JPS63308539A - Super-mini gas sensor - Google Patents

Super-mini gas sensor

Info

Publication number
JPS63308539A
JPS63308539A JP62144370A JP14437087A JPS63308539A JP S63308539 A JPS63308539 A JP S63308539A JP 62144370 A JP62144370 A JP 62144370A JP 14437087 A JP14437087 A JP 14437087A JP S63308539 A JPS63308539 A JP S63308539A
Authority
JP
Japan
Prior art keywords
light
waveguide
gas
absorbed
reference light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62144370A
Other languages
Japanese (ja)
Other versions
JPH0519098B2 (en
Inventor
Koichi Ikegawa
池川 幸一
Hitoshi Takami
均 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP62144370A priority Critical patent/JPS63308539A/en
Publication of JPS63308539A publication Critical patent/JPS63308539A/en
Publication of JPH0519098B2 publication Critical patent/JPH0519098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To achieve a super-mini application of a gas sensor, by arranging a light waveguide, a radar diode for generating measuring and reference beams, a light combining filter, a photodiode and a microcomputer. CONSTITUTION:A microcomputer 6 outputs an emission signal and emits a measuring beam with the wavelength absorbed by methane from a laser diode 4A and subsequently, a reference with the wavelength in noway absorbed thereby from a laser diode 4B. Both the beams are combined with a light combining filter 4C to enter a waveguide path 3 at an incident port 3A. In the process of propagation, an evanescent wave generated outside a waveguide substrate is attenuated being absorbed by methane. Thus, a measuring light emitted at an emission port 3B and received with a photodiode 5 is given in the quantity of light as subjected to absorption corresponding to the density of a methane gas. The reference beam is received being little attenuated as in no way absorbed by methane. A computer 6 computes the density of a gas by a specified formula from an electric signal corresponding to the amount of measurement and the reception of the reference beam.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガスの濃度等を光学的に検出させるための電
池内蔵の超小型に形成されたガスセンサに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ultra-compact gas sensor with a built-in battery for optically detecting gas concentration and the like.

(従来の技術) 従来、ガスの濃度を測定づ−るためのガスセンサとして
、例えば電解液中に設けられた電極間に電圧を印加し、
ガスを陽極酸化さけて、このとき流れる電流を測定する
ことによってガスの濃度を検出させる電気化学反応方式
のガスセンサや、金属酸化物の半導体に還元性ガスを吸
着させたとき、その電気伝導度が増加する現象を利用し
た半導体方式のガスセンサなどがあった。
(Prior Art) Conventionally, as a gas sensor for measuring the concentration of gas, for example, a voltage is applied between electrodes provided in an electrolytic solution.
An electrochemical reaction type gas sensor detects the concentration of gas by measuring the current flowing at the time of anodizing the gas, and when a reducing gas is adsorbed on a metal oxide semiconductor, its electrical conductivity increases. There were semiconductor-based gas sensors that took advantage of the increasing phenomenon.

(発明が解決しようとする問題点) しかしながら上記従来のガスセンサのうち、電気化学反
応方式のガスセンサは電解液を用いているため寿命が短
く、かつ外形寸法が大きく高価であるという問題があっ
た。また、半導体方式のガスセンサの場合は、金属酸化
物半導体の焼結体、焼結膜、あるいは薄膜などからなる
感応体部と、これを加熱するヒータ、及び防爆用のネッ
トなどで構成されているため、外形寸法を小さくするこ
とに限界があった。そのため、狭小な場所に直接ガスセ
ンサを取付けたりすることが極めて困難であるという問
題と、ガスセンサが屋内の天井等に取付けられた場合に
目立ち過ぎてインテリア性を失うなどという問題があっ
た。
(Problems to be Solved by the Invention) However, among the above-mentioned conventional gas sensors, the electrochemical reaction type gas sensor uses an electrolytic solution, so there are problems in that it has a short life, has a large external size, and is expensive. In addition, in the case of a semiconductor-type gas sensor, it consists of a sensitive body made of a sintered body, sintered film, or thin film of a metal oxide semiconductor, a heater that heats it, and an explosion-proof net. However, there was a limit to reducing the external dimensions. Therefore, there are problems in that it is extremely difficult to directly install the gas sensor in a narrow space, and that when the gas sensor is installed on the ceiling indoors, it becomes too conspicuous and loses its interior design.

