JPS63305234A - Improvement in near infrared device for measuring organic component of substance - Google Patents

Improvement in near infrared device for measuring organic component of substance

Info

Publication number
JPS63305234A
JPS63305234A JP2213288A JP2213288A JPS63305234A JP S63305234 A JPS63305234 A JP S63305234A JP 2213288 A JP2213288 A JP 2213288A JP 2213288 A JP2213288 A JP 2213288A JP S63305234 A JPS63305234 A JP S63305234A
Authority
JP
Japan
Prior art keywords
tubular member
infrared
detector
infrared rays
filter means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2213288A
Other languages
Japanese (ja)
Inventor
ロバート・デイビッド・ローゼンタール
グレーン・ケイス・ローゼンタール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kett Electric Laboratory
Futrex Inc
Original Assignee
Kett Electric Laboratory
Futrex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kett Electric Laboratory, Futrex Inc filed Critical Kett Electric Laboratory
Publication of JPS63305234A publication Critical patent/JPS63305234A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0621Supply

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、物質内に存在する有機成分を近赤外線定量分
析するための装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an apparatus for quantitative near-infrared analysis of organic components present in substances.

試料物質内に存在する脂肪や油などの成分を測定する近
赤外線定量分析装置は、公知であって市販されている。
Near-infrared quantitative analysis devices for measuring components such as fats and oils present in sample materials are well known and commercially available.

成る近赤外線定量分析装置では、試料の表面から反射さ
れる近赤外線エネルギを分析して、その物質内に存在す
る有機成分についての量的データを得るようになってい
る。この形式の装置は、試料の表面が極めて均一である
ことが必要であり、従って物質を一定の粒径の微粉末に
粉砕しなければならない、試料によっては、例えばひま
わりの種などでは、これは事実上不可能である。
This near-infrared quantitative analyzer analyzes the near-infrared energy reflected from the surface of a sample to obtain quantitative data about the organic components present in the substance. This type of equipment requires that the surface of the sample be very homogeneous and therefore the material must be ground into a fine powder of a certain particle size; for some samples, for example sunflower seeds, this may be It is virtually impossible.

別の形式の近赤外線定量分析装置は、一定の厚さく例え
ば20)の試料を透過したエネルギを分析して、その試
料内に存在する有機成分の量についての量的データを得
るようになっている。この形式の装置の一例が、ロバー
ト・D・ローゼンタール及びスコツト・ローゼンタール
の米国特許第4.286,327号「近赤外線定量分析
装置」 (特許8二1981年8月25日)に記載され
ている。この形式の透過測定方法では、前記の反射式測
定方式の場合のように試料を粒径が均一の粉末に粉砕す
る必要がない、しかし、透過式の方法では、試料の対向
する2つの表面、すなわち近赤外線エネルギが試料に入
る側の表面と、エネルギが試料から出る反対側表面とに
接近できることが必要である。
Another type of near-infrared quantitative analyzer analyzes the energy transmitted through a sample of fixed thickness, e.g. 20), to obtain quantitative data about the amount of organic components present within the sample. There is. An example of this type of device is described in Robert D. Rosenthal and Scott Rosenthal, U.S. Pat. ing. In this type of transmission measurement method, there is no need to grind the sample into a powder with uniform particle size as in the case of the reflection measurement method described above.However, in the transmission measurement method, two opposing surfaces of the sample, That is, it is necessary to have access to the surface on the side where near-infrared energy enters the sample and the opposite surface where the energy exits the sample.

