JPS63311185A - Apparatus for measuring distribution of magnetic susceptibility - Google Patents

Apparatus for measuring distribution of magnetic susceptibility

Info

Publication number
JPS63311185A
JPS63311185A JP62147557A JP14755787A JPS63311185A JP S63311185 A JPS63311185 A JP S63311185A JP 62147557 A JP62147557 A JP 62147557A JP 14755787 A JP14755787 A JP 14755787A JP S63311185 A JPS63311185 A JP S63311185A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic susceptibility
ultrasonic wave
dipole
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62147557A
Other languages
Japanese (ja)
Inventor
Kazuhiko Okita
和彦 沖田
Nobuaki Furuya
古谷 伸昭
Masami Kawabuchi
川淵 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62147557A priority Critical patent/JPS63311185A/en
Publication of JPS63311185A publication Critical patent/JPS63311185A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the two-dimensional distribution of magnetic susceptibility in a body, by using ultrasonic wave pulses so that a position can be found by local vibration, and detecting the change in magnetic flux due to the local vibration at a position where the ultrasonic wave pulses are propagated. CONSTITUTION:When a static magnetic field is applied to a material to be measured 3, molecules are polarized, and magnetic property is yielded. A dipole 10, which shows a very large value depending on the kinds of molecules, is formed. The dipole 10 is vibrated with, e.g., ultrasonic wave pulses 9. The change in magnetic field formed with the dipole 10 is detected with SQUID- sensor pickup coils (A and B) 5 and 6 using the ultrasonic wave pulses 9. When the time width of the ultrasonic wave pulse 9 is shortened, space resolution can be enhanced. The direction of the pulse emission is scanned in the right and left directions. Thus a two-dimensional image can be obtained. The magnitude of the magnetic field formed by the dipole is the value, whose proportional coefficient is magnetic susceptibility (x). Therefore, the distribution image of the magnetic susceptibility can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁性材料の磁気測定分野や人体の磁化率分布
測定等の医療機器分野において利用される磁化率分布測
定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetic susceptibility distribution measuring device used in the field of magnetic measurement of magnetic materials and the field of medical equipment such as measuring the magnetic susceptibility distribution of a human body.

従来の技術 従来、磁化率χの測定は、試料振動型磁力計(Vibr
ating Sample Magnetometer
、VSM)もしくは超伝導量子干渉計(Superco
nducting Quantum2 ・\ Interference Devices、 SQU
ID)により行っていた。
Conventional technology Conventionally, magnetic susceptibility χ has been measured using a sample vibrating magnetometer (Vibr
Ating Sample Magnetometer
, VSM) or superconducting quantum interferometer (Superco
Quantum2 ・\Interference Devices, SQU
ID).

VSMの原理は、均−静磁場中に被測定物を置き、この
被測定物をある周波数で加振し、静磁場と並行な位置に
配置したピックアップコイルで磁束の変化を検出するも
のである。磁束の変化の大きさは、加振する周波数が一
定ならば、磁化の大きさに比例するので、この時の静磁
場の値で割れば磁化率χが求まる。
The principle of VSM is to place an object to be measured in a uniform static magnetic field, vibrate the object at a certain frequency, and detect changes in magnetic flux using a pickup coil placed parallel to the static magnetic field. . Since the magnitude of change in magnetic flux is proportional to the magnitude of magnetization if the excitation frequency is constant, the magnetic susceptibility χ can be found by dividing by the value of the static magnetic field at this time.

SQUIDによる磁化率測定の原理は一差分式に結合し
た二つのピックアップコイルの一方に被測定物を挿入し
た場合と、取り去った場合における磁束の変化をSQU
IDによシ検出するものである。
The principle of magnetic susceptibility measurement using SQUID is to measure the change in magnetic flux when an object to be measured is inserted into or removed from one of two pickup coils connected in a single-difference manner.
It is detected based on the ID.

発明が解決しようとする問題点 しかしながら、従来方法は、被測定物のトータルでの磁
化率しか測定することができず、また比較的軽く体積の
小さなものの測定に限られていた。
Problems to be Solved by the Invention However, the conventional methods can only measure the total magnetic susceptibility of the object to be measured, and are limited to measurements of objects that are relatively light and small in volume.

