JPS6330987Y2 - - Google Patents

Info

Publication number
JPS6330987Y2
JPS6330987Y2 JP8416982U JP8416982U JPS6330987Y2 JP S6330987 Y2 JPS6330987 Y2 JP S6330987Y2 JP 8416982 U JP8416982 U JP 8416982U JP 8416982 U JP8416982 U JP 8416982U JP S6330987 Y2 JPS6330987 Y2 JP S6330987Y2
Authority
JP
Japan
Prior art keywords
cathode
diffusion layer
supports
porous diffusion
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8416982U
Other languages
Japanese (ja)
Other versions
JPS586245U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS586245U publication Critical patent/JPS586245U/en
Application granted granted Critical
Publication of JPS6330987Y2 publication Critical patent/JPS6330987Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/26Vacuum gauges by making use of radiometer action, i.e. of the pressure caused by the momentum of molecules passing from a hotter to a cooler member; Vacuum gauges of the Knudsen type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【考案の詳細な説明】 本考案は空気の絶対圧力(バールで表示される
圧力の絶対値)を測定する装置に関する。空気の
絶対圧力測定装置は種々の用途たとえば内燃機関
の吸入管内の圧力測定または燃料噴射装置の圧力
値補正に必要である。そのため現在までつねにた
とえば偏位検出器を有する気圧計真空箱または伸
び測定ストリツプを有する薄膜のような形で、片
側を真空にした薄膜の偏位を測定する発信器を使
用した。この発信器は構造が複雑であり、その操
作が困難である欠点を有する。さらにつねに圧力
差が測定されるので、測定結果には片面におよぼ
す真空の変動が影響する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the absolute pressure (absolute value of pressure expressed in bars) of air. BACKGROUND OF THE INVENTION Absolute air pressure measuring devices are necessary for various applications, for example for pressure measurement in the intake pipes of internal combustion engines or for correcting pressure values in fuel injection systems. To date, therefore, transmitters have always been used to measure the deflection of a membrane evacuated on one side, for example in the form of a barometric vacuum box with a deflection detector or a membrane with a stretch-measuring strip. This transmitter has the disadvantage of a complicated structure and difficult operation. Furthermore, since pressure differences are always measured, the measurement results are affected by vacuum fluctuations on one side.

実用新案登録請求の範囲第1項に記載の特徴を
有する本考案の装置は公知装置に比して製造が比
較的簡単であり、操作が容易であり、空気圧力の
絶対値を測定しうる利点を有する。この場合現在
まで使用された発信器のように測定結果を不確実
にする機械的変換を必要としない。測定結果とし
て空気圧力の大きさに依存する電流が得られ、こ
の電流値は簡単に処理することができる。
The device of the present invention having the features set forth in Claim 1 of the Utility Model Registration has the advantages that it is relatively simple to manufacture and easy to operate compared to known devices, and can measure the absolute value of air pressure. has. In this case, unlike the transmitters used up to now, there is no need for mechanical transformations that would make the measurement results uncertain. The result of the measurement is a current that depends on the magnitude of the air pressure, and this current value can be easily processed.

実用新案登録請求の範囲第2項〜第10項記載の
手段によつて本考案の装置の有利な形成および改
善が可能である。装置が加熱導体および温度依存
抵抗を有する場合とくに有利である。というのは
測定結果は温度に依存し、それゆえ装置の温度は
正確な測定の場合一定に保持しなければならない
からである。
Advantageous embodiments and improvements of the device according to the invention are possible by means of the measures set forth in claims 2 to 10 of the utility model registration. It is particularly advantageous if the device has a heating conductor and a temperature-dependent resistance. This is because the measurement result is temperature dependent and the temperature of the device must therefore be kept constant for accurate measurements.