人体の脂肪の測定など、用途によっては、試料を均一な
粉末に粉砕するという反射式測定の条件も、また2側面
測定という透過式の条件も満たずことができない、これ
らの場合には、さらに別の形式の近赤外線定量分析装置
が有効であることがわかっている。そのような装置は、
光源が照明管によって試料物質内へ円形パターンで向け
られ、照明管の中心に検出器を設けるようにした、近赤
外線及び光学インタラフタンス(opticalint
eraCtanCe)の原理を利用したものである。近
赤外線が試料物質内に入ると、インタラフタンスによっ
てエネルギの一部分が、照明管の中心に物質から送り返
され、ここで検出器によって検出され、読取りに使われ
る。この技術を利用した市販の装置が、グレン・K・ロ
ーゼンタール、ジェフリ・D・ステイーブンス及びロバ
ート・D・ローゼンタールの米国特許第4,633,0
87号「物質の有機成分を測定する近赤外線装置」 (
特許臼=1986年12月30日)に基づいて製造販売
されている。赤外線インタラフタンスの原理を適用する
ために、そのような装置は、半透明管を通して光線源と
なる、所定波長の赤外発光ダイオード(IRED)を複
数用いている。そのような装置は複数対の整合されたI
REDを用いてお′す、今まではそのような装置の製造
には、測定を行なうのに使用される特定の波長に合わせ
てIREDを選択する必要があった。製造時の許容誤差
のため、生産バッチ毎にIREDの正確な中心波長が異
なるのが一般的であるので、各生産バッチを選択して、
整合したIREDの対にするとともに、これらのI R
EDが、測定を行なうのに最も適した特定中心波長を持
つことを確認する必要がある。IREDの生産工程が中
心波長にわずかな変化を生じるようなものである場合、
所要波長を持つわずかなI REDを選び出すために、
多数のTREDをテストしなければならない、このよう
な時間がかかるテストがあり、また、不適当なIREI
)!J’無駄になるため、装置の生産コストが相当に増
大する。
Depending on the application, such as the measurement of human body fat, it is not possible to meet the conditions for reflection-type measurement, in which the sample is pulverized into a uniform powder, or the conditions for transmission-type measurement, in which two sides are measured. Other forms of near-infrared quantitative analysis equipment have been found to be effective. Such a device is
A near-infrared and optical interaftance system in which a light source is directed in a circular pattern into the sample material by an illumination tube and a detector is located in the center of the illumination tube.
This method utilizes the principle of eraCtanCe). When near-infrared radiation enters the sample material, the intarftance sends a portion of the energy back out of the material to the center of the illumination tube, where it is detected by a detector and used for reading. A commercially available device utilizing this technology is published in U.S. Pat. No. 4,633,0 by Glenn K. Rosenthal, Jeffrey D. Stevens and Robert D. Rosenthal.
No. 87 “Near infrared device for measuring organic components of substances” (
It is manufactured and sold based on the patented mortar (December 30, 1986). In order to apply the principle of infrared interftance, such devices use a plurality of infrared light emitting diodes (IREDs) of a predetermined wavelength to provide a light source through a translucent tube. Such a device consists of multiple pairs of matched I
Until now, manufacturing such devices using RED's has required selecting the IRED for the specific wavelength used to make the measurements. Due to manufacturing tolerances, the exact center wavelength of the IRED is typically different for each production batch, so each production batch is selected to
In addition to matching IRED pairs, these I R
It is necessary to ensure that the ED has a particular center wavelength that is most suitable for making measurements. If the IRED production process is such that it causes slight changes in the center wavelength,
In order to select a few I REDs with the required wavelength,
There are such time-consuming tests that require testing a large number of TREDs, and inappropriate IREIs.
)! J' is wasted, which considerably increases the production cost of the device.

従って、装置の!jli!造時での不必要な選別やIR
EDの無駄をなくすように、近赤外線インタラフタンス
装置を改良する必要性が当分野に残されている。
Therefore, of the device! jli! Unnecessary sorting and IR during manufacturing
There remains a need in the art to improve near-infrared interaffection devices to eliminate waste in EDs.

本発明は、IREDと照明管との間に狭い通過帯域の光
学フィルタを介在させて、alll定のための所定の波
長の狭い一!IP域の近赤外線が得られるようにするこ
とによって、上記の近赤外線インタラフタンス装置の製
造時の時間がかかる無駄なIREDの選別を不要にして
いる。狭い帯域の光学フィルタは、近赤外発光ダイオー
ドの中心波長とは無関係に特定波長の選択が行なわれる
The present invention interposes an optical filter with a narrow passband between the IRED and the illumination tube to provide a narrow band of predetermined wavelengths for all determination. By making it possible to obtain near-infrared rays in the IP range, it is possible to eliminate the need for time-consuming and wasteful selection of IREDs during the manufacture of the above-mentioned near-infrared interference device. In the narrow band optical filter, a specific wavelength is selected regardless of the center wavelength of the near-infrared light emitting diode.

本発明は、上記の米国特許第4,633,087号に記
載されているような近赤外線インタラフタンス分析装置
に適用することができる。第1図を参照すると、そのよ
うな装置10は、中空の円筒形のもので、その中空の管
状部材12は、所望の帯域幅、すなわち約800〜約1
100ナノメータの近赤外エネルギを透過し、そしてほ
とんど吸収しないように選択された半透明の固体物質か
らなる壁を有する。管状部材12の形成に適した材料は
、例えば半透明ナイロン、半透明ポリテトラフルオロエ
チレン等であるが、これらに限定されない。
The present invention can be applied to near-infrared interaffetance analyzers such as those described in the above-mentioned US Pat. No. 4,633,087. Referring to FIG. 1, such a device 10 is of hollow cylindrical shape, the hollow tubular member 12 having a desired bandwidth, i.e. from about 800 to about 1
It has walls made of a translucent solid material selected to transmit and absorb very little near-infrared energy at 100 nanometers. Suitable materials for forming tubular member 12 include, but are not limited to, translucent nylon, translucent polytetrafluoroethylene, and the like.