さらに、従来のガスセンサは一般に電源として交流10
0Vを必要とするため、交流100V電源が容易に供給
できる場合に取付けることが必要条件となり、もし、交
流100V電源が無い場所にガスセンサを取付ける場合
は、電源として電池を用いていたが、常時電源を供給し
ていなければならないため、電池の消耗が早く、実用的
ではないという問題があった。さらにアルコール等の雑
ガスにより誤動作をすることがあるという問題があった
Additionally, conventional gas sensors typically use AC 1000 as a power source.
Since it requires 0V, it is necessary to install it when AC 100V power can be easily supplied.If the gas sensor is installed in a place without AC 100V power, batteries are used as the power source, but a constant power source is required. However, there was a problem in that the battery used up quickly, making it impractical. Furthermore, there is a problem in that malfunctions may occur due to miscellaneous gases such as alcohol.

そこで本発明においては、上記従来の問題点を解決する
ためLSI(ラージスケールインテグレーテッドサーキ
ット)等微細加工用写真技術などを利用することにより
、光ファイバの特性を有する光導波路を超小型に形成し
、ざらに光導波路に接続される光電部、演算部、電源部
等をワンチップ状に−・体化することによりガスセンサ
全体を超小型にするとともに、特定のガスに対してのみ
吸収される波長の光を測定光として用い、同ガスの吸収
されない波長の光を基準光として用いることにより他の
ガスの影響を受りずに濃度等を検出させ、また、電源と
して電池を用い、かつ上記測定光、基準光の発光におい
ては時間間隔を明けたパルス光とすることにより電池の
消耗を少なくして電池の寿命を長くすることを技術的課
題とするものである。
Therefore, in the present invention, in order to solve the above-mentioned conventional problems, an optical waveguide having the characteristics of an optical fiber is formed in an ultra-small size by using photographic technology for microfabrication of LSI (Large Scale Integrated Circuit), etc. By incorporating the photoelectric section, calculation section, power supply section, etc. connected to the optical waveguide into a single chip, the entire gas sensor can be made ultra-compact, and the wavelength that is absorbed only by a specific gas can be reduced. By using light at a wavelength that is not absorbed by the same gas as a reference light, the concentration, etc. can be detected without being affected by other gases.Also, by using a battery as a power source, and by using a battery as a power source, The technical problem is to reduce battery consumption and extend battery life by emitting light and reference light as pulsed light with time intervals.