体積が大きく、その内部で磁化率の分布が一様でない被
測定試料に対しては−その分布等を測る手段がなかった
For a sample to be measured that has a large volume and an uneven distribution of magnetic susceptibility within the sample, there is no means to measure the distribution.

3ベーン′ 本発明は上記従来の問題点を解決するもので、物体内の
磁化率の二次元分布を測定可能とすることを目的とする
ものである。
3 Vane' The present invention solves the above-mentioned conventional problems, and aims at making it possible to measure the two-dimensional distribution of magnetic susceptibility within an object.

問題点を解決するための手段 本発明は加振する手段として一全体を振動させるのでは
なく、局所的に振動させ−その位置が分るように超音波
パルスを用い一超音波パルスが伝っている位置での局所
振動による磁束変化をSQUID磁束計で検出すること
により、上記目的を達成するものである。
Means for Solving the Problems The present invention uses ultrasonic pulses to vibrate locally, rather than vibrating the entire body, and uses ultrasonic pulses so that the position can be determined. The above object is achieved by detecting changes in magnetic flux due to local vibration at a certain position using a SQUID magnetometer.

作    用 本発明は超音波パルスによる局所振動を用いているため
、かなり大きな被測定物内の磁化率分布の測定が可能に
なる。
Function: Since the present invention uses local vibrations caused by ultrasonic pulses, it is possible to measure a considerably large magnetic susceptibility distribution within an object to be measured.

実施例 以下に本発明の実施例を図面を用いて詳細に説明する。Example Embodiments of the present invention will be described in detail below with reference to the drawings.

図は本発明の一実施例における磁化率分布測定装置の概
観図である。電磁石N極1から電磁石S極2の方に向っ
て均一静磁場を発生させその中心付近に被測定物3を配
置し、超音波トランスデユーサ−4で超音波パルス9を
被測定物3内部に向けて放射した。7,8はSQUID
A 、 SQUIDBであシー静磁場と平行な方向にS
QUIDセンサーピツクアツプコイルA5及びSQUI
DセンサーピツクアツプコイルB6を配し、磁束の変化
を検出した。
The figure is an overview diagram of a magnetic susceptibility distribution measuring device in one embodiment of the present invention. A uniform static magnetic field is generated from the electromagnet north pole 1 toward the electromagnet south pole 2, the object to be measured 3 is placed near the center of the field, and the ultrasonic transducer 4 sends ultrasonic pulses 9 inside the object to be measured 3. radiated towards. 7 and 8 are SQUID
A, SQUIDB in the direction parallel to the static magnetic field
QUID sensor pickup coil A5 and SQUI
A D sensor pickup coil B6 was arranged to detect changes in magnetic flux.

ピックアップコイル5,6はm=次微分型のコイル配置
とし、静磁場や地磁気等の雑音を検出しないように工夫
した。SQUIDセンサー7.8を二個使用しているの
は、感度を上げるためのもので一一個でもよい。図にお
いて、被測定物3に静磁場を印加すると一分子が分極を
起し、磁気的な性質を示すようになる。分子によっては
、極めて大きな値を示すダイポール10を形成する。こ
のダイポール10を一本実施例では一超音波パルス9で
振動させそのダイポール10が作る磁界の変化をS Q
tJ I Dセンサーピックアップコイル5,6で検出
する。超音波パルス90時間幅を短かくすると空間分解
能を上げることができ、またパルスの放射方向を左右に
スキャンすることによシ2次元像5ベーン゛ を得ることができた。ダイポールが作る磁界の大きさは
、静磁界に比例した値、即ち一磁化率χを比例係数とし
た値である。従って磁化率χの分布像を得ることができ
る。超音波パルスのスキャンは1/30秒で1画面を構
成することが可能なので磁化率分布のリアルタイムの観
測が可能であった。
The pickup coils 5 and 6 are arranged in an m-th order differential type so as not to detect noises such as static magnetic fields and terrestrial magnetism. The reason why two SQUID sensors 7.8 are used is to increase the sensitivity, and eleven SQUID sensors may be used. In the figure, when a static magnetic field is applied to the object to be measured 3, one molecule becomes polarized and exhibits magnetic properties. Some molecules form dipoles 10 that exhibit extremely large values. In this embodiment, this dipole 10 is vibrated by one ultrasonic pulse 9, and the change in the magnetic field created by the dipole 10 is SQ.
tJ ID is detected by the sensor pickup coils 5 and 6. Spatial resolution could be increased by shortening the time width of the ultrasonic pulse, and a 5-vane two-dimensional image could be obtained by scanning the radiation direction of the pulse left and right. The magnitude of the magnetic field created by the dipole is a value proportional to the static magnetic field, that is, a value with one magnetic susceptibility χ as a proportionality coefficient. Therefore, a distribution image of magnetic susceptibility χ can be obtained. The ultrasonic pulse scan can form one screen in 1/30 seconds, making it possible to observe the magnetic susceptibility distribution in real time.

