JPS63305582A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63305582A
JPS63305582A JP14167987A JP14167987A JPS63305582A JP S63305582 A JPS63305582 A JP S63305582A JP 14167987 A JP14167987 A JP 14167987A JP 14167987 A JP14167987 A JP 14167987A JP S63305582 A JPS63305582 A JP S63305582A
Authority
JP
Japan
Prior art keywords
layer
active layer
mask
cladding layer
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14167987A
Other languages
Japanese (ja)
Inventor
Toru Tsuruta
徹 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14167987A priority Critical patent/JPS63305582A/en
Publication of JPS63305582A publication Critical patent/JPS63305582A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a single longitudinal mode laser easily, by etching/removing an active layer on a position where an internal reflection surface is located and next by burying a clad layer again. CONSTITUTION:After a clad layer 6, an active layer 7, a first clad layer 8, and a mask layer 14 are formed on a substrate 1, a striped opening is formed from a resist in the mask layer 14 perpendicularly to the active layer 7 by photolithography. The resist is used as a mask to etch the layer 14 and to form an opening. Next, after the resist is removed, the layer 14 is used as a mask to form an opening 13 in the first clad layer 8 so as to attain to the active layer 7. The etching is performed more to form an internal reflection surface 14 on the active layer 7 and next a second clad layer 9 is made to grow. Hence, a single longitudinal mode laser with a low threshold current can be obtained easily.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信用光源、特に広帯域伝送用の縦モード
制御型半導体レーザ、内部反射干渉縦モード制御型半導
体レーザの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to light sources for optical communication, particularly to improvements in longitudinal mode controlled semiconductor lasers for broadband transmission and internal reflection interference longitudinal mode controlled semiconductor lasers.

従来の技術 近年、光通信技術の向上に伴い伝送の広帯域化、長距離
化が計られている。しかしながら、従来の半導体レーザ
は縦モードが必ずしも単一ではなく、この目的に対して
充分な性能を備えているとは言い難かった。このため分
布帰還型(DFB)、分布ブラッグ反射型(DBR)な
ど種々のI’A造が検討されてきた。これらの構造を用
いた半導体レーザは実験室段階においては極めて良好な
特性の得られていることが実証されている。しかしなが
らこれらのレーザが、活性層に隣接して回折格子を作成
することを必要とし、かつ屈折率導波型の構造が必要不
可欠であるためその歩留り、特にウェハー面内の特性安
定性には極めて大きな問題がある。このため他にも単−
縦モード発振を得るだめの種々の試みが行なわれている
。内部反射干渉型(IRI)レーザは、これらの中でも
作成が容易造図の一例を示し、これて従ってその原理を
説明する。′;A3図aはIRIレーザの端面を示した
図であり、これは従来の半導体レーザと差異はない。
BACKGROUND OF THE INVENTION In recent years, improvements in optical communication technology have led to wider transmissions and longer distances. However, conventional semiconductor lasers do not necessarily have a single longitudinal mode and cannot be said to have sufficient performance for this purpose. For this reason, various I'A structures such as distributed feedback type (DFB) and distributed Bragg reflection type (DBR) have been studied. It has been demonstrated that semiconductor lasers using these structures have extremely good characteristics in the laboratory stage. However, these lasers require the creation of a diffraction grating adjacent to the active layer, and an index-guided structure is essential, so the yield, especially the characteristic stability within the wafer plane, is extremely low. There's a big problem. For this reason, there are other simple
Various attempts have been made to obtain longitudinal mode oscillation. Internal reflection interference (IRI) lasers represent an example of one of these that is easier to fabricate, and the principle thereof will therefore be explained. ';A3 Figure a shows the end face of an IRI laser, which is no different from a conventional semiconductor laser.