(問題点を解決するための手段) 上記課題解決のための技術的手段は、ガスの濃度等を光
学的に検出させるための超小型ガスセンサを、光ファイ
バのクラッドに対応した特性を有する薄板状の小さな基
盤と光ファイバのコアに対応した特性を有して前記基盤
にうず巻き状に形成された導波路とから成る光導波路と
、前記ガスにより吸収される波長の測定光を発光する測
定光発光手段と、前記ガスにより吸収されない波長の基
準光を発光する基準光発光手段と、前記測定光発光手段
と前記基準光発光手段それぞれに対して前記測定光と前
記基準光とをそれぞれパルス状に、かつ一定時間毎に間
欠的に発光させるための発光信号を出力する発光制御手
段と、前記測定光発光手段から発光された前記パルス状
の測定光と前記基準光発光手段から発光された前記パル
ス状の基単光とを合波と、合波した光を前記光導波路に
伝送する光合波手段と、前記光合波手段からの前記合波
光が前記導波路中を伝搬したあと、同導波路から出光し
た前記測定光と基準光とを受光したうえ測定光の受光け
ど基準光の受光量それぞれに対応した電気信号を出力す
る受光手段と、前記受光手段から出力された前記測定光
の受光量対応の電気信号と前記基準光の受光量対応の電
気信号とを入力して前記ガスの濃度等を演算づる演算手
段とのそれぞれを一体的に集合形成することである。
(Means for solving the problem) The technical means for solving the above problem is to install an ultra-small gas sensor for optically detecting the concentration of gas, etc. into a thin plate shape having characteristics corresponding to the cladding of an optical fiber. an optical waveguide consisting of a small base and a waveguide formed in a spiral shape on the base and having characteristics corresponding to the core of an optical fiber; and a measurement light emitting device that emits a measurement light having a wavelength that is absorbed by the gas. a reference light emitting means for emitting reference light having a wavelength that is not absorbed by the gas; and pulses of the measuring light and the reference light to each of the measuring light emitting means and the reference light emitting means, respectively; and a light emission control means for outputting a light emission signal for causing light emission intermittently at regular intervals; and a light emission control means for outputting a light emission signal for causing light emission intermittently at fixed time intervals; an optical multiplexer for transmitting the multiplexed light to the optical waveguide; and an optical multiplexing means for transmitting the multiplexed light to the optical waveguide; and after the multiplexed light from the optical multiplexer propagates through the waveguide, light is emitted from the waveguide. light-receiving means for receiving the measurement light and reference light and outputting electrical signals corresponding to the received amount of the reference light, respectively; A calculation means for calculating the concentration of the gas and the like by inputting an electric signal and an electric signal corresponding to the amount of received reference light is integrally formed.

(作 用) 上記構成の超小型ガスセン4ノーに依れば、発光制御手
段は測定光発光手段と基準光発光手段とに対し、一定時
間毎に前記測定光と前記基準光とをそれぞれパルス状に
、かつ一定の出力で発光させるための発光信号を出力す
る。測定光発光手段から発光されたパルス状の測定光と
、基準光発光手段から発光されたパルス状の基準光は光
合波手段により合波され、直列光となってうず巻き状に
形成された導波路を伝搬する。導波路中を測定光が伝搬
する過程で、導波路外に発生する測定光のエバネッセン
ト波が被検出ガスにより吸収される一方、基準光は被検
出ガスにより吸収されない状態で、導波路から出光した
測定光と基準光は受光手段で受光され、受光手段から測
定光の受光量と基準光の受光量それぞれに対応した電気
信号を演算手段に出力する。演算手段は上記測定光の受
光量対応の電気信号をv1基準光の受光量対応の電気信
号をVOとし、ガス濃度Pを次式に基づいて演算する。
(Function) According to the ultra-compact gas sensor 4NO configured as described above, the light emission control means pulses the measurement light and the reference light to the measurement light emission means and the reference light emission means at fixed time intervals. It outputs a light emission signal to cause light to emit light at a constant output. The pulsed measurement light emitted from the measurement light emitting means and the pulsed reference light emitted from the reference light emitting means are combined by the optical multiplexing means to form serial light into a spiral waveguide. propagate. During the process of the measurement light propagating through the waveguide, the evanescent wave of the measurement light generated outside the waveguide is absorbed by the gas to be detected, while the reference light is emitted from the waveguide without being absorbed by the gas to be detected. The measuring light and the reference light are received by the light receiving means, and the light receiving means outputs electrical signals corresponding to the received amounts of the measuring light and the reference light, respectively, to the calculating means. The calculation means calculates the gas concentration P based on the following equation, using an electric signal corresponding to the amount of received measurement light as VO and an electric signal corresponding to the amount of received light of the v1 reference light.

V/Vo=exp (−apjl )    (1)た
だし、αは光吸収率、ρは導波路長である。
V/Vo=exp (-apjl) (1) where α is the optical absorption rate and ρ is the waveguide length.