所定波長の近赤外線の少なくとも1つの点光源となる手
段が、管状部材12の上端部13に配設されている。管
状部材12の上端部13にあるこの近赤外点光源手段は
、その点光源手段から出た所定波長の近赤外線が管状部
材12によって、上端部13から管状部材12の平坦な
底面14まで伝達されるような位置に設けられる。近赤
外点光源手段は、それぞれが2つの赤外発光ダイオード
(IRED)からなる複数の対からなっていることが好
ましい、好ましくは、TREDは、管状部材12の上端
部13に対称的に配置される。対になった2つのIRE
Dがほとんど同じ波長のものであって、管状部材12の
上端部13の円周方向に約180’lれて位置される。
Means serving as at least one point light source of near-infrared rays of a predetermined wavelength is disposed at the upper end 13 of the tubular member 12. The near-infrared point light source means at the upper end 13 of the tubular member 12 transmits near-infrared rays of a predetermined wavelength emitted from the point light source means from the upper end 13 to the flat bottom surface 14 of the tubular member 12. be placed in such a position that it will be The near-infrared point light source means preferably consists of a plurality of pairs each of two infrared light emitting diodes (IREDs), preferably the TREDs are arranged symmetrically at the upper end 13 of the tubular member 12. be done. Two paired IREs
D are of substantially the same wavelength and are located approximately 180'l apart in the circumferential direction of the upper end 13 of the tubular member 12.

第1図に示した好適な実施例には、そのようなI RE
Dの3つの対16.16’ 、17.17’ 、18及
び18′が示されている。別の実施例では、点光源手段
として、IREDを2対又は4対使用してもよい。
The preferred embodiment shown in FIG.
Three pairs of D are shown, 16.16', 17.17', 18 and 18'. In other embodiments, two or four pairs of IREDs may be used as point light source means.

透光性管状部材12は、脈動状の光源を平滑化しうるよ
うに、内部で十分に光散乱が得られる適当な長さにする
ことにより、IREDからの光は、管状部材12を透過
して、その底面に均一に現われることができる0例えば
、直径が1インチで、壁厚が178インチの押出半透明
ナイロン管の場合の適当な長さは、約1−3/4インチ
である。
The translucent tubular member 12 is made to have an appropriate length to obtain sufficient light scattering inside so as to smooth out the pulsating light source, so that the light from the IRED is transmitted through the tubular member 12. For example, a suitable length for an extruded translucent nylon tube with a diameter of 1 inch and a wall thickness of 178 inches is about 1-3/4 inches.

近赤外線の損失を最小にするため、管状部材12は、脈
動状光源を均一に平滑化するのに必要な長さ以上にはし
ないのが好ましい、理想的な管の長さは、市販の赤外ビ
ュウア(ナイトスコープ)を用いれば簡単に決定できる
。管を通過する近赤外線を観察し、光が均一に現われる
まで管を切り取るようにして、管の寸法を決めることも
できる。
To minimize near-infrared loss, the tubular member 12 is preferably no longer than necessary to uniformly smooth the pulsating light source. This can be easily determined using an external viewer (night scope). Tube dimensions can also be determined by observing the near-infrared light passing through the tube and cutting the tube until the light appears uniform.

次に、シリコン検出器を管の端部に沿って移動させて、
出力が均一であるかを調べる。
Next, move the silicon detector along the end of the tube and
Check whether the output is uniform.

遮光のため、透光性管状部材12の円筒壁の外方は外側
管状不透明シールド20で、内方は内側管状不透明シー
ルド22で遮へいされている。管状部材12の上端部1
3もまた、上部カバー(図示せず)によって周囲光から
遮へいされている。
For light shielding, the cylindrical wall of the transparent tubular member 12 is shielded on the outside with an outer tubular opaque shield 20 and on the inside with an inner tubular opaque shield 22. Upper end 1 of tubular member 12
3 is also shielded from ambient light by a top cover (not shown).

近赤外線を検出できる光検出器28が、管状部材12の
内側の底端部に配設されている。内部管状シールド22
が、検出器28と透光性管状部材12との間に設けられ
、管状部材12からの近赤外線が直接に検出器28に入
射するのを防止する不透明マスクを形成している。光検
出器28は、近赤外線を検出した時に、電気信号を発生
する。
A photodetector 28 capable of detecting near-infrared rays is disposed at the inner bottom end of the tubular member 12. Internal tubular shield 22
is provided between the detector 28 and the translucent tubular member 12, and forms an opaque mask that prevents near-infrared rays from the tubular member 12 from directly entering the detector 28. The photodetector 28 generates an electrical signal when it detects near-infrared rays.

光検出器28は、適当な導電手段33によって電気信号
増幅器30の入力側に接続されている。
Photodetector 28 is connected to the input of electrical signal amplifier 30 by suitable conductive means 33.