20は基板、21はバッファ層、22は′直流ブロック
層、23はn型クラッド層、24は活性層、25はp型
クラッド層、26はキャップ層、27はp型′、E極、
28はn型′llf極である。I RI V −ザの特
徴は横方向からの活性領域を含む断面図である第3図す
に示されている。29は、活性領域21を2つに分ける
区分部である。区分部は活性領域に対して僅かに屈折率
の異なる物質で作成され、内部反射面29を活性領域2
1に付与する。
20 is a substrate, 21 is a buffer layer, 22 is a 'DC blocking layer, 23 is an n-type cladding layer, 24 is an active layer, 25 is a p-type cladding layer, 26 is a cap layer, 27 is a p-type', an E pole,
28 is an n-type 'llf pole. The features of the IRIV-Z are illustrated in FIG. 3, which is a lateral cross-sectional view including the active region. 29 is a dividing portion that divides the active region 21 into two. The section is made of a material whose refractive index is slightly different from that of the active region, and the internal reflection surface 29 is made of a material having a slightly different refractive index from the active region 2.
Granted to 1.

電極26.27に通電することにより、通常の端面反射
による発振モードの上に、30の反射面に起因する内部
反射干渉の結果更に波長周期の大きな発振モードが重畳
される。このため実効的な端面反射率は変調を受け、言
いかえれば全体のレーザゲインに鋭い選択性が与えられ
、結果として単−縦モード発振が得られる。
By energizing the electrodes 26 and 27, an oscillation mode with a larger wavelength period is superimposed on the normal oscillation mode due to end face reflection as a result of internal reflection interference caused by the reflective surface 30. Therefore, the effective end face reflectance is modulated, in other words, sharp selectivity is imparted to the overall laser gain, resulting in single-longitudinal mode oscillation.

発明が解決しようとする問題点 しかしながら、従来のIRIレーザておいては区分領域
の形成を化学エツチングによシ行うため、その作成は比
11j2的容易とは言いながら必ずしも完全に容易なも
のとは言えなかった。またエツチングの、結晶方位選択
性を利用するため内部反射面30の角没を活性領域に対
して完全に垂直にすることが困難であり、さらに、その
後の活性領域の1し成時に内部反射面の部位で活性領域
が湾曲するためしきい値を高める要因となっていた。
Problems to be Solved by the Invention However, in the conventional IRI laser, the formation of the segmented areas is done by chemical etching, so although the formation is said to be relatively easy, it is not necessarily completely easy. I could not say it. Furthermore, in order to utilize the crystal orientation selectivity of etching, it is difficult to make the angle of the internal reflection surface 30 completely perpendicular to the active region. The active region is curved at this point, which is a factor that increases the threshold.

本発明は従来技i、Iffの以上のような問題点を解決
し、更に一層作製容易な構造を持つIRIレーザを与え
ることを目的とする。
It is an object of the present invention to solve the above-mentioned problems of the conventional techniques i and Iff, and to provide an IRI laser having a structure that is even easier to manufacture.

問題点を解決するための手段 本発明は、基板上に少なくとも第1クラッド層。Means to solve problems The present invention provides at least a first cladding layer on a substrate.

活性層、第2クラッド層を順次積層した後に、内部反射
面を膜質すべき位置に、前記第2クラッド層及び活性層
を除去した溝を形成し、該溝に再び第2クラッド層を埋
め込むことを特徴とする。
After sequentially laminating the active layer and the second cladding layer, forming a groove from which the second cladding layer and the active layer are removed at a position where the internal reflection surface is to be formed, and filling the groove with the second cladding layer again. It is characterized by

作用 本発明は上記構成により、活性層を形成した後に、内部
反射面を設置すべき位置で活性層をエツチング除去する
ので化学エツチングが容易となり、かつ、活性層が内部
反射面の部位で湾曲することがないので通常の半導体レ
ーザと同程度の低しきい負電流を有する単−縦モードレ
ーザを容易に与えることができる。
According to the above structure, the active layer is etched away at the position where the internal reflective surface is to be installed after the active layer is formed, so that chemical etching is facilitated, and the active layer is curved at the internal reflective surface. Therefore, it is possible to easily provide a single-longitudinal mode laser having a negative threshold current as low as that of a normal semiconductor laser.