上記式(1)から明らかなように導波路長pの長さが長
いはどV/Voが小さくなり、いわゆるガス濃度検出感
度を上げるものである。
As is clear from the above equation (1), the longer the waveguide length p is, the smaller V/Vo becomes, which increases the so-called gas concentration detection sensitivity.

(実施例) 次に本発明の実施例を図面に従って説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、超小型ガスセンサの全体系統を示したブロッ
ク図であり、第2図は、光導波路の断面図である。第1
図に示した光導波路1は、第2図の断面図に示すように
、光ファイバのクラッドに相当する極めて薄い導波路基
盤2に、LSI等の製造等に用いられる写真技術、即ち
微細加工技術を用いることにより、光ファイバのコアに
相当する導波路3をうず巻き状に形成したものである。
FIG. 1 is a block diagram showing the entire system of an ultra-small gas sensor, and FIG. 2 is a sectional view of an optical waveguide. 1st
As shown in the cross-sectional view of FIG. 2, the optical waveguide 1 shown in FIG. By using this, the waveguide 3 corresponding to the core of the optical fiber is formed in a spiral shape.

例えば直径1 cutの上記導波路基盤2に直径が例え
ば50μmの導波路3をうず巻き状に形成する場合、導
波路3の1巻当りの長さは約3.14cmとなるため、
延100cmの長さのうず巻き状の導波路3を形成する
場合のターン数は 100cm/ 3.14 cm=31.8となるため約
32本のうず巻きを作れば良いことになる。
For example, when a waveguide 3 with a diameter of 50 μm is formed in a spiral shape on the waveguide substrate 2 with a diameter of 1 cut, the length of each turn of the waveguide 3 is about 3.14 cm.
When forming a spiral waveguide 3 with a total length of 100 cm, the number of turns is 100 cm/3.14 cm=31.8, so it is sufficient to form about 32 spirals.

上記光導波路1に形成された導波路3の一方の開口端は
、レーザ発光部4に接合される入光口3Aとなる一方、
導波路3の他方の間口端は、後述の測定光及び基準光を
受光するフォトダイオード5に接合される出光口3Bと
なる。
One open end of the waveguide 3 formed in the optical waveguide 1 serves as a light entrance 3A joined to the laser emitting part 4, while
The other front end of the waveguide 3 becomes a light exit 3B that is connected to a photodiode 5 that receives measurement light and reference light, which will be described later.

レーザ発光部4は、被検出ガスを例えばメタン(CH4
)として、メタンにより吸収される波長の測定光を発光
させるレーザダイオード4Aと、メタンにより吸収され
ない波長の基準光を発光させるレーザダイオード4Bと
、上記測定光と基準光とを合波したうえ両光を直列光に
して前記入光口3Aに入光させる光合波器4Cとを内蔵
している。
The laser emitting unit 4 converts the gas to be detected into, for example, methane (CH4
), a laser diode 4A that emits measurement light with a wavelength that is absorbed by methane, a laser diode 4B that emits reference light with a wavelength that is not absorbed by methane, and a laser diode 4B that emits measurement light with a wavelength that is not absorbed by methane; It has a built-in optical multiplexer 4C that converts the light into serial light and enters the light input port 3A.