この増幅器30は、安価な信号増幅器でよく、検出器2
8が検出した放射線に対応して検出器が発生した信号を
増幅する。好ましくは、検出器28を管状シールド22
内に配設する。増幅器30は、検出器28が発生した信
号を増幅した信号を導電線34を介して読取りボックス
32へ送る。この読取りボックスに、試料物質S内の脂
肪のパーセント値を直接的に表示するディスプレイ36
を設けてもよい。
This amplifier 30 may be an inexpensive signal amplifier, and the detector 2
8 amplifies the signal generated by the detector in response to the detected radiation. Preferably, the detector 28 is connected to the tubular shield 22
Placed within. Amplifier 30 amplifies the signal generated by detector 28 and sends the signal via conductive line 34 to read box 32 . In this readout box, a display 36 directly displays the percentage value of fat in the sample material S.
may be provided.

近赤外エネルギに対して透明な導電性窓2つが装置の電
子機構に直接に接地されている。この窓29は、光検出
器28の前方に設けられている。
Two conductive windows transparent to near-infrared energy are grounded directly to the electronics of the device. This window 29 is provided in front of the photodetector 28.

この導電性窓は、工場及び機器の敷地内では一般的にみ
られる電磁妨害雑音から遮へいするためのものである。
The conductive window is intended for shielding from electromagnetic interference commonly found in industrial and equipment premises.

ここに説明した装置は、インタラフタンスの原理を利用
した形式のものであり、この原理は、当分野では公知で
あり、反射率や透過率とは異なっている。インタラフタ
ンス方式では、光源からの光は、不透明部材によって検
出器から遮へいされ、試験対象物に対する光のインタラ
フタンスが検出器によって検出される。
The device described herein is of the type that utilizes the principle of interftance, which is well known in the art and is distinct from reflectance and transmittance. In the interftance method, light from a light source is shielded from a detector by an opaque member, and the detector detects the interference of the light with the test object.

この装置は、雑音を減らすために、各IREDについて
多重読取りを採用し、そしてデータ処理積分アナ″ログ
・デジタル変換器40へ送ることによって行なわれる。
The system works by employing multiple readings for each IRED and data processing integral analog to digital converter 40 to reduce noise.

この変換器40は、読取りボックス32に接続したデジ
タルプロセッサ41に接続されている。
This converter 40 is connected to a digital processor 41 which is connected to the reading box 32.

作動時においては、窓29は試験対象物Sの表面に向け
て配置される。管状部材12から出た光は、試験対象物
Sと相互作用し、検出器28によって検出される9次に
、検出器28が電気信号を発生し、この信号は、上記の
通り処理される。
In operation, the window 29 is placed toward the surface of the test object S. The light emerging from tubular member 12 interacts with test object S and is detected by detector 28, which in turn generates an electrical signal, which is processed as described above.

以上に説明した点に関しては、この装置は、前記の米国
特許第4,633,087号に開示されているものと同
様である。この装置は、透光性管状部材12の上端部1
3の円周上に60゛の間隔で設けられた赤外発光ダイオ
ード(IRED)16.16″。
In all respects described above, this device is similar to that disclosed in the aforementioned US Pat. No. 4,633,087. This device includes an upper end portion 1 of a translucent tubular member 12.
Infrared light emitting diodes (IREDs) 16.16'' are placed at intervals of 60゛ on the circumference of 3.

17.17’ 、18.及び18′を用いており、同一
波長のIREDが180°の間隔で設けられている。上
記の通り、IREDはその生産バッチ毎に正確な中心波
長が違っているので、従来はそのような装置の製造には
、生産バッチ毎にIREDの正確な中心波長が違うこと
による特定の波長のIREDの面倒な分類が必要とされ
、相当な無駄と費用が生じていた。
17.17', 18. and 18' are used, and IREDs of the same wavelength are provided at intervals of 180°. As mentioned above, IREDs have different exact center wavelengths depending on their production batches, so conventionally, in the manufacture of such devices, it has been difficult to obtain a specific wavelength due to the difference in the exact center wavelengths of IREDs depending on production batches. A tedious classification of IREDs was required, resulting in considerable waste and expense.