また、ピックアップコイルの数を増しアレイ状にならべ
ることによりさらに感度を高めることも可能であった。
It was also possible to further increase the sensitivity by increasing the number of pickup coils and arranging them in an array.

なお−被測定物として一鉱石などが適しているが、生物
も可能であった。血液中のヘモグロビンの鉄の磁化率の
存在によると思われる一生体の断面における磁化率分布
がリアルタイムで観測可能である。
Note that a mineral or the like is suitable as the object to be measured, but living things are also possible. The magnetic susceptibility distribution in a cross section of a living body, which is thought to be due to the presence of iron magnetic susceptibility of hemoglobin in blood, can be observed in real time.

発明の効果 以上要するに本発明は一被検体に静磁場を印加するとと
もに、超音波パルスにより局所的な振動を加えて、それ
による磁束変化をSQUIDで検出することによシ、従
来測定不可能であった磁化率の二次元分布をリアルタイ
ムで測定可能ならしめ6 ベー。
Effects of the Invention In short, the present invention applies a static magnetic field to a specimen, adds local vibrations using ultrasonic pulses, and detects the resulting changes in magnetic flux using an SQUID, thereby achieving a method that was previously impossible to measure. It is possible to measure the two-dimensional distribution of magnetic susceptibility in real time.

るもので−鉱石等の無機物のみならず一生体の磁化率分
布の二次元像をも可能にし、学問的な領域から医療の分
野にまで応用され5社会的効果は著しい。
It makes it possible to obtain two-dimensional images of the magnetic susceptibility distribution not only of inorganic materials such as ores, but also of living bodies.It has been applied from academic fields to medical fields, and has significant social effects.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例における磁化率分布測定装置の概
観図である。 1.2・・・電磁石、4.超音波トランスジューサ、5
.6・・SQUIDセンサーピツクアツプコイル、7、
8 、、、SQUID 0
The figure is an overview diagram of a magnetic susceptibility distribution measuring device in one embodiment of the present invention. 1.2... Electromagnet, 4. Ultrasonic transducer, 5
.. 6. SQUID sensor pick-up coil, 7.
8,,,SQUID 0

Claims (1)

【特許請求の範囲】[Claims] ある有限の磁化率が体内に分布している被検体を横切っ
て静磁場を印加する磁界印加手段と、前記被検体内に超
音波パルスを放射する超音波発生手段と、前記超音波パ
ルスの振動による磁化の位置変動で誘起される磁束の変
化を検出するSQUIDセンサーとを具備することを特
徴とする磁化率分布測定装置。
a magnetic field applying means for applying a static magnetic field across a subject having a certain finite magnetic susceptibility distributed within the body; an ultrasonic generating means for emitting ultrasonic pulses into the subject; and vibrations of the ultrasonic pulses. 1. A magnetic susceptibility distribution measuring device comprising: a SQUID sensor that detects changes in magnetic flux induced by changes in the position of magnetization.
JP62147557A 1987-06-12 1987-06-12 Apparatus for measuring distribution of magnetic susceptibility Pending JPS63311185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147557A JPS63311185A (en) 1987-06-12 1987-06-12 Apparatus for measuring distribution of magnetic susceptibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147557A JPS63311185A (en) 1987-06-12 1987-06-12 Apparatus for measuring distribution of magnetic susceptibility

Publications (1)

Publication Number Publication Date
JPS63311185A true JPS63311185A (en) 1988-12-19