レーザ発光部4はマイクロコンビコータ6と接続されて
おり、マイクロコンピュータ6から前記レーザダイオー
ド4Δと4Bとに対して発光信号を出力する。マイクロ
コンピュータ6から出力される発光信号は、第4図に示
すように例えば測定光を10ミリ秒、基準光を10ミリ
秒それぞれ続けて同じ発光レベルで発光させ、10秒の
間隔を置いて再び測定光、基準光をそれぞれ10ミリ秒
間づつ発光させるという間欠発光をさせるためのもので
ある。一方、前記フォトダイオード5は上記マイクロコ
ンピュータ6と接続されており、前記導波路3の出光口
3Bから出光した測定光及び基準光それぞれの受光量対
応の電気信号をマイクロコンピュータ6に出力する。マ
イクロコンビコータ6は、フォトダイオード5から出力
された上記電気信号を入力したうえ後述の作用によりメ
タンの濃度を演算する。電池7は本実施例の超小型ガス
センサの電源として設りられ、電池7の出力電圧は安定
化電源8により所定の電圧に安定化されたあと、レーザ
発光部4、フォトダイオード5、マイクロコンピュータ
6等に供給される。電池7、安定化電ff18は、例え
ばICカードのようにチップ状にして組込むことにより
全体の形状を超小型に形成するものである。
The laser emitting section 4 is connected to a microcombi coater 6, and the microcomputer 6 outputs a light emission signal to the laser diodes 4Δ and 4B. The light emission signal output from the microcomputer 6 is, as shown in FIG. This is for intermittent light emission in which the measurement light and the reference light are emitted for 10 milliseconds each. On the other hand, the photodiode 5 is connected to the microcomputer 6, and outputs to the microcomputer 6 an electric signal corresponding to the amount of received measurement light and reference light emitted from the light exit 3B of the waveguide 3. The micro combi coater 6 receives the electric signal outputted from the photodiode 5 and calculates the concentration of methane by the action described below. A battery 7 is provided as a power source for the ultra-small gas sensor of this embodiment, and after the output voltage of the battery 7 is stabilized to a predetermined voltage by a stabilized power source 8, the output voltage of the battery 7 is stabilized to a predetermined voltage by a stabilizing power source 8, and then the output voltage of the battery 7 is stabilized to a predetermined voltage by a stabilizing power source 8. etc. will be supplied. The battery 7 and the stabilizing voltage ff18 are formed into a chip shape and incorporated into an IC card, for example, so that the overall shape is made extremely small.

次に、上記構成による実施例の作用を説明する。Next, the operation of the embodiment with the above configuration will be explained.

上記超小型ガスセンサが例えばメタン発生場所に設置さ
れた状態で、マイクロコンピュータ6はレーザダイオー
ド4Aに対して測定光発光用の発光信号を出力し、レー
ザダイオード4Aからメタンにより吸収される波長例え
ば1.3μm帯の測定光を所定の先組で10ミリ秒間発
光させ、続いてメタンにより吸収されない波長の基準光
を測定光と同一の先出で10ミリ秒間レーデダイオード
4Bから発光させる。レーザダイオード4Aから発光さ
れた測定光及びレーザダイオード4Bから発光された基
準光は光合波器4Cで合波され、直列状の光にされて光
導波路1の入光口3Aから導波路3に入光し、うず巻き
状に形成された導波路3を伝搬する。測定光が導波路3
を伝搬する過程で、第3図に示すように導波路基板2の
外側に測定光のエバネッセント波10が発生し、メタン
と接触したとき、エバネッセント波10がメタンにより
吸収される。そのため、測定光は導波路3を伝搬する途
中で減衰し、導波路3の出光口3Bから出光してフォト
ダイオード5で受光される時点での測定光はメタンガス
の濃度に対応した吸収を受けたあとの光量となる。
With the ultra-compact gas sensor installed, for example, at a methane generation location, the microcomputer 6 outputs a light emission signal for emitting measurement light to the laser diode 4A, and the laser diode 4A outputs a light emission signal for emitting measuring light, for example, 1. Measurement light in the 3 μm band is emitted for 10 milliseconds by a predetermined preset, and then reference light having a wavelength that is not absorbed by methane is emitted from the Raded diode 4B for 10 milliseconds at the same predetermined wavelength as the measurement light. The measurement light emitted from the laser diode 4A and the reference light emitted from the laser diode 4B are multiplexed by an optical multiplexer 4C, converted into serial light, and enter the waveguide 3 from the light entrance 3A of the optical waveguide 1. The light is emitted and propagates through the waveguide 3 formed in a spiral shape. Measurement light is in waveguide 3
During the propagation process, an evanescent wave 10 of the measurement light is generated outside the waveguide substrate 2 as shown in FIG. 3, and when it comes into contact with methane, the evanescent wave 10 is absorbed by the methane. Therefore, the measurement light is attenuated while propagating through the waveguide 3, and at the time it is emitted from the light exit 3B of the waveguide 3 and received by the photodiode 5, the measurement light has undergone absorption corresponding to the concentration of methane gas. This will be the amount of light.