本考案による装置はたとえば西独公開特許公報
第2711880号に記載されるようなポーラログラフ
イーセンサの原理に基く。このセンサは拡散限界
電流範囲で動作し、ガス混合物たとえば内燃機関
エンジンの排ガス中の酸素濃度(ネルンストの式
に示される熱力学的濃度)の測定が可能である。
このセンサの備える拡散障壁は一般に1μmより
大きい直径の孔を有する。このような孔径は酸素
分子の平均自由行路より大きく、または少なくと
もこれと比較可能であり、そのため発生する拡散
限界電流は酸素の濃度に依存するけれど、酸素の
絶対圧力には依存しない。これに反し拡散層が酸
素分子の平均自由行路より小さい直径の孔を有す
る場合、拡散電流は支配する酸素の絶対圧力に依
在し、これと直接比例することが明らかになつた
ので、このような装置により酸素または酸素含量
一定の空気の絶対圧力を測定することができる。
このような拡散はいわゆるクヌーセン拡散であ
る。
The device according to the invention is based on the principle of a polarographic sensor as described, for example, in DE-A-2711880. This sensor operates in the diffusion-limited current range and makes it possible to measure the oxygen concentration (thermodynamic concentration according to the Nernst equation) in a gas mixture, for example the exhaust gas of an internal combustion engine.
The diffusion barrier provided by this sensor generally has pores with a diameter greater than 1 μm. Such a pore size is larger than, or at least comparable to, the mean free path of an oxygen molecule, so that the diffusion-limited current generated depends on the concentration of oxygen, but not on its absolute pressure. On the other hand, when the diffusion layer has pores with a diameter smaller than the mean free path of oxygen molecules, it has become clear that the diffusion current depends on the governing absolute pressure of oxygen and is directly proportional to this. The absolute pressure of oxygen or air with a constant oxygen content can be measured using a standard device.
This kind of diffusion is the so-called Knudsen diffusion.

次に本考案を図面により説明する。 Next, the present invention will be explained with reference to the drawings.

装置はイオン伝導性材料としての安定化された
2酸化ジルコニウムからなる基板1を有し、この
基板は厚さが約1mmであり、2つの大きい表面に
それぞれ電極2または3を支持する。この電極2
および3は多孔性であり、白金または白金と2酸
化ジルコニウムの混合物からなる。電極2は微細
多孔性拡散層4で蔽われ、その孔の直径は0.1μm
以下である。この多孔性拡散層は安定化添加剤と
しての酸化イツトリウムを含む2酸化ジルコニウ
ムからなり、さらに40重量%の2酸化チタンを含
む。このような多孔層およびその製法は西独公開
特許公報第2945020号に記載される。拡散層4の
電極2と反対側に白金またはとくに白金−2酸化
ジルコニウム混合物からなる加熱導体5がプリン
トされる。さらに拡散層4の同じ面にとくに白金
からなる温度依存測定抵抗6が配置される。
The device has a substrate 1 made of stabilized zirconium dioxide as ionically conductive material, which has a thickness of about 1 mm and supports electrodes 2 or 3 on two large surfaces, respectively. This electrode 2
and 3 are porous and consist of platinum or a mixture of platinum and zirconium dioxide. The electrode 2 is covered with a microporous diffusion layer 4, the pore diameter of which is 0.1 μm.
It is as follows. This porous diffusion layer consists of zirconium dioxide with yttrium oxide as a stabilizing additive and further contains 40% by weight of titanium dioxide. Such a porous layer and its method of manufacture are described in DE-A-2945020. On the side of the diffusion layer 4 opposite the electrode 2, a heating conductor 5 made of platinum or, in particular, a platinum-zirconium dioxide mixture is printed. Furthermore, a temperature-dependent measuring resistor 6, preferably made of platinum, is arranged on the same side of the diffusion layer 4.

電極2および3に電極2を陰極、電極3を陽極
として点eとfの間に約1Vの電圧が印加される。
電流回路に電流測定器7があり、この測定器は空
気圧力の測定値で較正され、またはその測定値を
制御目的に使用することができる。点aおよびb
を介して加熱導体5へ電圧が印加され、この電圧
は拡散層4の温度に応じて制御される。この場合
点cおよびdを介して同様電圧が印加される温度
依存測定抵抗6の抵抗値はたとえばこの抵抗をブ
リツジ回路に使用することによつて制御値として
役立つ。このようなとくに設置した測定抵抗(選
択的に加熱抵抗を温度依存抵抗として形成するこ
とができる。)の利点はこの測定抵抗6を各圧力
測定器ごとに別個に調節することができ、それに
よつて限界電流に影響する拡散層孔サイズの場合
による変動を補償することが可能になる点にあ
る。この調節はたとえばレーザ光線による抵抗材
料の剥離によつて抵抗を上昇するように行われ
る。
A voltage of approximately 1 V is applied to electrodes 2 and 3 between points e and f, with electrode 2 serving as a cathode and electrode 3 serving as an anode.
There is a current measuring device 7 in the current circuit, which can be calibrated with air pressure measurements or whose measured values can be used for control purposes. points a and b
A voltage is applied to the heating conductor 5 via the heating conductor 5, and this voltage is controlled depending on the temperature of the diffusion layer 4. The resistance value of the temperature-dependent measuring resistor 6, to which a voltage is likewise applied via points c and d, serves as a control value, for example by using this resistor in a bridge circuit. The advantage of such a specially installed measuring resistor (the heating resistor can optionally be formed as a temperature-dependent resistor) is that this measuring resistor 6 can be adjusted separately for each pressure measuring device, thereby making it possible to This makes it possible to compensate for variations in the diffusion layer pore size that affect the limiting current. This adjustment takes place, for example, by stripping off the resistive material with a laser beam to increase the resistance.