実施例 第1[り1は、本発明の実施例における縦モード制御レ
ーザの共振器端面を示す図a、及び横方向から見た活性
層を含む断面図すである。第2図は第2の成長後のエツ
チング過程における活性層を含む断面図である。
Embodiment 1 FIG. 1 is a diagram illustrating a cavity end face of a longitudinal mode control laser in an embodiment of the present invention, and a cross-sectional view including an active layer viewed from the lateral direction. FIG. 2 is a cross-sectional view including the active layer during the second post-growth etching process.

第1図乙において第1の+ix aによってn−InP
基板1に、n−InPバッファ層2.電流ブロック層と
して旋j(p−InP3及びn−4nP4、エンチング
のマスク層としてn−InGaAsP層6が成長される
In Figure 1 B, n-InP by the first +ix a
A substrate 1 is provided with an n-InP buffer layer 2. P-InP3 and n-4nP4 are grown as current blocking layers, and n-InGaAsP layer 6 is grown as an etching mask layer.

次にエツチングマスク層5の上にレジストからなる約1
.57zm幅のストライプ状の開口をホトリソグラフィ
により形成し、上記のレジストをマスクとしてn2So
4系エツチヤントによりn−In(lraAsP 層s
のエツチングを行い、次にレジストを除去した後にn−
InGaAsP層6をマスクとじてHCl  をエッチ
ャントとしてエツチングを行い断面かやじシの形状のス
トライプ状の溝を形成する。続いて第2の成長により上
記ストライプ状Wメにn−InPn型クラッド層en−
InGaASP活性層7 、p−InP i1クラッド
層8゜p−InGaAsPマスク層14が成長される。
Next, on the etching mask layer 5, about 1 layer of resist is formed.
.. A striped opening with a width of 57 zm was formed by photolithography, and n2So was formed using the above resist as a mask.
The n-In (lraAsP layer s
After etching and then removing the resist, n-
Using the InGaAsP layer 6 as a mask, etching is performed using HCl as an etchant to form striped grooves having a cross-section with a zigzag shape. Subsequently, a second growth is performed to form an n-InPn-type cladding layer en-
An InGaASP active layer 7, a p-InP i1 cladding layer 8 and a p-InGaAsP mask layer 14 are grown.

上記第2成侵後の活性層を含む断面図を第2図aに示す
A cross-sectional view including the active layer after the second formation is shown in FIG. 2a.

以下、第2図を用いて説明する。第2成艮後に、p−I
nGaAsP層14上に活性層7と垂直方向にレジスト
からストライプ状の開口をホトリソグラフィにより形成
し、上記レジストをマスクとしてH2SO4糸エツチヤ
ントを用いてp−InGaAsP層14をエツ層表4し
て開口を形成し、次にレジストを除去した後にp−In
GaAsP層14をマス層表4てhcl  エッチャン
トを用いてp−InP 第1クラッド層8に活性層7に
達する開口13を形成する(第2図b)。さらにH2S
O4系エッチャントを用いてエツチングを行い、活性層
7に内部反射面14を形成する(第2図C)。
This will be explained below using FIG. 2. After the second performance, p-I
A stripe-shaped opening is formed from a resist on the nGaAsP layer 14 in a direction perpendicular to the active layer 7 by photolithography. Using the resist as a mask, an H2SO4 thread etchant is used to etch the p-InGaAsP layer 14 to form the opening. After forming and then removing the resist, p-In
Using the GaAsP layer 14 as a mass layer 4, an opening 13 reaching the active layer 7 is formed in the p-InP first cladding layer 8 using an HCl etchant (FIG. 2b). Furthermore H2S
Etching is performed using an O4 etchant to form an internal reflective surface 14 in the active layer 7 (FIG. 2C).

