JPS63306779A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS63306779A
JPS63306779A JP62143886A JP14388687A JPS63306779A JP S63306779 A JPS63306779 A JP S63306779A JP 62143886 A JP62143886 A JP 62143886A JP 14388687 A JP14388687 A JP 14388687A JP S63306779 A JPS63306779 A JP S63306779A
Authority
JP
Japan
Prior art keywords
field
signal
signals
image
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62143886A
Other languages
Japanese (ja)
Other versions
JPH0797841B2 (en
Inventor
宏爾 ▲高▼橋
Koji Takahashi
Teruo Hieda
輝夫 稗田
Tsutomu Sato
力 佐藤
Toshiyuki Masui
俊之 増井
Takashi Kobayashi
崇史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62143886A priority Critical patent/JPH0797841B2/en
Publication of JPS63306779A publication Critical patent/JPS63306779A/en
Priority to US07/601,014 priority patent/US5162914A/en
Priority to US08/386,119 priority patent/US5638118A/en
Publication of JPH0797841B2 publication Critical patent/JPH0797841B2/en
Priority to US08/802,279 priority patent/US5969761A/en
Priority to US09/293,905 priority patent/US6496226B2/en
Priority to US10/264,944 priority patent/US20030030743A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Control For Cameras (AREA)

Abstract

PURPOSE:To obtain an image pickup device whose dynamic range is virtually wide and by which a moving image can be obtained by consecutively outputting images different in exposure amount under the control of a control means, and providing a synthesis means that consecutively synthesizes the images to obtain a moving image. CONSTITUTION:The gradation characteristic, in case of an ordinary video camera, is linear for input/output up to 100%, but for 100-400%, it comes to be KNEE characteristic. In one field where the time resolution is about the same as that of a field accumulation CCD image pickup element, two sheets of pictures are fetched in. Signals are read out from the image pickup element 103 faster than normal video rate, and they are converted on time-base to return to the normal rate. Field memories 90, 91 respectively have a memory capacity equal to one field length, and in the memory 90, a 1/1000sec accumulating signal is delayed to come synchronous with 1/120sec read. In the memory 91, the signals are elongated on time-base two times in order to modify video signals in the unit of 1/120sec to NTSC signals in the unit of 1/60sec.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は実質的にダイナミック・レンジの広い撮像装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an imaging device having a substantially wide dynamic range.

〔従来の技術〕[Conventional technology]

撮像装置は、カメラ一体形VTRやスチル・ビデオ・カ
メラなどのビデオ・カメラ部として広く使用されている
。撮像管や固体撮像素子を用いるビデオ・カメラは旧来
の銀塩写真システムに比ベダイナミック・レンジが狭く
、従って、逆光時などには白とびゃ黒つぶれ(輝度レベ
ルが著しく高い又は低い部分の俗称)などが発生する。
Imaging devices are widely used as video camera units such as camera-integrated VTRs and still video cameras. Video cameras that use image pickup tubes or solid-state image sensors have a narrower dynamic range than traditional silver-halide photographic systems, and as a result, when backlit, etc., whites and darks are crushed (a common term for areas with extremely high or low brightness levels). ) etc. occur.

従来のビデオ・カメラではこのような場合、手動又は逆
光補正ボタンの操作により絞りを2絞り分程度開放し、
光量を調節していた。
With conventional video cameras, in such cases, the aperture can be opened by about two stops either manually or by operating the backlight compensation button.
The amount of light was being adjusted.

しかし、このような逆光補正を適切に行った場合でも、
主たる被写体が適正露光量であっても背景で白とびが発
生してしまい、背景が白いだけの画面になってしまう、
つまり、従来装置のように主被写体の露光量が適正にな
るように光量調節するだけでは、撮像装置のダイナミッ
ク・レンジの狭さは解決されない、そこで、例えばライ
ン・スキャナなどを用いて静止画像を電気信号に変換す
る従来の撮像装置では、同一被写体から得られた露光量
の異なる複数の画面から1つの画面を合成する構成が考
えられている。
However, even when such backlight compensation is performed appropriately,
Even if the main subject has the proper exposure, overexposure will occur in the background, resulting in a screen with only a white background.
In other words, the narrow dynamic range of the imaging device cannot be solved by simply adjusting the light amount so that the exposure of the main subject is appropriate, as is the case with conventional devices. In conventional imaging devices that convert into electrical signals, a configuration has been considered in which a single screen is synthesized from a plurality of screens with different exposure amounts obtained from the same subject.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この従来の撮像装置は静止画をその対象
としており、ダイナミック・レンジの広い動画が得られ
るものではなかった。
However, this conventional imaging device targets still images, and cannot obtain moving images with a wide dynamic range.