Family

ID=15433031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147557A Pending JPS63311185A (en) 1987-06-12 1987-06-12 Apparatus for measuring distribution of magnetic susceptibility

Country Status (1)

Country Link
JP (1) JPS63311185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288714A (en) * 2005-04-11 2006-10-26 Kanazawa Inst Of Technology Instrument and method for measurement of magnetism
WO2007055057A1 (en) * 2005-11-09 2007-05-18 Japan Science And Technology Agency Method and apparatus for measuring characteristic of object with acoustically induced electromagnetic wave

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288714A (en) * 2005-04-11 2006-10-26 Kanazawa Inst Of Technology Instrument and method for measurement of magnetism
JP4706075B2 (en) * 2005-04-11 2011-06-22 学校法人金沢工業大学 Magnetic measuring apparatus and magnetic measuring method
WO2007055057A1 (en) * 2005-11-09 2007-05-18 Japan Science And Technology Agency Method and apparatus for measuring characteristic of object with acoustically induced electromagnetic wave
EP2630912A2 (en) * 2005-11-09 2013-08-28 Japan Science and Technology Agency Method of and apparatus for measuring properties of an object with acoustically induced electromagnetic waves
EP2630912A3 (en) * 2005-11-09 2014-04-09 Japan Science and Technology Agency Method of and apparatus for measuring properties of an object with acoustically induced electromagnetic waves
EP2668899A3 (en) * 2005-11-09 2014-04-23 Japan Science and Technology Agency Method of and apparatus for measuring properties of an object with acoustically induced electromagnetic waves
EP2724669A1 (en) * 2005-11-09 2014-04-30 Japan Science and Technology Agency Method of and apparatus for measuring properties of an object with acoustically induced electromagnetic waves
US9901280B2 (en) 2005-11-09 2018-02-27 Japan Science And Technology Agency Apparatus for measuring properties of an object with acoustically induced electromagnetic waves
US9901281B2 (en) 2005-11-09 2018-02-27 Japan Science And Technology Agency Method of measuring properties of an object with acoustically induced electromagnetic waves

Similar Documents

Publication Publication Date Title
JP4901470B2 (en) Elastography apparatus and method for imaging mechanical and elastic parameters of inspection object
CA2103032C (en) Apparatus and method for imaging the structure of diamagnetic and paramagnetic objects
JP4583370B2 (en) A method of spatially resolving and identifying the distribution of magnetic particles in the inspection area
JP5620475B2 (en) Method and apparatus for determining position by magnetism
US9167983B2 (en) Imaging method for obtaining spatial distribution of nanoparticles in the body
KR20120006517A (en) Magnetic induction tomography systems with coil configuration
JPH0236260B2 (en)
US6583624B1 (en) Method for visualizing charged particle motion using magnetic resonance imaging
Ducharne et al. Directional magnetic Barkhausen noise measurement using the magnetic needle probe method
US4048847A (en) Nondestructive detection of stress
US6586930B1 (en) Material thickness measurement using magnetic information
Jaufenthaler et al. OPM magnetorelaxometry in the presence of a DC bias field
US20200060578A1 (en) Sensing system and method
JP3656652B2 (en) Method for simultaneous detection of multiple motion components of moving fluid
JPS63311185A (en) Apparatus for measuring distribution of magnetic susceptibility
Casanova et al. Multi-echo imaging in highly inhomogeneous magnetic fields
GB2202630A (en) Stress measurement in a body by detecting magneto-acoustic emission
JPH0685768B2 (en) Inspection method using nuclear magnetic resonance
Sadiq et al. Excitation coil design for single-sided magnetic particle imaging scanner
ES2339622B1 (en) METHOD AND DEVICE FOR THE MEASUREMENT OF MAGNETIC GRADIENT AND MAGNETIC SUSCEPTIBILITY OF A MATERIAL.
RU2814644C1 (en) Method of determining hysteresis loops of iron-based amorphous ferromagnetic microwires
JPS63311186A (en) Apparatus for measuring distribution of magnetic susceptibility
DE202019100330U1 (en) Device for the magnetic imaging of materials
He A Feedback Method to Improve the Dynamic Range and the Linearity of Magnetoimpedance Magnetic Sensor
Grimberg et al. Eddy current microscopy applied to graphite-epoxy composite