第3の成侵により、p−InP第2クラッド層9゜p−
InGaAsPギヤノブ層10が1戊長される。
By the third growth, the p-InP second cladding layer 9°p-
The InGaAsP gear knob layer 10 is lengthened by one length.

p−InP  クラッド層とn−1nP クラッド層の
ノぐンドギャップは1.3csev 、屈折率は3.4
0であり、活性層のバンドギャップは0.95ev、屈
折率は3.51とした。活性層の幅は約2.2μm、中
心付近の厚さは約0,15/1mである。このようなウ
ェハーにオーミック電極10.11をとりつけた。
The gap between the p-InP cladding layer and the n-1nP cladding layer is 1.3 csev, and the refractive index is 3.4.
0, the bandgap of the active layer was 0.95ev, and the refractive index was 3.51. The width of the active layer is approximately 2.2 μm, and the thickness near the center is approximately 0.15/1 m. Ohmic electrodes 10 and 11 were attached to such a wafer.

第1図すは、電極形成後の断面図である。へき開によっ
て形成された端面人とBの距離すなわち共振器長(L=
L、+L、、)は約200 μm Tある。
FIG. 1 is a sectional view after electrode formation. The distance between the end facet formed by cleavage and B, that is, the resonator length (L=
L, +L, , ) is approximately 200 μm T.

またり、−L2=  70μm となる位置に内部反射
面14がくるように設計しである。
Also, it is designed so that the internal reflection surface 14 is located at a position where -L2=70 μm.

このような構造のレーザのオーミック′、F極11゜1
2間に通電すると発振波長1.371mで発振しきい値
Ith=30〜aom人であり、これは内部反射面14
を設けない場合とほとんど等しい。またほとんどの素子
は、Ith  の1.2 倍程度で単−縦モード動作を
示し、rthの4倍程度までモードホッピングのない極
めて安定な単−縦モード発振をした。
Ohmic' of a laser with such a structure, F pole 11°1
When electricity is applied between 2, the oscillation wavelength is 1.371 m and the oscillation threshold value Ith = 30~aom, which is due to the internal reflection surface 14.
This is almost the same as not providing . Moreover, most of the elements exhibited single-longitudinal mode operation at about 1.2 times Ith, and extremely stable single-longitudinal mode oscillation without mode hopping up to about 4 times rth.

なお、上記実施例においては、I n?/I nGaA
sPを用いた艮波長レーザについて述べたが、Ga人s
/GaA(7As、f8の材料を用いたレーザにおいて
も同様の効果が得られることは言う1でもない。
In addition, in the above embodiment, I n? /InGaA
Although we have described a short-wavelength laser using sP,
It goes without saying that a similar effect can be obtained with a laser using the material /GaA(7As, f8).

発明の効果 以上述べたように、本錘明によればIRIレーザの内部
反射面を設jhすべき位置の活性層をエツチング除去し
、再びクラッド層で埋め込むこと伊てより、容易に単−
縦モードレーザを得るととう:できる。
Effects of the Invention As described above, according to the present invention, the active layer at the position where the internal reflection surface of the IRI laser is to be provided can be etched away and refilled with a cladding layer.
Once you get a longitudinal mode laser, you can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは本発明の一実捲例における縦モード制御
型半導体レーザの共振器の端lI′Ii図、及び横方向
から見た活性領域を含む断面図、第2 i、l a〜C
は本発明の一実施例における半導体レーザの一部工程図
、第3図i、bは従来例の半導体レーザの断面図である
。 1・・・・・・n−xnpu板、e=−−−−n−xn
pクラッド層、7・−−n−InCyaAsP活性層、
B・−p−4nP第1クラッド層、9・・・・・・p−
InP第2クラッド層、14・・・・・内部反射面、1
5.i6°゛“°端面・代理人の氏名 弁理士 中 尾
 敏 男 ほか1名゛l′4内観店珈
Figures 1a and 1b are an end lI'Ii diagram of a resonator of a longitudinal mode controlled semiconductor laser according to an actual example of the present invention, and a cross-sectional view including the active region viewed from the lateral direction, and Figures 2i and 2a are ~C
3 is a partial process diagram of a semiconductor laser according to an embodiment of the present invention, and FIGS. 3i and 3b are sectional views of a conventional semiconductor laser. 1...n-xnpu board, e=----n-xn
p cladding layer, 7--n-InCyaAsP active layer,
B.-p-4nP first cladding layer, 9...p-
InP second cladding layer, 14... Internal reflection surface, 1
5. i6°゛“°Name of agent Patent attorney Toshio Nakao and 1 other person゛l'4 Naikanten Cafe