本発明は、光散乱性の管状部材12内の各近赤外発光ダ
イオード、例えばI RED 18の直前に(第2図に
概略的に示したような)狭い帯域幅の光学フィルタを設
けることにより、上記のような分類や無駄をなくしてい
る。フィルタ23が各IREDと管状部材12との間に
、各IREDから出る近赤外線がr光するために設けら
れ、これによって所定波長の狭い帯域幅の近赤外線だけ
がフィルタを通過して管状部材12内へ入ることができ
る。狭い帯域幅の光学フィルタを用いることにより、使
用している特定の近赤外発光ダイオードの中心波長に応
じた特定の波長を選択することができる。ダイオードの
対のそれぞれは、同一の所定波長の近赤外線を通過させ
るフィルタを備えている。第1図に示した装置に本発明
を適用する場合、第1及び第2の対の近赤外発光ダイオ
ード16゜16′及び17.17’に対応する光学フィ
ルタは、それぞれ約930及び約950ナノメータの波
長の近赤外線を管状部材12へ通過させる。残りの対の
近赤外発光ダイオード18.18’に対応した光学フィ
ルタは、波長約880〜890ナノメータの近赤外線を
管状部材12へ通過させる。
The present invention is advantageous in that by providing a narrow bandwidth optical filter (as shown schematically in FIG. 2) immediately before each near-infrared light emitting diode, e.g. , eliminating the above-mentioned classification and waste. A filter 23 is provided between each IRED and the tubular member 12 in order to convert near-infrared rays emitted from each IRED into r-rays, so that only near-infrared rays with a narrow bandwidth of a predetermined wavelength pass through the filter and are transmitted to the tubular member 12. You can go inside. By using a narrow bandwidth optical filter, a particular wavelength can be selected depending on the center wavelength of the particular near-infrared light emitting diode being used. Each pair of diodes includes a filter that passes near-infrared rays of the same predetermined wavelength. When the present invention is applied to the device shown in FIG. 1, the optical filters corresponding to the first and second pairs of near-infrared light emitting diodes 16. Near-infrared rays having a wavelength of nanometers are passed through the tubular member 12 . Optical filters associated with the remaining pair of near-infrared light emitting diodes 18 , 18 ′ pass near-infrared light at wavelengths of approximately 880-890 nanometers into tubular member 12 .

本発明において狭い帯域幅のフィルタを使用する他の利
点は、フィルタにより測定帯域をより明確に分離でき、
そのため正確度及び測定繰返し精度が向上するというこ
とである。これは、従来技術の米国特許第4,633,
087号に示されているようなフィルタなしの分類され
たIREDの帯域幅の広がりを示す第3A図と、本発明
による狭い帯域幅のフィルタを設けた分類されていない
I REDを用いた第3B図との比較に示される。
Another advantage of using narrow bandwidth filters in the present invention is that the filters can more clearly separate the measurement bands;
This means that accuracy and measurement repeatability are improved. This is based on prior art U.S. Pat. No. 4,633,
Figure 3A showing the bandwidth spread of a classified IRED without a filter as shown in No. 087 and Figure 3B with an unclassified IRED with a narrow bandwidth filter according to the present invention. Shown in comparison with fig.

本発明による狭い帯域幅のフィルタを用いることにより
、従来技術の米国特許第4,633,087号に示され
ているようなフィルタなしで分類されたIREDを使用
した場合に較べて近赤外インタラフタンス装置の精度が
著るしく向上する。第・IA図は、狭い帯域幅の光学フ
ィルタなしの分類されたIREDを用いた従来技術の米
国特許第4,633.0137号に従って製造された多
数の装置について、「価値指数(Figure of 
Merit ) 」をグラフで示したものである。「効
果指数」とは、装置の較正精度の測定値のことである。
By using a narrow bandwidth filter according to the present invention, near-infrared interfaces can be The accuracy of the roughtance device is significantly improved. Figure IA shows the "Figure of Value" for a number of devices manufactured according to prior art U.S. Pat.
This is a graphical representation of ``Merit''. "Effectiveness Index" is a measure of the calibration accuracy of the device.

「価値指数」は、データの範囲(すなわち最高パーセン
トの試料値から最低パーセントの試料値を引いたもの)
を、凛準較正誤差の2倍で割ったものである。「価値指
数」が3.0以上であれば、統計的に有利であり、商品
用装置にすることができる。「価値指数」が約5のもの
は、価値指数が3のものに歓べて大幅な改良であると見
なされる。第4B図は、IREDと光散乱管との間に狭
い帯域幅の光学フィルタを設けた本発明に従って製造さ
れた近赤外インタラフタンス装置の「価値指数」値を示
している。
“Value Index” is the range of data (i.e., the highest percent sample value minus the lowest percent sample value)
divided by twice the Rin semi-calibration error. If the "value index" is 3.0 or more, it is statistically advantageous and can be used as a commercial device. A value index of approximately 5 is considered a significant improvement over a value index of 3. FIG. 4B shows "index of value" values for a near-infrared interaftance device made in accordance with the present invention with a narrow bandwidth optical filter between the IRED and the light scattering tube.

