by the comparator 36 so that the actual measured value p of the injection pressure matches PR, and the holding pressure P!
maintain accurately. In the same way, the holding pressure speed V is changed to holding pressure 2.
When the speed decreases to the speed limit value V2, the trigger pulse output from the comparator 29 is outputted to the comparator 37 via the gate 34, and this comparator 37 is activated, and the servo-motor 1o is activated so that the injection pressure becomes P. control, and the holding pressure is switched from P2 to P. Here, the pressure holding speed V gradually decelerates and suddenly drops to 0 when it reaches the gate seal.
is a device for capturing this, and its configuration is mainly composed of a comparator, and since its judgment criteria are input to the ROM 40, it is connected to the ROM 40 via the CPU 24.

保圧速度VがROM40によって与えられるゲートシー
ル時の保圧速度V1まで低下した際、処理装置30から
出力されるサーボモータ停止信号は直接サーボモータl
Oに入り、保圧工程を終了させる。
When the pressure holding speed V decreases to the pressure holding speed V1 during gate sealing given by the ROM 40, the servo motor stop signal output from the processing device 30 is directly transmitted to the servo motor l.
0 and completes the pressure holding process.

以上サーボモータ駆動の射出成形装置を例に説明したが
、油圧駆動射出成形装置の場合は第2図に示すように、
保圧力の調整を行う手段だけが第1図の構成と相違する
ことになる。
The above explanation was given using a servo motor driven injection molding machine as an example, but in the case of a hydraulically driven injection molding machine, as shown in Fig. 2,
The only difference from the configuration shown in FIG. 1 is the means for adjusting the holding force.

この油圧駆動射出成形装置の制御状態を具体的に示せば
次のとおりである。即ち、第2図において、第1図との
相違点を説明すると、符号15は射出用油圧シリンダで
あり、スクリュー回転用の油圧モータ3と共にスクリュ
ー2を前進させる構成となっている。18は油圧ポンプ
、19は比例電磁式の圧力調整弁であり、圧力指定電圧
値P1、P z % P xによって保圧の大きさを切
替える。
The specific control state of this hydraulically driven injection molding apparatus is as follows. That is, to explain the difference between FIG. 2 and FIG. 1, reference numeral 15 is a hydraulic cylinder for injection, which is configured to move the screw 2 forward together with a hydraulic motor 3 for rotating the screw. 18 is a hydraulic pump, 19 is a proportional electromagnetic pressure regulating valve, and the magnitude of the holding pressure is switched depending on the pressure specified voltage value P1, Pz%Px.

17は比例電磁方式の流量調整弁、16は方向切替弁で
ある。
Reference numeral 17 is a proportional electromagnetic type flow rate adjustment valve, and reference numeral 16 is a direction switching valve.

次にこの装置の作動状態を第3図を参考にステップ毎に
説明する。
Next, the operating state of this device will be explained step by step with reference to FIG.

ステップ1:キーボード31を用いて保圧切替位置し、
保圧1速限vI、保圧2速限Vt、射出充填圧P (1
%保圧I Pl、保圧2p、、保圧3P3を各々設定す
る。
Step 1: Use the keyboard 31 to select the holding pressure switch position,
Holding pressure 1st speed limit vI, holding pressure 2nd speed limit Vt, injection filling pressure P (1
Set % holding pressure I Pl, holding pressure 2p, and holding pressure 3P3, respectively.

ステップ2:上記の設定の際に万−V、>V、になって
いない場合には設定ミス信号を発して正しい設定にし直
す。
Step 2: If the above setting is not 10,000-V, >V, a setting error signal is issued and the setting is corrected again.

ステップ3:射出充填開始により第2図に示すプログラ
ムを自動でスタート。
Step 3: The program shown in Figure 2 starts automatically when injection filling starts.

ステップ4ニスクリユ一位置をエンコーダ14でパルス
lに変換して制御装置に入力する。エンコーダからのパ
ルス間隔は例えばスクリュー前進0゜001 mにつき
1個程度でよい。
Step 4: Convert the position of the paint screw into a pulse l using the encoder 14 and input it to the control device. The pulse interval from the encoder may be, for example, about one pulse per 0°001 m of screw advance.