Claims (1)

【特許請求の範囲】[Claims] 基板上に順次積層した少なくとも第1クラッド層、活性
層および第2クラッド層と、前記積層部の内部反射面を
設置すべき位置において前記第2クラッド層及び活性層
を除去して形成した溝と、前記溝に埋設した前記第2ク
ラッド層と同質の層を具備することを特徴とする半導体
レーザ。
At least a first cladding layer, an active layer, and a second cladding layer sequentially laminated on a substrate, and a groove formed by removing the second cladding layer and the active layer at a position where an internal reflective surface of the laminated portion is to be installed. . A semiconductor laser comprising a layer of the same quality as the second cladding layer embedded in the groove.
JP14167987A 1987-06-05 1987-06-05 Semiconductor laser Pending JPS63305582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14167987A JPS63305582A (en) 1987-06-05 1987-06-05 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14167987A JPS63305582A (en) 1987-06-05 1987-06-05 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63305582A true JPS63305582A (en) 1988-12-13

Family

ID=15297682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14167987A Pending JPS63305582A (en) 1987-06-05 1987-06-05 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63305582A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022543A1 (en) * 1999-09-23 2001-03-29 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin An optical waveguide and a method for providing an optical waveguide
WO2002031863A3 (en) * 2000-10-11 2003-10-23 Nat Univ Ireland A single frequency laser
US6825570B2 (en) * 2000-04-28 2004-11-30 Micron Technology, Inc. Resistance-reducing conductive adhesives for attachment of electronic components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022543A1 (en) * 1999-09-23 2001-03-29 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin An optical waveguide and a method for providing an optical waveguide
US6825570B2 (en) * 2000-04-28 2004-11-30 Micron Technology, Inc. Resistance-reducing conductive adhesives for attachment of electronic components
WO2002031863A3 (en) * 2000-10-11 2003-10-23 Nat Univ Ireland A single frequency laser

Similar Documents

Publication Publication Date Title
JPWO2005074047A1 (en) Optical semiconductor device and manufacturing method thereof
JPH04105383A (en) Manufacture of optical semiconductor element
JPS63305582A (en) Semiconductor laser
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JPH0231488A (en) Semiconductor laser device and its manufacture
JPH05327111A (en) Semiconductor laser and its manufacture
JPS6260838B2 (en)
JPH0526359B2 (en)
JPS58131785A (en) Single axis mode oscillating semiconductor laser
JPH037153B2 (en)
JPH0228985A (en) Semiconductor laser and manufacture thereof
JPH1168221A (en) Semiconductor laser
JPH0642583B2 (en) Semiconductor laser device
JPH01124278A (en) Manufacture of semiconductor laser
JPS62282481A (en) Semiconductor laser
JP2949809B2 (en) Manufacturing method of semiconductor laser
JPH0228986A (en) Semiconductor laser
JPS60165782A (en) Semiconductor laser
JPS61137385A (en) Vertical mode control semiconductor laser
JPS60160682A (en) Semiconductor laser
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof
JPH06283804A (en) Distributed reflector laser and fabrication thereof
JPS60158686A (en) Semiconductor laser
JPS59127889A (en) Semiconductor laser
JPS59119882A (en) Distributed feedback type semiconductor laser