第4A図と第4B図との比較は、狭い¥f域幅の光学フ
ィルタの使用が近赤外インタラフタンス装置の精度を大
幅に向上させていることを示している。
A comparison of FIGS. 4A and 4B shows that the use of narrow f-bandwidth optical filters greatly improves the accuracy of the near-infrared interference device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を適用できる近赤外定量分析装置を概
略的に示した斜視図、第2図は、IREDから透光性管
状部材へ進む近赤外線を沢光するように配設された、本
発明における狭い帯域幅の光学フィルタを概略的に示し
た断面図、第3A及び第3B図は、それぞれ第1図の装
置に本発明にしたがって狭い帯域幅の光学フィルタを設
けたものと、設けないものとによる試料への相対エネル
ギ伝達率を示すグラフ図、第4A及び第4B図は、それ
ぞれ第1図の装置に本発明にしたがって、狭い帯域幅の
光学フィルタを付けたものと、付けないものとについて
の「価値指数」を示すグラフ図である。 10・・・装置、12・・・管状部材、16.16’ 
。 17.17’ 、18.18’ =−IRED、20゜
22・・・シールド、23・・・フィルタ、28・・・
光検出器、29・・・窓、30・・・電気信号増幅器、
32・・・読取りボックス、36・・・ディスプレイ、
4o・・・積分アナログ・デジタル変換器、41・・・
デジタルプロセッサ、S・・・試験対象物。 特許出願人  株式会社ゲット科学研究所同     
 ヒユードレックス・ インコーポレイテッド FIG、  / FIG、 2 液長 (nm) FIG、 3A ― i 長 (nm ) FIG、 3B
FIG. 1 is a perspective view schematically showing a near-infrared quantitative analyzer to which the present invention can be applied, and FIG. 2 is a perspective view of a near-infrared quantitative analysis device to which the present invention is applied. Further, FIGS. 3A and 3B, which are cross-sectional views schematically showing a narrow-bandwidth optical filter according to the present invention, respectively show the apparatus of FIG. 1 provided with a narrow-bandwidth optical filter according to the present invention. , 4A and 4B are graphs showing the relative energy transfer rates to the sample with and without, respectively, the apparatus of FIG. 1 with a narrow bandwidth optical filter in accordance with the present invention; It is a graph diagram showing the "value index" for those not attached. 10... Device, 12... Tubular member, 16.16'
. 17.17', 18.18' =-IRED, 20°22...Shield, 23...Filter, 28...
Photodetector, 29... window, 30... electrical signal amplifier,
32...reading box, 36...display,
4o... Integral analog-to-digital converter, 41...
Digital processor, S...Test object. Patent applicant Get Scientific Research Institute Co., Ltd.
Hyudrex Incorporated FIG, / FIG, 2 Liquid length (nm) FIG, 3A - i Length (nm) FIG, 3B

Claims (1)