酸化および機械的損傷に対し保護するため、抵
抗路5および6は公知法でたとえばガラスからな
る保護層で被覆することができる。この保護層は
図示されていない。4つの小さい垂直面は測定結
果の誤差が発生しないようにガラスで気密に被覆
される。
To protect against oxidation and mechanical damage, the resistance traces 5 and 6 can be coated in a known manner with a protective layer made of glass, for example. This protective layer is not shown. The four small vertical surfaces are hermetically covered with glass to avoid errors in the measurement results.

空気圧力測定のため装置をまず点aおよびbな
らびにcおよびdへ電圧を印加することにより約
600℃より高い一定温度に加熱しなければならな
い。その際aおよびbに印加する電圧は前述のよ
うに抵抗6に生ずる抵抗値によつて制御される。
点eおよびfへ約1Vの電圧が印加される。装置
はその機構上酸素のみに反応するけれど、それに
もかかわらず空気が一定の酸素濃度を有するの
で、空気圧力の測定に使用することができる。空
気はその酸素分とともに拡散層4の孔を通つて多
孔性電極2(陰極)へ侵入し、これを通過して最
後に固体電解質−電極−ガスの3相境界に達す
る。この3相境界で酸素イオンへの還元が行わ
れ、このイオンは固体電解質1を通過して移動
し、電極3(陽極)で再び元素酸素に酸化され
る。拡散層4は到達する各酸素分子をただちに酸
素イオンに変換して送り出すために役立つので、
前記3層境界はつねに酸素濃度ゼロが支配する。
さらに拡散層は孔サイズの選択によつて、固体電
解質1を通る酸素イオン輸送により発生する、測
定器7で読取る拡散限界電流が支配する絶対圧力
に依存し、かつこの圧力に直接比例するように作
用する。この装置により0.1〜約10バールの空気
圧力を測定することができる。
To measure air pressure, the device is first set up by applying voltages to points a and b and c and d.
Must be heated to a constant temperature above 600°C. At this time, the voltages applied to a and b are controlled by the resistance value generated in the resistor 6 as described above.
A voltage of about 1V is applied to points e and f. Although the device only reacts to oxygen due to its mechanism, it can nevertheless be used to measure air pressure since the air has a constant oxygen concentration. Air, together with its oxygen content, enters the porous electrode 2 (cathode) through the pores of the diffusion layer 4, passes through this, and finally reaches the solid electrolyte-electrode-gas three-phase boundary. Reduction to oxygen ions takes place at this three-phase boundary, which ions migrate through the solid electrolyte 1 and are oxidized again to elemental oxygen at the electrode 3 (anode). Since the diffusion layer 4 serves to immediately convert each arriving oxygen molecule into oxygen ions and send them out,
The three-layer boundary is always dominated by zero oxygen concentration.
Furthermore, the selection of the pore size ensures that the diffusion layer is such that the diffusion-limiting current generated by oxygen ion transport through the solid electrolyte 1, which is read by the measuring device 7, dominates the absolute pressure and is directly proportional to this pressure. act. With this device it is possible to measure air pressures from 0.1 to about 10 bar.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案による装置の斜視図である。 1……基板、2,3……電極、4……拡散層、
5……加熱導体、6……測定抵抗、7……電流測
定器。
The drawing is a perspective view of the device according to the invention. 1... Substrate, 2, 3... Electrode, 4... Diffusion layer,
5... Heating conductor, 6... Measuring resistor, 7... Current measuring device.