ステップ5.6:エンコーダ入力パルスlは比較器27
により保圧切替位置りと比較され、両信号が一致すると
射出圧力は充填圧力P0から保圧1のP+に切替られる
Step 5.6: Encoder input pulse l to comparator 27
is compared with the holding pressure switching position, and when both signals match, the injection pressure is switched from the filling pressure P0 to the holding pressure 1, P+.

ステップ7.8:保圧工程入ってからはスクリュー2の
前進速度は非常に微速になるから各エンコーダパルスの
間にCPU24のタクトパルスが何個入っているかを測
定する微小時間計測をカウンタにより実施する。
Step 7.8: After entering the pressure holding process, the forward speed of the screw 2 becomes very slow, so use a counter to measure minute time to measure how many tact pulses of the CPU 24 are received between each encoder pulse. do.

以上のカウント値の数値例を次に示す。Numerical examples of the above count values are shown below.

エンコーダパルス間隔は0.001鶴につき1パルス、
CPUのタクトパルス周期を1μs、分周器23による
分周率を1/100とすると、保圧速度v(ms/s)
とエンコーダからの入力パルス間にカウントされる分周
タクトパルス数(以下「カウントパルス数n」と称する
)との関係は以下に示す表1の如く保圧速度Vが低下す
るとその数が増大するという関係を有している。
Encoder pulse interval is 1 pulse per 0.001 crane,
Assuming that the tact pulse period of the CPU is 1 μs and the frequency division ratio of the frequency divider 23 is 1/100, the pressure holding speed v (ms/s)
The relationship between the number of divided tact pulses counted between input pulses from the encoder (hereinafter referred to as "count pulse number n") is as shown in Table 1 below, and as the holding pressure speed V decreases, the number increases. They have this relationship.

表1 以上のようにして微小な保圧速度Vを係数処理し易い大
きさのカウントパルス数nに変換した後に次のステップ
に移行する。
Table 1 After converting the small pressure holding speed V into the number n of count pulses that is easy to process as a coefficient as described above, proceed to the next step.

ステップ9.10:保圧速度Vが保圧1速限値V。Step 9.10: The holding pressure speed V is the holding pressure 1st speed limit value V.

まで減速した否かの判定を行う、実際には双方カウント
パルス数に換算して判定演算を行うことによりv=V1
になったならば、保圧1から保圧2に切替る。
In actuality, by converting the number of counted pulses to the number of pulses counted on both sides and performing the determination calculation, v=V1.
When the pressure reaches 2, the holding pressure 1 is switched to the holding pressure 2.

ステップ11.12:前記ステップと同様にして保圧速
度Vが保圧2速限値V!になったならば保圧2から保圧
3に切替る。
Step 11.12: In the same way as in the previous step, the holding pressure speed V is the holding pressure second speed limit value V! When the pressure reaches 3, it switches from holding pressure 2 to holding pressure 3.

ステップ13.14:保圧3の領域に入り、ゲート部が
固化すると保圧速度を急激にOまで減速し、カウントパ
ルス数nが急上昇する。
Step 13.14: When the area of holding pressure 3 is entered and the gate portion is solidified, the holding pressure speed is rapidly reduced to O, and the count pulse number n rapidly increases.

なおROMに対しては、保圧速度がそこまで低下したら
ゲートシールと考えてよいと判断するために、ゲートシ
ール時の保圧速度v3が記憶させであるので、処理装置
30により前記表1の換算と同様にしてこの保圧速度V
、に相当するカウントパルス数N、を演算したのち、こ
のパルス数nとN、とを比較し、n=N、となったなら
ばサーボモータ10へ保圧工程終了の信号を送る。
Note that the ROM stores the pressure holding speed v3 at the time of gate sealing in order to determine that it can be considered as a gate seal if the holding pressure speed decreases to that extent. Similarly to the conversion, this pressure holding speed V
After calculating the number of count pulses N corresponding to , the number of pulses n is compared with N, and if n=N, a signal is sent to the servo motor 10 to end the pressure holding process.

ステップ15:保圧をOにし、次の工程のチャージに移
行する。
Step 15: Set the holding pressure to O and proceed to the next step of charging.