【特許請求の範囲】 1、脂肪又は油を含有する試料物質を測定するための近
赤外線定量装置であって、 (a)少なくとも一つの近赤外線点光源を形成する手段
と、 (b)近赤外線をろ光して、特定の波長の狭い帯域幅の
近赤外線を通過させる狭い通過帯 域幅の光学フィルタ手段と、 (c)近赤外線をほとんど吸収しない組成物であって近
赤外線を透過できる物質からなる 壁部を備えた管状部材であり、この管状部 材の第1端部に前記点光源手段及び前記フ ィルタ手段とが配設され、前記フィルタ手 段が前記点光源手段と前記管状部材との間 に介在することによって、近赤外線が前記 フィルタ手段を介し、次に前記管状部材の 壁部を介して進むようになされており、前 記管状部材の第1端部に設けられた前記点 光源手段から出た近赤外線が前記管状部材 の第2端部側でほぼ均一に現われるような 長さとなっており、かつ前記管状部材の第 2端部が中心領域の周囲を規定するように なされた管状部材と、 (d)前記管状部材の第2端部によって周囲が規定され
た前記中心領域に入る近赤外線を 検出するように配設され、近赤外線の検出 時に電気信号を発生する近赤外線検出器と、(e)前記
管状部材の壁部からの近赤外線が直接的に前記検出器に
入射するのを防止する 手段と、 (f)周囲光から前記管状部材の外側を遮へいする手段
と、 (g)前記検出器に接続され、該検出器が発生する電気
信号を増幅する手段と、 (h)前記増幅手段に接続され、増幅信号を処理すると
ともに、前記試料物質内の脂肪の パーセントを表わす読取りを行なうことが できるデータ処理及び読取り手段と、 を備えた装置。 2、近赤外エネルギに対して実質的に透明な接地導電性
窓を設けた電磁妨害雑音シールドを有しており、前記窓
が前記管状部材の第2端部に位置して電磁妨害雑音から
前記検出器を遮へいする請求項1記載の装置。 3、前記検出器が、前記管状部材の内側の第2端部付近
に、前記窓に隣接して配設されている請求項2記載の測
定装置。 4、前記点光源が複数対の近赤外発光ダイオードを有し
、各ダイオードは、前記管状部材の周囲に円周方向にほ
ぼ対称的に配置され、各ダイオードと前記管状部材との
間にフィルタ手段が配設されており、各対のダイオード
の各々が前記管状部材の周囲に円周方向に約 180°離れて設けられ、各対のダイオードの各々に対
応するフィルタ手段が、ほぼ同一の波長の近赤外線を通
過させるものである請求項1記載の測定装置。 5、第1の対の前記近赤外発光ダイオードに対応する光
学フィルタ手段が、波長約930ナノメータの近赤外線
を前記管状部材へ通過させ、第2の対の前記近赤外発光
ダイオードに対応した光学フィルタ手段が、波長約95
0ナノメータの近赤外線を前記管状部材へ通過させ、他
の対の前記近赤外発光ダイオードに対応した光学フィル
タ手段が、波長約880〜890ナノメータの近赤外線
を前記管状部材へ通過させるようになされた請求項4記
載の測定装置。 6、前記データ処理手段が、複数の同時読取り値を比較
することにより、連続読取り値が所定の許容誤差内にあ
るかどうかを確認できるようになされた請求項5記載の
測定装置。 7、前記管状部材壁部の材質が、ポリテトラフルオロエ
チレン又はナイロンである請求項1記載の測定装置。
[Claims] 1. A near-infrared quantification device for measuring sample substances containing fat or oil, comprising: (a) means for forming at least one near-infrared point light source; (b) near-infrared rays; (c) an optical filter means with a narrow passband width that filters near-infrared rays of a specific wavelength and passes near-infrared rays with a narrow band width; The point light source means and the filter means are disposed at a first end of the tubular member, and the filter means is provided between the point light source means and the tubular member. interposing the near infrared rays to travel through the filter means and then through the wall of the tubular member and to emit from the point light source means provided at the first end of the tubular member. a tubular member having a length such that the near infrared rays emitted from the tubular member appear substantially uniformly on a second end side of the tubular member, and the second end of the tubular member defines a periphery of a central region; (d) a near-infrared detector arranged to detect near-infrared radiation entering the central region circumscribed by the second end of the tubular member, and generating an electrical signal upon detection of near-infrared radiation; (e) means for preventing near-infrared rays from the wall of the tubular member from directly entering the detector; (f) means for shielding the outside of the tubular member from ambient light; (g) means connected to said detector for amplifying the electrical signal generated by said detector; (h) means connected to said amplifying means for processing the amplified signal and providing a reading representative of the percentage of fat within said sample material; and data processing and reading means capable of performing the following steps. 2. having an electromagnetic interference noise shield with a grounded conductive window substantially transparent to near-infrared energy, said window being located at the second end of said tubular member and shielding from electromagnetic interference noise; The apparatus of claim 1, wherein the detector is shielded. 3. The measuring device according to claim 2, wherein the detector is disposed near the inner second end of the tubular member and adjacent to the window. 4. The point light source has a plurality of pairs of near-infrared light emitting diodes, each diode is arranged approximately symmetrically in the circumferential direction around the tubular member, and a filter is provided between each diode and the tubular member. means are disposed, each of the diodes of each pair being spaced about 180 degrees circumferentially about the tubular member, and the filter means corresponding to each of the diodes of each pair filtering approximately the same wavelength. 2. The measuring device according to claim 1, which allows near-infrared rays to pass through. 5. Optical filter means corresponding to a first pair of said near-infrared light emitting diodes pass near-infrared light having a wavelength of about 930 nanometers to said tubular member, and said optical filter means corresponding to a second pair of said near-infrared light emitting diodes. The optical filter means has a wavelength of about 95
Optical filter means corresponding to the near-infrared light emitting diodes of the other pair are adapted to pass near-infrared rays with a wavelength of about 880 to 890 nanometers to the tubular member. The measuring device according to claim 4. 6. The measuring device according to claim 5, wherein said data processing means is capable of checking whether consecutive readings are within a predetermined tolerance by comparing a plurality of simultaneous readings. 7. The measuring device according to claim 1, wherein the material of the wall of the tubular member is polytetrafluoroethylene or nylon.
JP2213288A 1987-06-05 1988-02-03 Improvement in near infrared device for measuring organic component of substance Pending JPS63305234A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5855087A 1987-06-05 1987-06-05
US058550 1987-06-05

Publications (1)

Publication Number Publication Date
JPS63305234A true JPS63305234A (en) 1988-12-13

Family

ID=22017509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213288A Pending JPS63305234A (en) 1987-06-05 1988-02-03 Improvement in near infrared device for measuring organic component of substance

Country Status (3)

Country Link
EP (1) EP0316442A4 (en)
JP (1) JPS63305234A (en)
WO (1) WO1988009920A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110347A (en) * 2004-10-11 2006-04-27 Samsung Electronics Co Ltd Body fat thickness measuring device and body fat thickness measuring method
WO2019069513A1 (en) * 2017-10-06 2019-04-11 浜松ホトニクス株式会社 Fat measurement device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE502148C2 (en) * 1993-12-03 1995-08-28 Bexelius Apparatus for measuring the amount of solid in a fluid with light
NL1013805C2 (en) * 1999-04-27 2000-10-30 Co Peratie Rundveeverbetering Device for analyzing products and dedicated sensor.
NL1011905C2 (en) * 1999-04-27 2000-10-30 Co Peratie Rundveeverbetering Simple, inexpensive, robust measuring head for spectrophotometer useful in direct analysis of e.g. milk, has light-conducting assembly connected to carrier for source or sensor
EP1108208A1 (en) * 1999-06-24 2001-06-20 Assembléon N.V. Illumination module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162934A (en) * 1985-01-14 1986-07-23 萩原 文二 Percateneous measuring sensor and apparatus of blood coloring matter
JPS62110135A (en) * 1985-11-08 1987-05-21 Cosmo Co Ltd Method and apparatus for quantifying concentration of asphaltene

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040747A (en) * 1972-08-24 1977-08-09 Neotec Corporation Optical analyzer for agricultural products
US4197458A (en) * 1978-07-31 1980-04-08 Benno Perren Electro-optical apparatus for the detection of the presence of liquid
US4286327A (en) * 1979-09-10 1981-08-25 Trebor Industries, Inc. Apparatus for near infrared quantitative analysis
US4466076A (en) * 1981-05-15 1984-08-14 Trebor Industries, Inc. Apparatus for near infrared quantitative analysis with temperature variation correction
US4500784A (en) * 1982-09-29 1985-02-19 Michael Hacskaylo Automatic human body detector
US4627008A (en) * 1984-04-25 1986-12-02 Trebor Industries, Inc. Optical quantitative analysis using curvilinear interpolation
US4633087A (en) * 1985-04-24 1986-12-30 Trebor Industries, Inc. Near infrared apparatus for measurement of organic constituents of material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162934A (en) * 1985-01-14 1986-07-23 萩原 文二 Percateneous measuring sensor and apparatus of blood coloring matter
JPS62110135A (en) * 1985-11-08 1987-05-21 Cosmo Co Ltd Method and apparatus for quantifying concentration of asphaltene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110347A (en) * 2004-10-11 2006-04-27 Samsung Electronics Co Ltd Body fat thickness measuring device and body fat thickness measuring method
WO2019069513A1 (en) * 2017-10-06 2019-04-11 浜松ホトニクス株式会社 Fat measurement device
JP2019070550A (en) * 2017-10-06 2019-05-09 浜松ホトニクス株式会社 Fat measurement device

Also Published As

Publication number Publication date
EP0316442A4 (en) 1991-04-17
EP0316442A1 (en) 1989-05-24
WO1988009920A1 (en) 1988-12-15

Similar Documents

Publication Publication Date Title
US4633087A (en) Near infrared apparatus for measurement of organic constituents of material
US5760399A (en) Measurement of transmission spectra of pharmaceutical tablets
US4801804A (en) Method and apparatus for near infrared reflectance measurement of non-homogeneous materials
US5369481A (en) Portable spectrophotometer
US3624835A (en) Microparticle analyzer employing a spherical detector array
Proctor et al. NIST high accuracy reference reflectometer-spectrophotometer
US4734584A (en) Quantitative near-infrared measurement instrument for multiple measurements in both reflectance and transmission modes
JP3868516B2 (en) Photometer multi-detector read head
US3562524A (en) Apparatus for measuring the concentration of alcohol vapor in alveolar air
US7397566B2 (en) Method and apparatus for optical interactance and transmittance measurements
US6111653A (en) Translucency measurement
JPH1096695A (en) Method for measuring scattering light
EP0815434A1 (en) Diffuse reflectance probe
DE4133481A1 (en) MULTI-SPECTRAL SENSOR
US4977325A (en) Optical read system and immunoassay method
US4659229A (en) Readhead with reduced height sensitivity
CA1272043A (en) Method of and apparatus for measuring floating fine particles
US4936684A (en) Spectrometer with photodetector array detecting uniform bandwidth intervals
JPS63305234A (en) Improvement in near infrared device for measuring organic component of substance
CA1249138A (en) Simultaneous multiple wavelength photometer
US4375334A (en) Nephelometer
US5120979A (en) Apparatus and method for analysis of a sample medium in a gap between a tube and a float
US3506359A (en) Apparatus for measuring light absorption of a sample
DE3149869C2 (en)
US6737649B2 (en) Infrared analysis instrument with offset probe for particulate sample