一方、基準光はロタンによって吸収されないため、はと
んど減衰することなくフォトダイオード5で受光される
。フォトダイオ−−ド5により受光された測定光光量対
応の出力信号をV1フォトダイオード5により受光され
た基準光光量対応の出力信号を■0とし、さらに、メタ
ンの光吸収率をa (0,054atm−’ 6 cm
−’> 、導波路3の長さρを(cm>、ガス濃度をD
(1)Flm)とすると、メタンによる吸収式は V/Vo=exp  (−apfJ )     (3
)となり、式(3)から、ガス濃度pを求める式(4)
が導かれる。上記式(4)により今、導波路長ρ= 1
QQcm、 (X= 0.054 atm−1−cm−
’  V/VO−0,984rある場合、ガスS度pは
5000100mとなる。
On the other hand, since the reference light is not absorbed by rotane, it is received by the photodiode 5 without being attenuated. The output signal corresponding to the amount of measurement light received by the photodiode 5 is set to 0, and the output signal corresponding to the amount of reference light received by the V1 photodiode 5 is set to 0, and the light absorption rate of methane is set to a (0, 054atm-' 6 cm
-'>, the length ρ of the waveguide 3 is (cm>, the gas concentration is D
(1) Flm), the absorption equation by methane is V/Vo=exp (-apfJ) (3
), and from equation (3), the gas concentration p is calculated using equation (4).
is guided. According to the above equation (4), now the waveguide length ρ = 1
QQcm, (X= 0.054 atm-1-cm-
' If V/VO-0,984r, the gas S degree p is 5000100 m.

なお、メタンのガス濃度pを5000 t)pmとして
導波路3の長さfを1000cmにした場合には、式(
3)からV/VO= 0.85となるため、ガス濃度の
検出感度を向上させることができる。またマイクロコン
ピュータ6に表示器及び圧電ブザー等を接続することに
よってガス濃度を表示さ往ることができる。
Note that when the methane gas concentration p is 5000 t) pm and the length f of the waveguide 3 is 1000 cm, the formula (
Since V/VO=0.85 from 3), the detection sensitivity of gas concentration can be improved. Furthermore, by connecting a display, a piezoelectric buzzer, etc. to the microcomputer 6, the gas concentration can be displayed.

(発明の効果) 以上のように本発明に依れば、光ファイバのコアに相当
する導波路を、光ファイバのクラッドに相当する薄板状
の基盤にうず巻き状に形成することによって所要の導波
路長を確保し、さらに測定光発光手段、基準光発光手段
、受光手段、演算手段及び電池等を一体的に、かつコン
パクトに形成することによってガスセンサを超小型に構
成できるため、ガスセンサの設定場所を限定することな
く、かつ室内等のインテリア性を失うことがないように
設置することができ、また、測定光、基準光の発光を間
欠的に行うために、電池の寿命を長くすることができる
という効果がある。
(Effects of the Invention) As described above, according to the present invention, by forming a waveguide corresponding to the core of an optical fiber in a spiral shape on a thin plate-like base corresponding to the cladding of the optical fiber, a desired waveguide can be formed. The gas sensor can be constructed in an ultra-compact size by ensuring a long length and by integrally and compactly forming the measuring light emitting means, reference light emitting means, light receiving means, calculation means, battery, etc. It can be installed without any limitations and without losing the interior design of the room, etc. Also, since the measurement light and reference light are emitted intermittently, the battery life can be extended. There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面は実施例に係り、第1図は超小型ガスセンサの全体
系統図、第2図は光導波路の部分断面図、第3図及び第
4図は作用説明図である。 1・・・光導波路 2・・・導波路基板 3・・・導波路 4・・・レーザ発光部 4A・・・レーザダイオード 4B・・・レーザダイオード 4C・・・光合波器 5・・・フォトダイオード 6・・・マイクロコンピュータ 7・・・電池 8・・・安定化電源
The drawings relate to embodiments, and FIG. 1 is an overall system diagram of an ultra-small gas sensor, FIG. 2 is a partial sectional view of an optical waveguide, and FIGS. 3 and 4 are explanatory views of the operation. 1... Optical waveguide 2... Waveguide substrate 3... Waveguide 4... Laser emitting section 4A... Laser diode 4B... Laser diode 4C... Optical multiplexer 5... Photo Diode 6...Microcomputer 7...Battery 8...Stabilized power supply

Claims (1)

【特許請求の範囲】[Claims] 電源部に電池を用いてガスの濃度等を光学的に検出させ
るための超小型に形成されたガスセンサであつて、光フ
ァイバのクラッドに対応した特性を有する薄板状の小さ
な基盤と光ファイバのコアに対応した特性を有して前記
基盤にうず巻き状に形成された導波路とから成る光導波
路と、前記ガスにより吸収される波長の測定光を発光す
る測定光発光手段と、前記ガスにより吸収されない波長
の基準光を発光する基準光発光手段と、前記測定光発光
手段と前記基準光発光手段それぞれに対して前記測定光
と前記基準光とをそれぞれパルス状に、かつ一定時間毎
に間欠的に発光させるための発光信号を出力する発光制
御手段と、前記測定光発光手段から発光された前記パル
ス状の測定光と前記基準光発光手段から発光された前記
パルス状の基準光とを合波と、合波した光を前記光導波
路に伝送する光合波手段と、前記光合波手段からの前記
合波光が前記導波路中を伝搬したあと、同導波路から出
光した前記測定光と基準光とを受光したうえ測定光の受
光量と基準光の受光量それぞれに対応した電気信号を出
力する受光手段と、前記受光手段から出力された前記測
定光の受光量対応の電気信号と前記基準光の受光量対応
の電気信号とを入力して前記ガスの濃度等を演算する演
算手段とのそれぞれを一体的に集合形成したことを特徴
とする超小型ガスセンサ。
This is an ultra-compact gas sensor for optically detecting gas concentration, etc. using a battery in the power supply section, and consists of a small thin plate-like base with characteristics compatible with the cladding of an optical fiber and the core of the optical fiber. an optical waveguide formed in a spiral shape on the substrate and having characteristics corresponding to the waveguide; a measurement light emitting means for emitting measurement light of a wavelength that is absorbed by the gas; and a measurement light emitting means that emits measurement light of a wavelength that is not absorbed by the gas. a reference light emitting means for emitting a reference light of a certain wavelength, and the measuring light and the reference light are applied to each of the measuring light emitting means and the reference light emitting means in a pulsed manner and intermittently at regular intervals. a light emission control means for outputting a light emission signal for causing light emission; and a light emission control means for combining the pulsed measurement light emitted from the measurement light emission means and the pulsed reference light emitted from the reference light emission means. , an optical multiplexing means for transmitting the multiplexed light to the optical waveguide, and after the multiplexed light from the optical multiplexing means propagates through the waveguide, the measurement light and the reference light emitted from the waveguide are combined. a light receiving means that receives the light and outputs an electric signal corresponding to the received amount of the measurement light and the received reference light, respectively; and an electric signal corresponding to the received amount of the measurement light outputted from the light receiving means and the reception of the reference light. An ultra-compact gas sensor characterized in that an electric signal corresponding to the amount of gas is input, and a calculation means for calculating the concentration of the gas and the like are integrally formed.
JP62144370A 1987-06-10 1987-06-10 Super-mini gas sensor Granted JPS63308539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62144370A JPS63308539A (en) 1987-06-10 1987-06-10 Super-mini gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62144370A JPS63308539A (en) 1987-06-10 1987-06-10 Super-mini gas sensor

Publications (2)

Publication Number Publication Date
JPS63308539A true JPS63308539A (en) 1988-12-15
JPH0519098B2 JPH0519098B2 (en) 1993-03-15

Family

ID=15360536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62144370A Granted JPS63308539A (en) 1987-06-10 1987-06-10 Super-mini gas sensor

Country Status (1)

Country Link
JP (1) JPS63308539A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502879A (en) * 2001-09-05 2005-01-27 リンデ メディカル センサーズ アーゲー Optical waveguide detector system
JP2006220625A (en) * 2005-02-14 2006-08-24 Denso Corp Infrared gas detector
WO2011062034A1 (en) * 2009-11-17 2011-05-26 日本電気株式会社 Gas detection device
CN108169158A (en) * 2017-11-29 2018-06-15 全球能源互联网研究院有限公司 A kind of gas detecting system based on gas sensor
JP2020046416A (en) * 2018-07-06 2020-03-26 旭化成エレクトロニクス株式会社 Gas detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502879A (en) * 2001-09-05 2005-01-27 リンデ メディカル センサーズ アーゲー Optical waveguide detector system
JP2006220625A (en) * 2005-02-14 2006-08-24 Denso Corp Infrared gas detector
WO2011062034A1 (en) * 2009-11-17 2011-05-26 日本電気株式会社 Gas detection device
CN108169158A (en) * 2017-11-29 2018-06-15 全球能源互联网研究院有限公司 A kind of gas detecting system based on gas sensor
JP2020046416A (en) * 2018-07-06 2020-03-26 旭化成エレクトロニクス株式会社 Gas detector

Also Published As

Publication number Publication date
JPH0519098B2 (en) 1993-03-15

Similar Documents

Publication Publication Date Title
US4703175A (en) Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head
US20120260719A1 (en) Photo-acoustic gas sensor and method for the production and use thereof
JPS6039536A (en) Gas sensor
JPS6398548A (en) Sensor element for measuring substance concentration
WO2005090947A1 (en) Target material sensor using photonic crystal and detection method for target material
US4763009A (en) Method and apparatus for remotely measuring the distribution of a physico-chemical parameter in a medium
JP2007171027A (en) Optical inspection method and optical inspection device used therefor
JPH05503995A (en) Integrated optical Pockels cell voltage sensor
CN102853914A (en) Simple, low power microsystem for saturation spectroscopy
KR100866743B1 (en) Mixing ratio detection device and fuel cell system mounting the same
CN201749080U (en) Photoacoustic spectroscopy gas detection system based on distributed feedback fiber laser
CN101936878B (en) Photo-acoustic spectrum gas detecting system based on distributed feedback optical fiber laser
JPS63308539A (en) Super-mini gas sensor
WO2003040707A1 (en) Method for measuring concentration of nitrogen dioxide in air by single-wavelength laser induced fluorescence method, and apparatus for measuring concentration of nitrogen dioxide by the method
JP2002098637A (en) Concentration measuring apparatus
JP2011085576A (en) Optical fiber hydrogen sensor, and optical fiber hydrogen sensor system with the same
JP3238109B2 (en) Gas measuring device and isotope concentration ratio measuring device
JP2004333337A (en) Absorption spectrophotometer
JP2016133491A (en) Gas detection device
EP0819243A1 (en) Photoacoustic measuring apparatus
JP3003843B2 (en) Radiation distribution measuring instrument
FR2410809A1 (en) Opto-electronic device for measurement of velocity or acceleration - transmits signal via optical fibre to sensor reflecting beam back to detector with error correction feedback loop
JPH01221667A (en) Instrument and method for immunological inspection
JP2004065372A (en) Apparatus and method for biological measurement
JP3121711B2 (en) Concentration measuring device