第6図は、射出充填から保圧工程に移行した直後にごく
短時間保圧1を殆ど0に落とすことにより、キャビティ
末端に伝達される樹脂圧を瞬時下げ、微細なパリをなく
した後、保圧2以降を正規の保圧工程とするものであり
、従来からよく使用される操作パターンである。この操
作パターンの場合には、保圧1とその印加時間t1は従
来方法で設定、作動させ、保圧2からゲートシールまで
を本発明装置により実施するようにすればよい。
Figure 6 shows that immediately after the transition from injection filling to the holding pressure process, holding pressure 1 is dropped to almost 0 for a very short period of time, thereby instantly lowering the resin pressure transmitted to the end of the cavity and eliminating minute bursts. The holding pressure 2 and subsequent steps are the regular holding pressure steps, and this is an operation pattern that has been commonly used in the past. In the case of this operation pattern, holding pressure 1 and its application time t1 may be set and operated in a conventional manner, and steps from holding pressure 2 to gate sealing may be performed by the apparatus of the present invention.

〔効果〕〔effect〕

零発によれば、従来、多段保圧における各区分の移行を
、時間を基準にして行うことにより、キャビティ内の樹
脂流動の状態と必ずしも一致しないファクターにより行
っていたのに対して、キャビティ内の樹脂流動を正確に
反映する保圧速度の実測による各区分の切替を行うため
、樹脂温度、金型構造等も自動的に考慮した最も合理的
な区分切替を行い、成形品の寸法精度を向上させ、かつ
オーバーパック歪のない良品を得ることができる。
According to Reihachi, in the past, the transition between each section in multi-stage holding pressure was done based on time, which was done using factors that did not necessarily match the state of resin flow inside the cavity. In order to switch between each classification based on actual measurement of the holding pressure speed that accurately reflects the resin flow, the most rational classification switching that automatically takes into account resin temperature, mold structure, etc. is performed, and the dimensional accuracy of the molded product is improved. It is possible to obtain a good product without overpack distortion.

また保圧減速度が急上昇するゲートシール点を実測によ
り確認して、次工程に移行するので、必要以上に保圧工
程を延ばすことがなく、成形サイクルを短縮することも
できる。
In addition, since the gate sealing point where the holding pressure deceleration rapidly increases is confirmed by actual measurement before moving on to the next process, the holding pressure process does not need to be extended more than necessary, and the molding cycle can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示すサーボモータ駆動
方式の射出装置に接続した保圧工程制御装置のブロック
図、第2図は第2の実施例を示す油圧駆動方式の射出装
置に接続した保圧工程制御装置のブロック図、第3図は
第1図及び第2図の射出機における保圧工程制御装置の
フローチャート、第4図は本発明装置の作用を説明する
保圧工程中の保圧段階と圧力、速度の変化を示す線図、
第5図は従来の射出成形における保圧工程中の圧力、速
度の変化を示す線図、第6図は本発明の他の実施方法を
示す保圧工程中の圧力、速度の変化の線図である。 2・・・スクリュー  10・・・スクリュー前進用サ
ーボモータ  14・・・エンコーダ20・・・制御装
置 錦4図
FIG. 1 is a block diagram of a pressure holding process control device connected to a servo motor-driven injection device showing a first embodiment of the present invention, and FIG. 2 is a hydraulic-driven injection device showing a second embodiment of the present invention. 3 is a flowchart of the pressure holding process control device connected to the injection machine of FIGS. 1 and 2, and FIG. 4 is a pressure holding process control device connected to the injection machine of the present invention. A diagram showing the holding pressure stage and changes in pressure and speed during
Fig. 5 is a diagram showing changes in pressure and speed during the pressure holding process in conventional injection molding, and Fig. 6 is a diagram showing changes in pressure and speed during the holding process showing another implementation method of the present invention. It is. 2...Screw 10...Servo motor for screw advancement 14...Encoder 20...Control device Nishiki 4 diagram

Claims (1)