このような問題点に鑑み、本発明は、実質的なダイナミ
ック・レンジが広く、且つ動画像が得られる撮像装置を
提示することを目的とする。
In view of these problems, an object of the present invention is to provide an imaging device that has a wide substantial dynamic range and can obtain moving images.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る撮像装置は、撮像手段と、当該撮像手段か
ら露光量の異なる画像を連続して出力させる制御手段と
、当該撮像手段から出力された画像のうち、露光量の異
なる画像を連続して合成し、動画を得る合成手段とを有
する。
An imaging device according to the present invention includes an imaging means, a control means for successively outputting images with different exposure amounts from the imaging means, and a control means for successively outputting images with different exposure amounts among the images output from the imaging means. and compositing means for compositing and obtaining a moving image.

〔作用〕[Effect]

上記制御手段により、露光量の異なる複数の画像が連続
して得られるので、上記合成手段による合成をビデオ・
レートに追随する速度で行うことにより、合成された適
正露光量の動画像が得られる。合成手段での合成速度は
充分に速(できるので、問題はない。
The control means allows a plurality of images with different exposure amounts to be obtained in succession, so the composition by the composition means can be performed by video or video.
By performing the process at a speed that follows the rate, a synthesized moving image with an appropriate exposure amount can be obtained. The synthesis speed of the synthesis means is sufficiently fast (it can be done), so there is no problem.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例を説明する。第
1図は、カメラ一体形VTRに本発明を適用した場合の
全体構成ブロック図を示す。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a block diagram of the overall configuration when the present invention is applied to a camera-integrated VTR.

第1図において、100はカメラ部、200は処理部、
300は記録部である。カメラ部100において、光学
系101から入射した光線は絞り102により光量制限
され、撮像素子103に結像する。撮像素子103は撮
像管や、MOS、CODなどの半導体撮像素子からなる
。焦点駆動回路107、絞り駆動回路106及び撮像素
子駆動回路105は、カメラ制御回路108の制御の下
で、それぞれ光学系101、絞り102及び撮像素子1
03を駆動する。カメラ信号処理回路104は通常のビ
デオ・カメラの信号処理回路と同様のT補正その他の処
理を行う周知回路である。
In FIG. 1, 100 is a camera section, 200 is a processing section,
300 is a recording section. In the camera unit 100, the light beam entering from the optical system 101 is limited in light amount by the aperture 102, and is imaged on the image sensor 103. The image sensor 103 is composed of an image sensor, a semiconductor image sensor such as a MOS, or a COD. The focus drive circuit 107, the aperture drive circuit 106, and the image sensor drive circuit 105 respectively control the optical system 101, the aperture 102, and the image sensor 1 under the control of the camera control circuit 108.
Drive 03. The camera signal processing circuit 104 is a well-known circuit that performs T-correction and other processing similar to the signal processing circuit of a normal video camera.

カメラ部100から出力される映像信号は、処理部20
0のA/D変換器201でディジタル信号に変換され、
演算回路202で後述する画素データの変換を行われ、
D/A変換器203でアナログ信号に戻され、記録部3
00に供給される。
The video signal output from the camera section 100 is processed by the processing section 20.
0 is converted into a digital signal by the A/D converter 201,
The arithmetic circuit 202 performs pixel data conversion, which will be described later.
The D/A converter 203 converts the signal back to an analog signal, and the recording unit 3
00.

204は、演算回路202での演算用の画像メモリであ
り、205はそのアドレッシング回路である。アドレッ
シング回路205はカメラ部100の制御回路108か
らのタ゛イミング信号に応じて画像メモリ204の書込
、読出アドレス制御信号を出力する。
204 is an image memory for calculation in the calculation circuit 202, and 205 is its addressing circuit. The addressing circuit 205 outputs write and read address control signals for the image memory 204 in response to timing signals from the control circuit 108 of the camera unit 100.

記録部300では、D/A変換器203からのアナログ
信号が公知の方法でVTRレコーダ3゜1に記録される
In the recording section 300, the analog signal from the D/A converter 203 is recorded on the VTR recorder 3.1 using a known method.

次に撮像素子103の動作を説明する。第2図はカメラ
部100のより詳細な構成ブロック図であり、第3図は
NTSC信号を例にとった場合に、カメラ部100のタ
イミング・チャートを示す、フィールド・インデックス
(Fl)信号は、1フレームを構成する奇(ODD)フ
ィールドと偶(f!VEN)フィールドとを区別するた
めの信号である*VILK信号は垂直ブランキング信号
であり、H(高)の期間が有効画面、L(低)の部分が
垂直プランキ° ング期間に対応する。T□0.は撮像
素子103の電荷蓄積時間制御のための信号であり、例
えばCCD撮像素子の場合には画素出力を垂直転送用C
ODに読み出すためのパルスである。アイリス・ゲート
信号は、後述する自動露出のための基準となる映像信号
として、1/1000秒の蓄積信号か1760秒の蓄積
信号のどちらを用いるかを指定する信号である。
Next, the operation of the image sensor 103 will be explained. FIG. 2 is a more detailed block diagram of the camera section 100, and FIG. 3 is a timing chart of the camera section 100, taking the NTSC signal as an example. The field index (Fl) signal is: The *VILK signal, which is a signal for distinguishing between the odd (ODD) field and the even (f! VEN) field that constitute one frame, is a vertical blanking signal, and the H (high) period is the valid screen, and the L ( The low) part corresponds to the vertical planking period. T□0. is a signal for controlling the charge accumulation time of the image sensor 103; for example, in the case of a CCD image sensor, the pixel output is sent to C for vertical transfer.
This is a pulse for reading out to OD. The iris gate signal is a signal that specifies whether to use a 1/1000 second accumulation signal or a 1760 second accumulation signal as a reference video signal for automatic exposure, which will be described later.

図示例では、垂直ブランキング期間の間に171000
秒の蓄積を行い、次の有効画面期間にその1/1000
秒蓄積信号を出力する。そして、1/1000秒蓄積期
間の直後に実質1760秒の電荷蓄積を行い、次フィー
ルドの有効画面期間にその1760秒蓄積信号を出力す
る。このようにして、各フィールド毎に、2種類(1/
1000秒と1760秒)の光量の信号が交互に出力さ
れる。
In the illustrated example, 171,000 during the vertical blanking period.
1/1000 of that in the next valid screen period.
Outputs second accumulation signal. Immediately after the 1/1000 second accumulation period, charge is accumulated for substantially 1760 seconds, and the 1760 second accumulation signal is output during the effective screen period of the next field. In this way, for each field, two types (1/
1000 seconds and 1760 seconds) are output alternately.

なお、第2図において、20はカメラ信号処理回路10
4からの信号(例えば映像信号)を受けて、露出制御の
ための制御信号を演算する公知のAEwi御回路、22
は合焦制御のための制御信号を出力する公知のAFil
li回路、24は垂直ブランキング信号V、□を2分周
する1/2分周回路である。26.27はサンプル・ホ
ールド回路、28はインバータ、29.30は1/2分
周回路24の出力又はインバータ28によるその反転信
号のどちらでサンプリング・タイミングを決定するかを
選択するスイッチである。サンプル・ホールド回路26
.27の出力はそれぞれ絞り駆動回路106及び焦点駆
動回路107に印加され、自動露出制御、自動焦点調節
が実行される。
In addition, in FIG. 2, 20 is the camera signal processing circuit 10.
A known AEwi control circuit 22 receives a signal (for example, a video signal) from 4 and calculates a control signal for exposure control.
is a known AFil that outputs a control signal for focus control.
The li circuit 24 is a 1/2 frequency dividing circuit that divides the frequency of the vertical blanking signal V, □ by two. 26 and 27 are sample and hold circuits, 28 are inverters, and 29 and 30 are switches for selecting whether to use the output of the 1/2 frequency divider circuit 24 or its inverted signal from the inverter 28 to determine the sampling timing. Sample and hold circuit 26
.. The outputs of 27 are applied to an aperture drive circuit 106 and a focus drive circuit 107, respectively, to perform automatic exposure control and automatic focus adjustment.

上記実施例では、1/1000秒と1760秒の組み合
わせであり、約4段(24倍)の光量変化であるので、
例えばCCD撮像素子を用いたカメラの場合、EVEN
フィールドで1760秒の蓄積時間を基準に主被写体に
露出を合わせると、そのBVENフィールドでは宵張に
白とびが生じ易いのに対し、4段光量を少なくしたOD
Dフィールドでは主被写体で黒つぶれが発生することが
多い。なお、この例は逆光補正時に背景側に露出を合わ
せた場合を想定したもので、勿論、その場の状況により
1/1000秒以外に設定してもよい。
In the above example, it is a combination of 1/1000 seconds and 1760 seconds, and the light amount changes by about 4 steps (24 times).
For example, in the case of a camera using a CCD image sensor, EVEN
If you adjust the exposure to the main subject based on the accumulation time of 1760 seconds in the field, in that BVEN field, overexposure tends to occur in the evening, but with OD that reduces the light intensity by 4 steps.
In the D field, blackout often occurs on the main subject. Note that this example assumes that the exposure is adjusted to the background side during backlight correction, and of course, it may be set to a value other than 1/1000 seconds depending on the situation.

本発明では、このような、一方のフィールドでの白とび
及び/又は黒つぶれを積極的に利用して、画面の改善を
行う。つまり白とび又は黒つぶれの生じる部分について
は、他のフィールドの対応部分(露出が異なるので黒つ
ぶれ又は白とびは生じていない。)で代替し、両フィー
ルドの信号を合成して最終的な映像信号とする。その基
本的考え方を、第4図を参照して説明する。第4図では
、主被写体を縦長の長方形で模式的に示している。
In the present invention, such overexposure and/or underexposure in one field is actively utilized to improve the screen. In other words, areas where blown-out highlights or blown-out shadows occur are replaced with corresponding areas from other fields (no blown-out highlights or blown-out highlights occur because the exposure is different), and the signals from both fields are combined to create the final image. Signal. The basic idea will be explained with reference to FIG. In FIG. 4, the main subject is schematically shown as a vertically long rectangle.

第4図でスルー(T)画とは撮像素子103の直接出力
をいい、メモリ(M)画又はメモリ出力とは画像メモリ
204に一旦記憶された直前フィールドの信号をいう、
スルー画ではODDフィールド毎に逆光時の主被写体が
黒つぶれになり、EVENフィールド毎に背景が白とび
になっている。また、メモリ画では、1フイ一ルド期間
遅延した信号からなるので、白とびと黒つぶれはスルー
画とは異なるフィールドで生じている。
In FIG. 4, the through (T) image refers to the direct output of the image sensor 103, and the memory (M) image or memory output refers to the signal of the previous field once stored in the image memory 204.
In the through-the-lens image, the backlit main subject is blown out in shadows in each ODD field, and the background is blown out in highlights in each EVEN field. Furthermore, since the memory image consists of a signal delayed by one field period, blown-out highlights and blown-out shadows occur in a different field from the through-the-lens image.

従って、スルー画とメモリ画とを適切に組み合わせれば
、白とび及び黒つぶれの無い良好な映像が得られること
になる。つまり各フィールド毎にスルー画及びメモリ画
の信号を所定の閾値と比較して、当該閾値より大きけれ
ば1、小さければ0として、画素毎に白とび又は黒ツプ
レを判定する。
Therefore, by appropriately combining the through-the-lens image and the memory image, a good image without blown-out highlights or blown-out shadows can be obtained. That is, for each field, the signals of the live view image and the memory image are compared with a predetermined threshold value, and if the signal is larger than the threshold value, it is set as 1, and if it is smaller than the threshold value, it is set as 0, and blown-out highlights or blown-out shadows are determined for each pixel.

第6図はその閾値と、画素の輝度値、フィールドとの関
係を示す。第6図(a)の横軸は輝度レベル、縦軸は1
百面中の各輝度レベルの出現頻度を示す。
FIG. 6 shows the relationship between the threshold value, the brightness value of the pixel, and the field. In Figure 6(a), the horizontal axis is the brightness level, and the vertical axis is 1.
Shows the frequency of appearance of each brightness level in the 100 pages.

第6図(a)に示すように、閾値Thlは黒つぶれを判
定できるように設定され、閾値Th2は、白とびを判定
できるように設定される。即ち、Thl以下が黒つぶれ
であり、閾値Th2以上が白とびと判定される。第6図
(b)は各フィールドと闇値との関係を示す。上記の如
< ODDフィールドとEVENフィールドでは白とび
と黒つぶれが交互するので、その判定用の閾値もフィー
ルド毎に変更する。
As shown in FIG. 6(a), the threshold Thl is set so as to be able to determine blown-up shadows, and the threshold Th2 is set so as to be able to determine blown-out highlights. In other words, an image below Thl is determined to be blown-up shadows, and an image above the threshold Th2 is determined to be blown-out highlights. FIG. 6(b) shows the relationship between each field and the darkness value. As described above, since overexposure and underexposure occur alternately in the ODD field and the EVEN field, the threshold for determining this is also changed for each field.

このようにしてどのフィールドのどの画素部分が黒つぶ
れ又は白とびであるかを判定できるから、その判定結果
を用い、スルー画とメモリ画とで適正な露光量の画素信
号を選択できる0例えば、判定Aと判定Bの論理積をと
り、ODDフィールドでは、論理積が1である画素に対
してはスルー画の信号を選択し、論理積が0である画素
に対してはメモリ画の信号を選択し、I!Vl!Nフィ
ールドではその逆の関係にすることにより、第4図に示
すような選択フラグが得られる。第4図の最下段の絵は
その選択フラグによる合成画像を示す。この図では、主
被写体が等速度運動を行った場合を想定し、時間軸ズレ
が画像に及ぼす影響を確認したが、実用上充分な動画に
なりうろことが分かる。
In this way, it is possible to determine which pixel part of which field has a blocked-up shadow or a blown-out highlight, and by using the judgment result, it is possible to select a pixel signal with an appropriate exposure amount for the through image and the memory image. Take the AND of A and judgment B, and in the ODD field, select the through image signal for pixels where the AND is 1, and select the memory image signal for pixels where the AND is 0. S-I! Vl! By creating the opposite relationship in the N field, a selection flag as shown in FIG. 4 can be obtained. The picture at the bottom of FIG. 4 shows a composite image based on the selection flag. In this figure, we assumed that the main subject was moving at a constant speed, and confirmed the effect of time axis shift on the image, but it can be seen that the resulting video is sufficient for practical use.

第5図は処理部200の演算回路202において、上記
閾値Th1.Th2との比較及び選択フラグを形成する
回路部分の詳細な構成ブロック図を示す。
FIG. 5 shows that the threshold value Th1. A detailed configuration block diagram of a circuit portion forming a comparison with Th2 and a selection flag is shown.

Th切換制御信号は、Fl信号などのように、フィール
ド毎にIIHII、”L”が反転する信号であり、閾値
発生回路53及びインバータ51を介して第2の閾値発
生回路52に印加される。閾値発生回路52.53はそ
の切換信号に応じて、第6図(b)の関係の閾値Thl
又は同Th2を発生する。比較回路54.55はそれぞ
れメモリ画、スルー画と閾値発生回路52.53からの
閾値とを比較し、判定結果としてのA信号、B信号を出
力する。アンド・ゲート56はそのA信号とB信号の論
理積をとり、選択フラグ信号を出力する。スイッチ57
は当該選択フラグ信号に従って切り換わり、メモリ画又
はスルー画の信号を選択する。
The Th switching control signal is a signal in which IIHII and "L" are inverted for each field, like the Fl signal, and is applied to the second threshold generation circuit 52 via the threshold generation circuit 53 and the inverter 51. The threshold value generation circuits 52 and 53 generate the threshold value Thl in the relationship shown in FIG. 6(b) in response to the switching signal.
Or generate the same Th2. Comparison circuits 54 and 55 respectively compare the memory image and the through image with the thresholds from the threshold generation circuits 52 and 53, and output signals A and B as determination results. AND gate 56 ANDs the A and B signals and outputs a selection flag signal. switch 57
is switched in accordance with the selection flag signal to select the memory image or through image signal.

第7図は階調特性図を示す。同(a)の実線が通常のビ
デオ・カメラの特性図であり、100χまでは入出力が
リニアになっており、それ以上の入力(100〜400
χ)に対してはKNEE特性と呼ばれる傾きの緩い関係
となっている。この変化点をPlとすると、高速シャッ
タ時にはこの変化点がP2の位置に移行する。但しPl
が1760秒で、P2が2段の露光量変化の1/250
秒であるとする。上述のように、4段の差の場合には、
第7図(d)の(1)と(5)の関係になる。因みに、
第7図(d)の(1)はl/60秒、(2)は1/12
5秒、(3)は1/250秒、(4)は11500秒、
(5)は171000秒とした場合の特性図である。傾
きの違う2つの特性から好みのカーブを持つ特性を合成
する。
FIG. 7 shows a gradation characteristic diagram. The solid line in (a) is the characteristic diagram of a normal video camera, and the input/output is linear up to 100χ, and for inputs beyond that (100 to 400
χ), there is a relationship with a gentle slope called the KNEE characteristic. Assuming that this point of change is Pl, this point of change shifts to position P2 during high-speed shutter operation. However, Pl
is 1760 seconds, and P2 is 1/250 of the 2-step exposure change.
Suppose it is seconds. As mentioned above, in the case of a difference of 4 steps,
The relationship is as shown in (1) and (5) in FIG. 7(d). By the way,
(1) in Figure 7(d) is l/60 seconds, (2) is 1/12
5 seconds, (3) is 1/250 seconds, (4) is 11500 seconds,
(5) is a characteristic diagram when the time is 171000 seconds. Synthesize a characteristic with a desired curve from two characteristics with different slopes.

第7図(′b)は白とび及び黒つぶれ判定の閾値が異な
る各場合の合成特性例を示し、第7図(C)は、対応す
る2つの画素の信号を加算平均して出力とする場合(同
(1)) 、一方を選択する場合(同(2))、及び適
当な係数のもとで加算平均する場合(同(3))の各特
性を示す。
Figure 7('b) shows an example of the composite characteristics in each case where the thresholds for determining overexposure and underexposure are different, and Figure 7(C) shows the average of the signals of two corresponding pixels and output. (1), selecting one (2), and averaging using appropriate coefficients (3).

上記実施例では1秒間に実!30枚の時間分解能になり
、フレーム蓄積CCD撮像素子などと同程度になる。そ
こで、フィールド蓄積CCD撮像素子と同程度の時間分
解能を実現すべく、1フイールドに2枚の画面を取り込
む実施例を説明する。
In the above example, it is realized in 1 second! The time resolution is 30 images, which is comparable to a frame storage CCD image sensor. Therefore, an embodiment will be described in which two screens are captured in one field in order to achieve a time resolution comparable to that of a field accumulation CCD image sensor.

その構成例の変更部分を第9図に示し、タイミング・チ
ャートを第8図に示す。原理的には、通常のビデオ・レ
ートより速い速度で撮撮像素子103の信号を読み出し
、それを時間軸変換して通常レートに戻す、フィールド
・メモリ90.91は各々1フイ一ルド分の画像情報に
相当する記憶容量を有しており、メモリ90では1/1
20秒読出と同時化するために1/1000秒蓄積信号
の遅延を行い、メモリ91では、1/120秒車位の映
像信号を1/60秒単位のNTSC信号に変更するため
の2倍の時間伸長処理を行う、第9図中の(a)〜(d
)は、第8図の信号(a)〜(d)に対応している。こ
のような作用を為す撮像素子103としては、XYアド
レス方式のMO3固体撮像素子が考えられる。
FIG. 9 shows a modified part of the configuration example, and FIG. 8 shows a timing chart. In principle, the signal of the image sensor 103 is read out at a speed faster than the normal video rate, and the signal is converted back to the normal rate by time axis conversion.The field memories 90 and 91 each store one field worth of images. It has a storage capacity equivalent to the information, and the memory 90 has a storage capacity of 1/1
The accumulation signal is delayed by 1/1000 seconds to synchronize with the 20 second readout, and the memory 91 takes twice the time to change the video signal of 1/120 second to the NTSC signal of 1/60 second. (a) to (d) in FIG. 9, which perform the decompression process.
) correspond to signals (a) to (d) in FIG. As the image sensor 103 that has such an effect, an MO3 solid-state image sensor using an XY address method can be considered.

次に、制御回路108の他の詳細例を第10図に示す。Next, another detailed example of the control circuit 108 is shown in FIG.

マスター・クロック発生器40は外部からの基準信号に
従い、制御回路108内部用のマスター・クロックを発
生する。1/1000シヤツタ用のクロック発生器41
はそのマスター・クロックに従い高速用クロックを発生
し、1/60シヤツタ用のクロック発生器42はそのマ
スター・クロックに従い低速用クロックを発生する。ス
イッチ45はフィールド毎に切り換わり、クロック発生
器41及び同42の出力を交互に駆動回路105に印加
する。AE!rlJ5fB信号発生器43は、カメラ信
号処理回路104からの映像信号を基に、絞り制御のた
めのAE制御信号を発生する。制御信号保持回路44は
その制御信号を1フイ一ルド間保持する。
Master clock generator 40 generates a master clock for internal use in control circuit 108 in accordance with an external reference signal. Clock generator 41 for 1/1000 shutter
generates a high-speed clock according to its master clock, and the clock generator 42 for 1/60 shutter generates a low-speed clock according to its master clock. The switch 45 is switched for each field and alternately applies the outputs of the clock generators 41 and 42 to the drive circuit 105. AE! The rlJ5fB signal generator 43 generates an AE control signal for aperture control based on the video signal from the camera signal processing circuit 104. The control signal holding circuit 44 holds the control signal for one field.

スイッチ46は、フィールド毎に切り換わり、AE制御
信号発生器43の出力及び制御信号保持回路44による
保持信号を交互に絞り制御回路106に印加する。切換
信号発生器47は、スイッチ45.46の切換を制御す
る。スイッチ45,46は同期して切り換わる。
The switch 46 is switched for each field, and alternately applies the output of the AE control signal generator 43 and the holding signal from the control signal holding circuit 44 to the aperture control circuit 106. A switching signal generator 47 controls switching of switches 45,46. Switches 45 and 46 are switched synchronously.

この実施例では、低速用、高速用それぞれにクロック発
生器を設け、そのクロックを、フィールド毎の信号を発
生する切換信号発生器の出力信号により切り換えている
ので、回路構成及び動作が簡単になるという効果があり
、特に動画に適している。
In this embodiment, a clock generator is provided for low speed and high speed, and the clocks are switched by the output signal of a switching signal generator that generates a signal for each field, which simplifies the circuit configuration and operation. This effect is particularly suitable for videos.

以上の実施例では、シャフタ・スピードを変化させるこ
とで異なる露光量の画面を生成したが、高速の絞り装置
を用意できる場合には、その絞りを高速で変化させても
よく、また、例えばPLZTなどのように、減光フィル
タを電気的に制御する方式で実現してもよい。
In the above embodiments, screens with different exposure amounts were generated by changing the shutter speed, but if a high-speed aperture device is available, the aperture may be changed at high speed. It may also be realized by a method of electrically controlling the neutral density filter, as in the example shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上の説明から容易に理解できるように、本発明によれ
ば、ダイナミック・レンジを実質的に広(することがで
き、例えば、逆光の場合であっても、主被写体のみなら
ず背景も、適正な露光量の画像が動画として得られるこ
とになる。
As can be easily understood from the above explanation, according to the present invention, it is possible to substantially widen the dynamic range. For example, even in backlighting, not only the main subject but also the background can be An image with a certain amount of exposure can be obtained as a moving image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を用いたカメラ一体形VTR
の構成ブロック図、第2図は第1図のカメラ部の制御回
路108の具体的構成ブロック図、第3図は撮像素子の
動作タイミング・チャート、第4図は本発明による画像
処理の概念図、第5図は第1図の演算回路202の具体
的構成ブロック図、第6図は白とび及び黒つぶれ判定の
閾値の決定法を説明する図、第7図は階調特性図、第8
図は別の実施例のタイミング・チャート、第9図はその
構成ブロック図、第10図は第1図の制御回路108の
一例である。 100・−カメラ部 200・−処理部 300−・・
・記録部 I!5  図 第6図 (a)甚ム吟主 (b)閾■直支も (d) 5イツタースと−F濠シ95 第 7 図 り←lシトー+−ノV−ル)’−−←−−−−−−刀−
?メト′−一第8図 第9図 手続ネ甫正書(方式・自発) 1.事件の表示 昭和62年特許願第143886号 2、発明の名称 撮像装置 3、補正をする者 事件との関係   特許出願人 東京都大田区下丸子三丁目30番2号 キャノン株式会社 代表者 賀来 龍三部 4、代理人 8170   東京都豊島区東池袋−丁目31番13−
402号6、補正の対象   願書に添付した図面7、
補正の内容   別紙の通り図面の浄書(内容に変更な
し)を補正します。
Figure 1 shows a camera-integrated VTR using an embodiment of the present invention.
2 is a specific configuration block diagram of the control circuit 108 of the camera unit shown in FIG. 1, FIG. 3 is an operation timing chart of the image sensor, and FIG. 4 is a conceptual diagram of image processing according to the present invention. , FIG. 5 is a concrete block diagram of the arithmetic circuit 202 shown in FIG. 1, FIG. 6 is a diagram explaining a method for determining threshold values for determining overexposure and underexposure, FIG. 7 is a gradation characteristic diagram, and FIG.
9 is a timing chart of another embodiment, FIG. 9 is a block diagram of its configuration, and FIG. 10 is an example of the control circuit 108 of FIG. 1. 100・-Camera section 200・-Processing section 300-...
・Recording Department I! 5 Figure 6 (a) Jinmuginshu (b) Threshold ■ Direct support also (d) 5 Ittas and -F Moatshi 95 7th figure ← l Shito + - no V - le)'--←-- −−−−Sword−
? Meto'-1 Figure 8 Figure 9 Procedure Nefu official document (method/spontaneous) 1. Display of the case 1986 Patent Application No. 143886 2 Name of the invention Imaging device 3 Person making the amendment Relationship to the case Patent applicant 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Co., Ltd. Representative Ryuzo Kaku 4. Agent 8170 Higashiikebukuro, Toshima-ku, Tokyo - 31-13-
402 No. 6, subject of amendment Drawing 7 attached to the application,
Contents of correction The engraving of the drawing (no changes to the content) will be corrected as shown in the attached sheet.

Claims (2)

【特許請求の範囲】[Claims] (1)撮像手段と、当該撮像手段から露光量の異なる画
像を連続して出力させる制御手段と、当該撮像手段から
出力された画像のうち、露光量の異なる画像を連続して
合成し、動画を得る合成手段とを有することを特徴とす
る撮像装置。
(1) An imaging means; a control means for continuously outputting images with different exposure amounts from the imaging means; 1. An imaging device comprising: compositing means for obtaining .
(2)前記制御手段は露光量の異なる画像を巡回的に連
続して出力させる手段である特許請求の範囲第(1)項
に記載の装置。
(2) The apparatus according to claim (1), wherein the control means is means for cyclically and continuously outputting images having different exposure amounts.
JP62143886A 1987-06-09 1987-06-09 Imaging device Expired - Lifetime JPH0797841B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62143886A JPH0797841B2 (en) 1987-06-09 1987-06-09 Imaging device
US07/601,014 US5162914A (en) 1987-06-09 1990-10-19 Image sensing device with diverse storage fumes used in picture composition
US08/386,119 US5638118A (en) 1987-06-09 1995-02-09 Image sensing device with diverse storage times used in picture composition
US08/802,279 US5969761A (en) 1987-06-09 1997-02-19 Image sensing device
US09/293,905 US6496226B2 (en) 1987-06-09 1999-04-19 Image sensing device
US10/264,944 US20030030743A1 (en) 1987-06-09 2002-10-04 Image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143886A JPH0797841B2 (en) 1987-06-09 1987-06-09 Imaging device

Publications (2)

Publication Number Publication Date
JPS63306779A true JPS63306779A (en) 1988-12-14
JPH0797841B2 JPH0797841B2 (en) 1995-10-18

Family

ID=15349313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143886A Expired - Lifetime JPH0797841B2 (en) 1987-06-09 1987-06-09 Imaging device

Country Status (1)

Country Link
JP (1) JPH0797841B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174470A (en) * 1988-12-27 1990-07-05 Canon Inc Image pickup device
JPH03283978A (en) * 1990-03-30 1991-12-13 Toshiba Corp Multi-function digital ccd camera
FR2671253A1 (en) * 1990-12-31 1992-07-03 Hymatom Sa Video detection device with an image sensor having a logarithmic response
US5455621A (en) * 1992-10-27 1995-10-03 Matsushita Electric Industrial Co., Ltd. Imaging method for a wide dynamic range and an imaging device for a wide dynamic range
US5694167A (en) * 1990-11-22 1997-12-02 Canon Kabushiki Kaisha Image pick up device using transfer registers in parallel with rows of light receiving cells
US5917546A (en) * 1995-03-24 1999-06-29 Sony Corporation Imaging apparatus
US6677992B1 (en) 1997-10-23 2004-01-13 Olympus Corporation Imaging apparatus offering dynamic range that is expandable by weighting two image signals produced during different exposure times with two coefficients whose sum is 1 and adding them up
WO2007129549A1 (en) * 2006-05-01 2007-11-15 Opt Corporation Camera device and image processing method
US7843493B2 (en) 2006-01-31 2010-11-30 Konica Minolta Holdings, Inc. Image sensing apparatus and image processing method
US7916185B2 (en) 2006-01-30 2011-03-29 Panasonic Corporation Wide dynamic range image capturing apparatus
US8339468B2 (en) 2007-08-30 2012-12-25 Konica Minolta Opto, Inc. Image processing device, image processing method, and image pickup apparatus
US8947556B2 (en) 2011-09-22 2015-02-03 Canon Kabushiki Kaisha Image pickup apparatus, control method therefor, and storage medium storing control program therefor
WO2016175043A1 (en) * 2015-04-28 2016-11-03 ソニー株式会社 Image processing device and image processing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822393B2 (en) 1999-08-10 2006-09-20 富士写真フイルム株式会社 Imaging apparatus and imaging control method
JP6082274B2 (en) 2012-06-08 2017-02-15 キヤノン株式会社 Imaging apparatus and control method thereof
JP6306845B2 (en) 2013-09-12 2018-04-04 キヤノン株式会社 Imaging apparatus and control method thereof
KR101984516B1 (en) * 2017-07-21 2019-05-31 엘지전자 주식회사 Cleaner and controlling method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271938A (en) * 1985-09-25 1987-04-02 Casio Comput Co Ltd Photographing device
JPS6285583A (en) * 1985-10-11 1987-04-20 Fuji Photo Film Co Ltd Electronic still camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271938A (en) * 1985-09-25 1987-04-02 Casio Comput Co Ltd Photographing device
JPS6285583A (en) * 1985-10-11 1987-04-20 Fuji Photo Film Co Ltd Electronic still camera

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174470A (en) * 1988-12-27 1990-07-05 Canon Inc Image pickup device
JPH03283978A (en) * 1990-03-30 1991-12-13 Toshiba Corp Multi-function digital ccd camera
US5694167A (en) * 1990-11-22 1997-12-02 Canon Kabushiki Kaisha Image pick up device using transfer registers in parallel with rows of light receiving cells
FR2671253A1 (en) * 1990-12-31 1992-07-03 Hymatom Sa Video detection device with an image sensor having a logarithmic response
US5455621A (en) * 1992-10-27 1995-10-03 Matsushita Electric Industrial Co., Ltd. Imaging method for a wide dynamic range and an imaging device for a wide dynamic range
US5917546A (en) * 1995-03-24 1999-06-29 Sony Corporation Imaging apparatus
US6677992B1 (en) 1997-10-23 2004-01-13 Olympus Corporation Imaging apparatus offering dynamic range that is expandable by weighting two image signals produced during different exposure times with two coefficients whose sum is 1 and adding them up
US7916185B2 (en) 2006-01-30 2011-03-29 Panasonic Corporation Wide dynamic range image capturing apparatus
US7843493B2 (en) 2006-01-31 2010-11-30 Konica Minolta Holdings, Inc. Image sensing apparatus and image processing method
US8228397B2 (en) 2006-01-31 2012-07-24 Konica Minolta Holdings, Inc. Image sensing apparatus and image processing method
WO2007129549A1 (en) * 2006-05-01 2007-11-15 Opt Corporation Camera device and image processing method
US8339468B2 (en) 2007-08-30 2012-12-25 Konica Minolta Opto, Inc. Image processing device, image processing method, and image pickup apparatus
US8947556B2 (en) 2011-09-22 2015-02-03 Canon Kabushiki Kaisha Image pickup apparatus, control method therefor, and storage medium storing control program therefor
WO2016175043A1 (en) * 2015-04-28 2016-11-03 ソニー株式会社 Image processing device and image processing method
US10529057B2 (en) 2015-04-28 2020-01-07 Sony Corporation Image processing apparatus and image processing method

Also Published As

Publication number Publication date
JPH0797841B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
JP3110797B2 (en) Imaging method and imaging screen synthesis device
JP3630905B2 (en) Imaging method and imaging apparatus
JPS63306779A (en) Image pickup device
US20020071044A1 (en) Imgae sensing device
JPH05344413A (en) Video signal processor
JP3840671B2 (en) Imaging device
JP2002084449A (en) Image pickup device employing solid-state imaging device
JP2749849B2 (en) Imaging device
JPS63306777A (en) Image pickup device
JP6242129B2 (en) Imaging device, control method thereof, and control program
JP3748031B2 (en) Video signal processing apparatus and video signal processing method
JPH11155108A (en) Video signal processor and processing method and video camera using the same
JPH0795481A (en) Image pickup device
JPS63306778A (en) Image pickup device
JP2521986B2 (en) Imaging device
JPS63306780A (en) Image pickup device
JP2715464B2 (en) Imaging device
JP3125903B2 (en) Imaging device
JP3696897B2 (en) Imaging device
JPH03261279A (en) Video synthesizer
JPH0522669A (en) Video camera
JPS58197978A (en) Registering and reproducing device of still picture signal
JP3053988B2 (en) Solid-state imaging device
JPH0287785A (en) Image pickup device
JPH057332A (en) Image pickup device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 12