Claims (1)

【実用新案登録請求の範囲】 1 酸素イオン伝導性固体電解質ブロツク1を有
し、このブロツクが陽極3および測定すべき空
気にさらされる陰極2を支持し、この電極へ一
定電圧を印加することができ、陰極2が多孔性
拡散層4を支持し、その孔が酸素分子のクヌー
セン拡散が行われる直径を有することを特徴と
する空気の絶対圧力を測定する装置。 2 酸素イオン伝導性固体電解質ブロツク1が安
定化された2酸化ジルコニウムからなる実用新
案登録請求の範囲第1項記載の装置。 3 陽極3および陰極2が電導性の金属またはセ
ラミツク材料からなる実用新案登録請求の範囲
第1項または第2項記載の装置。 4 陽極3および陰極2が白金、他の白金属金
属、白金合金もしくは金、金合金、銀、銀合
金、La−Co混合酸化物を主成分とするような
ペロブスキー石または上記成分の2つ以上の混
合物からなる実用新案登録請求の範囲第3項記
載の装置。 5 多孔性拡散層4が酸化アルミニウム、マグネ
シウムスピネルまたは2酸化ジルコニウムを含
むセラミツクからなる実用新案登録請求の範囲
第1項から第3項までのいずれか1項記載の装
置。 6 多孔性拡散層4が安定化添加物を含む2酸化
ジルコニウム、および2酸化チタン20〜60重量
%からなる実用新案登録請求の範囲第5項記載
の装置。 7 孔の直径が0.1μm以下である実用新案登録請
求の範囲第5項または第6項記載の装置。 8 多孔性拡散層4が陰極2と反対側に加熱電圧
を印加しうる加熱導体5を支持している実用新
案登録請求の範囲第1項から第7項までのいず
れか1項記載の装置。 9 多孔性拡散層4が陰極2と反対側に加熱制御
のための温度依存抵抗6を支持する実用新案登
録請求の範囲第1項から第8項までのいずれか
1項記載の装置。 10 多孔性拡散層4が陰極2と反対側に温度依存
抵抗材料からなる加熱導体を支持し、この導体
が同時に加熱および加熱制御に役立つ実用新案
登録請求の範囲第1項から第7項までのいずれ
か1項記載の装置。
[Claims for Utility Model Registration] 1. An oxygen ion conductive solid electrolyte block 1, which supports an anode 3 and a cathode 2 exposed to the air to be measured, and is capable of applying a constant voltage to the electrodes. A device for measuring the absolute pressure of air, characterized in that the cathode 2 supports a porous diffusion layer 4, the pores of which have a diameter such that Knudsen diffusion of oxygen molecules takes place. 2. The device according to claim 1, wherein the oxygen ion conductive solid electrolyte block 1 is made of stabilized zirconium dioxide. 3. The device according to claim 1 or 2, wherein the anode 3 and the cathode 2 are made of conductive metal or ceramic material. 4 Perovskite such that the anode 3 and cathode 2 are mainly composed of platinum, other platinum metals, platinum alloys, gold, gold alloys, silver, silver alloys, La-Co mixed oxides, or two or more of the above components The device according to claim 3 of the utility model registration claim, comprising a mixture of. 5. The device according to any one of claims 1 to 3, wherein the porous diffusion layer 4 is made of ceramic containing aluminum oxide, magnesium spinel, or zirconium dioxide. 6. The device according to claim 5, in which the porous diffusion layer 4 comprises zirconium dioxide with stabilizing additives and 20 to 60% by weight of titanium dioxide. 7. The device according to claim 5 or 6 of the utility model registration, wherein the diameter of the hole is 0.1 μm or less. 8. The device according to any one of claims 1 to 7, wherein the porous diffusion layer 4 supports a heating conductor 5 to which a heating voltage can be applied on the side opposite to the cathode 2. 9. The device according to any one of claims 1 to 8, wherein the porous diffusion layer 4 supports a temperature-dependent resistor 6 for heating control on the side opposite the cathode 2. 10 The porous diffusion layer 4 supports on the side opposite the cathode 2 a heating conductor made of a temperature-dependent resistance material, which conductor serves at the same time for heating and heating control. The device according to any one of the items.
JP8416982U 1981-06-10 1982-06-08 A device that measures the absolute pressure of air Granted JPS586245U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813122861 DE3122861A1 (en) 1981-06-10 1981-06-10 Device for measuring the absolute pressure of air
DE3122861.5 1981-06-10

Publications (2)

Publication Number Publication Date
JPS586245U JPS586245U (en) 1983-01-14
JPS6330987Y2 true JPS6330987Y2 (en) 1988-08-18

Family

ID=6134277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8416982U Granted JPS586245U (en) 1981-06-10 1982-06-08 A device that measures the absolute pressure of air

Country Status (2)

Country Link
JP (1) JPS586245U (en)
DE (1) DE3122861A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3217951A1 (en) * 1982-05-13 1983-11-17 Robert Bosch Gmbh, 7000 Stuttgart SPARK PLUG FOR INTERNAL COMBUSTION ENGINES
JPH0676989B2 (en) * 1986-02-04 1994-09-28 株式会社豊田中央研究所 Limiting current type oxygen sensor
DE3841621A1 (en) * 1988-12-10 1990-07-12 Draegerwerk Ag ELECTROCHEMICAL MEASURING CELL WITH MICROSTRUCTURED CAPILLARY OPENINGS IN THE MEASURING ELECTRODE
DE3941837C2 (en) * 1989-12-19 1994-01-13 Bosch Gmbh Robert Resistance sensor for detecting the oxygen content in gas mixtures and process for its production
JP2001281214A (en) * 2000-03-29 2001-10-10 Ngk Spark Plug Co Ltd Gas sensor and sensor unit to use the same
DE10352797A1 (en) * 2003-11-12 2005-06-02 Robert Bosch Gmbh Device for measuring the pressure in a gas mixture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6901021A (en) * 1969-01-22 1970-07-24
DE2711880C2 (en) * 1977-03-18 1985-01-17 Robert Bosch Gmbh, 7000 Stuttgart Polarographic probe for measuring oxygen concentration and process for its manufacture
DE2945020A1 (en) * 1979-11-08 1981-05-21 Bosch Gmbh Robert Porous stable zirconium di:oxide ceramic - contg. added titanium di:oxide to control porosity and pore size distribution

Also Published As

Publication number Publication date
JPS586245U (en) 1983-01-14
DE3122861A1 (en) 1982-12-30
DE3122861C2 (en) 1988-12-29

Similar Documents

Publication Publication Date Title
US4272329A (en) Steady state mode oxygen sensor and method
US4487680A (en) Planar ZrO2 oxygen pumping sensor
JP3871497B2 (en) Gas sensor
Dietz Gas-diffusion-controlled solid-electrolyte oxygen sensors
US5236569A (en) Air/fuel ratio sensor having resistor for limiting leak current from pumping cell to sensing cell
US4765880A (en) Air/fuel ratio sensor
US4391691A (en) Temperature compensated polarographic oxygen gas sensor and sensing system, particularly for automotive application
US4152233A (en) Apparatus for electrochemical gas detection and measurement
JPS6330987Y2 (en)
JPH0213742B2 (en)
EP0993607B1 (en) Apparatus and method for measuring the composition of gases using ionically conducting electrolytes
US5545301A (en) Sensor element for the determination of concentration of gas constituent(s)
KR19980701596A (en) ELECTROCHEMICAL PLANAR METAL / METAL OXIDE ELECTRODE
JPH0467912B2 (en)
JP2881426B2 (en) Oxygen sensor
JP2016521855A (en) Gas sensor for measuring a plurality of different gases and associated manufacturing method
GB2313671A (en) Solid electrolyte oxygen sensor having two measurement ranges
KR102654353B1 (en) Hetero-juction solid electroyte hydrogen sensor comprising gold reference electrode
JPH0521499B2 (en)
JP3468348B2 (en) Carbon monoxide sensor and carbon monoxide concentration measuring method
JPH05312768A (en) Oxigen sensor
JPH0763724A (en) Nitrogen oxides sensor
JPH0234605Y2 (en)
JPH05240830A (en) Oxygen sensor
WO1986003587A1 (en) PLANAR ZrO2 OXYGEN PUMPING SENSOR