【特許請求の範囲】[Claims] 保圧工程中の射出部材の前進速度を実測する手段と、予
め設定した複数個の射出部材前進速度とこの実測した射
出部材前進速度とを比較することにより複数個の保圧区
間の切替を自動的に行う手段と、この複数個の保圧区間
毎に予め設定した複数個の保圧力を印加して保圧工程を
進行させる手段と、射出部材の前進速度の減速率が一定
値を越えた時をゲートシールと判定して保圧工程を終了
し次の工程に移行させる手段とからなることを特徴とす
る射出成形機の保圧工程制御装置。
Means for actually measuring the forward speed of the injection member during the pressure holding process, and automatic switching between multiple holding pressure sections by comparing the actually measured forward speed of the injection member with a plurality of preset forward speeds of the injection member. means for advancing the pressure holding process by applying a plurality of preset holding forces for each of the plurality of holding pressure sections; 1. A pressure holding process control device for an injection molding machine, comprising means for determining when a gate seal is reached, terminating a pressure holding process, and moving on to the next process.
JP14685887A 1987-06-15 1987-06-15 Dwelling process control device of injection molder Granted JPS63312128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14685887A JPS63312128A (en) 1987-06-15 1987-06-15 Dwelling process control device of injection molder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14685887A JPS63312128A (en) 1987-06-15 1987-06-15 Dwelling process control device of injection molder

Publications (2)

Publication Number Publication Date
JPS63312128A true JPS63312128A (en) 1988-12-20
JPH053814B2 JPH053814B2 (en) 1993-01-18

Family

ID=15417151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14685887A Granted JPS63312128A (en) 1987-06-15 1987-06-15 Dwelling process control device of injection molder

Country Status (1)

Country Link
JP (1) JPS63312128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485725A (en) * 1987-09-28 1989-03-30 Japan Steel Works Ltd Method and apparatus for controlling dwell process in injection molder
JPH01101134A (en) * 1987-10-15 1989-04-19 Toshiba Mach Co Ltd Control of injection process in injection molder
JPH05286008A (en) * 1992-04-09 1993-11-02 Fanuc Ltd Gate seal completion detecting method in injection molding machine
CN106142474A (en) * 2015-03-12 2016-11-23 英格拉斯股份公司 Injection-molded method and apparatus for plastic material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485725A (en) * 1987-09-28 1989-03-30 Japan Steel Works Ltd Method and apparatus for controlling dwell process in injection molder
JPH01101134A (en) * 1987-10-15 1989-04-19 Toshiba Mach Co Ltd Control of injection process in injection molder
JPH05286008A (en) * 1992-04-09 1993-11-02 Fanuc Ltd Gate seal completion detecting method in injection molding machine
CN106142474A (en) * 2015-03-12 2016-11-23 英格拉斯股份公司 Injection-molded method and apparatus for plastic material
CN106142474B (en) * 2015-03-12 2020-04-24 英格拉斯股份公司 Method and device for injection moulding of plastic material

Also Published As

Publication number Publication date
JPH053814B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
US5911924A (en) Process for injection molding machine with electric drives
US7435070B2 (en) Control apparatus for injection molding machine
JPS605448B2 (en) Plastic injection molding machine with program control
JP3795323B2 (en) Foreign matter detection method for injection molding machine
EP0461626B1 (en) Injection molding controller with process variable learning
EP0461627A1 (en) Injection molding controller with controlled variable learning
US5258918A (en) Selectable control function injection molding controller
EP1418040B1 (en) Controller of Injection Molding Machine
US20040091561A1 (en) Injection molding machine metering method and control device
US4954301A (en) Transfer molding process and an apparatus for the same
KR970002297B1 (en) Back pressure control method and apparatus for electric injection molding machine
EP1163993B1 (en) Injection molding machine and method for controlling screw position in the same
JPS63312128A (en) Dwelling process control device of injection molder
JPS61158417A (en) In-line screw type injection molding machine
JP2632708B2 (en) Screw drive control device for injection molding machine
JPH051729B2 (en)
JPH0261347B2 (en)
JPS63120626A (en) Method for controlling injection of injection molding machine
EP0253906B1 (en) Apparatus for controlling machines having movable and stationary members
SU804494A1 (en) Device for controlling the process of moulding plastic articles
SU1164056A1 (en) Apparatus for controlling moulding machine
SU861087A1 (en) Method of automatic control of stage of filling mould cavity with melt at pressure casting of precesion articles from plastics
JPS60108153A (en) Method for controlling injection speed
JPH07276454A (en) Method and device for controlling mold opening and closing for motorized injection molding machine
CA1279389C (en) Method and apparatus for controlling machines having movable and stationary members

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees