JPS63302134A - Exhaust gas turbine supercharger - Google Patents

Exhaust gas turbine supercharger

Info

Publication number
JPS63302134A
JPS63302134A JP62134881A JP13488187A JPS63302134A JP S63302134 A JPS63302134 A JP S63302134A JP 62134881 A JP62134881 A JP 62134881A JP 13488187 A JP13488187 A JP 13488187A JP S63302134 A JPS63302134 A JP S63302134A
Authority
JP
Japan
Prior art keywords
scroll
turbine
nozzle
partition wall
turbine impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62134881A
Other languages
Japanese (ja)
Inventor
Tsutomu Okazaki
勉 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62134881A priority Critical patent/JPS63302134A/en
Publication of JPS63302134A publication Critical patent/JPS63302134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the effect of supercharger in a low speed range by dividing the inside of a turbine scroll into two scroll chambers with the use of a partition wall, and by extending the inlet part of a turbine impeller in one of nozzle parts formed respectively in these scroll chambers, which is used in a low speed range. CONSTITUTION:A turbine scroll 4 of an exhaust turbine impeller is divided into a two scroll chambers 4a, 4b by a partition wall 5 which also divides a nozzle section into two nozzle parts 6a, 6b. The part 1b of the inlet part of a turbine impeller 1, which faces the scroll chamber 4b, has a shape such that it extends in the nozzle part 6b. Further, the partition wall 5 is connected to a partition plate 8 in a turbine inlet 7, and a control valve 12 is provided in an aperture 11 which is formed in the partition plate 8 so as to communicate between an open scroll 9 and a closed scroll 10. Further, a bypass valve 22 is provided in a bypass aperture 21 formed in a closed scroll 22 downstream of a control valve 12.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はタービンとコンプレッサを同一軸上に配置した
排気タービン過給機に係り、特に乗用車用エンジンに好
適な可変容量式タービンを備えた排気タービン過給機に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an exhaust turbine supercharger in which a turbine and a compressor are arranged on the same axis, and particularly relates to an exhaust turbine supercharger equipped with a variable displacement turbine suitable for passenger car engines. This relates to a turbine supercharger.

〔従来の技術〕[Conventional technology]

従来の排気タービン過給機でタービンの容量を可変とす
る構造のものは米国特許第3,614,259号記載の
ように隔壁先端位置をタービン羽根車入口部から離して
ノズル部を一つにしたもの、また。
Conventional exhaust turbine superchargers with a structure that allows the turbine capacity to be made variable have a structure in which the tip of the partition wall is separated from the inlet of the turbine impeller and the nozzle part is integrated, as described in U.S. Pat. No. 3,614,259. What I did, again.

実開昭61−88002号に記載のように隔壁先端位置
をタービン羽根車入口部に近づけたものが知られている
As described in Japanese Utility Model Application Laid-Open No. 61-88002, it is known that the tip of the partition wall is positioned close to the inlet of the turbine impeller.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術はエンジン低速域の運転時で排気流量が少
ない場合に排気を片方のスクロール室にのみ集中的に導
き、少ない流量に適したスクロール流路面積で排気を十
分増速しでタービン羽根車入口部へ導き、タービン回転
数を高めて十分な過給性能を得るものである。しかし、
第3図に示すようにこのように二つのスクロール室4a
、4bのうち片鍔の4bにのみ排気を導いた場合、排気
一部が矢印Bのようにもう一方のスクロール室へ隔壁先
端5′を迂回して漏れる点について配慮がされておらず
、この漏れ流れによる損失のため十分な効果が得られな
い問題があった6 〔問題点を解決するための手段〕 上記目的はエンジン低速域で使用する小容量側のノズル
部にタービン羽根車入口部を伸ばすことにより、小容量
側のスクロール室にのみ排気を導入した場合に排気がも
う一方のスクロール室へ漏れることなく、必ずタービン
羽根車へ流入させることで達成される。
The above conventional technology concentrates the exhaust gas into only one scroll chamber when the engine is operating in a low speed range and the exhaust flow rate is small, and the exhaust gas is sufficiently sped up with a scroll passage area suitable for the small flow rate to drive the turbine impeller. It leads to the inlet and increases the turbine rotation speed to obtain sufficient supercharging performance. but,
As shown in FIG. 3, two scroll chambers 4a are constructed in this way.
, if the exhaust gas is guided only to one side of the scroll chamber 4b, no consideration is given to the fact that part of the exhaust gas will bypass the partition wall tip 5' and leak into the other scroll chamber as shown by arrow B. There was a problem that a sufficient effect could not be obtained due to loss due to leakage flow6 [Means to solve the problem] The above purpose was to install a turbine impeller inlet part in the nozzle part on the small capacity side used in the low speed range of the engine. This is achieved by stretching the exhaust gas so that when it is introduced only into the scroll chamber on the small capacity side, the exhaust gas does not leak into the other scroll chamber and always flows into the turbine impeller.

〔作用〕[Effect]

タービン羽根車入口部の低速側ノズル部に対向した部分
を半径方向に延ばして隔壁と側壁内へ挿入させることに
よりエンジン低速域で低速側スクロールに集中させた排
気は必ずタービン羽根車へ直接流入し、もう一方のスク
ロール室へ流れが漏れる場合は1度タービン羽根車へ仕
事をあたえ、エネルギを失なった流れ、すなわち流速が
低下した流れが漏れることになるので、低容量時のター
ビン流体損失が大幅に減少し、エンジン低速域の過給効
果を向上させることができる。
By extending the part of the turbine impeller inlet facing the low-speed nozzle part in the radial direction and inserting it into the partition wall and side wall, the exhaust gas concentrated on the low-speed scroll in the low engine speed range will always flow directly into the turbine impeller. If the flow leaks to the other scroll chamber, work is applied to the turbine impeller once, and the flow that has lost energy, that is, the flow that has decreased in velocity, leaks, so the turbine fluid loss at low capacity is reduced. This significantly reduces the supercharging effect in the low speed range of the engine.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する6図に
おいて排気タービン過給機のコンプレッサの部分につい
ては本発明の対象部分でないので説明を省略する。第1
図においてタービン羽根車1と図示していないコンプレ
ッサ羽根車は軸2によって固定配置される。この軸2の
外周には軸受ケーシング3が配置され、タービンスクロ
ール4に取付けられている。
Hereinafter, an embodiment of the present invention will be explained with reference to FIG. 1, and in FIG. 6, a description of the compressor portion of the exhaust turbine supercharger will be omitted since it is not a target portion of the present invention. 1st
In the figure, a turbine impeller 1 and a compressor impeller (not shown) are fixedly arranged by a shaft 2 . A bearing casing 3 is disposed around the outer periphery of this shaft 2 and is attached to a turbine scroll 4.

タービンスクロール4は隔壁5によって二つのスクロー
ル室4a、4bに分割される。この隔壁によってノズル
部分も2分割され6a、6bを形成する。タービン羽根
車1の入口部分のうちスクロール室4aに対向する部分
1aは隔壁5の先端部5′に近接させ、もう一方のスク
ロール室4bに対向する部分1bはノズル部6b内へ伸
びした形状とする。
The turbine scroll 4 is divided by a partition wall 5 into two scroll chambers 4a and 4b. The nozzle portion is also divided into two by this partition to form 6a and 6b. Of the inlet portion of the turbine impeller 1, the portion 1a facing the scroll chamber 4a is located close to the tip 5' of the partition wall 5, and the other portion 1b facing the scroll chamber 4b is shaped to extend into the nozzle portion 6b. do.

隔壁5はタービン入ロアの仕切板8に連なり、この仕切
板8によってタービン入ロアの流路は。
The partition wall 5 is connected to a partition plate 8 of the turbine-entering lower, and the flow path of the turbine-entering lower is defined by this partition plate 8.

開放スクロール9と閉鎖スクロール10に分割して形成
される。開放スクロール9はタービン入口9に直接連通
しており、閉鎖スクロール10は仕切板8に穿設された
穴11によって開放スクロール9に連通している。この
穴11には制御弁12が配置され、開放スクロール9と
閉鎖スクロール10の連通、遮断、すなわち閉鎖スクロ
ール10をタービン人ロアに対して連通、遮断を行なう
It is divided into an open scroll 9 and a closed scroll 10. The open scroll 9 communicates directly with the turbine inlet 9, and the closed scroll 10 communicates with the open scroll 9 through holes 11 drilled in the partition plate 8. A control valve 12 is disposed in this hole 11 to communicate and cut off the open scroll 9 and the closed scroll 10, that is, to communicate and cut off the closed scroll 10 with respect to the turbine lower.

制御弁12は軸13のまわりに回転可能に構成され、軸
13はアーム14を介してアクチュエータ17の軸15
に接続されている。アクチュエータ17は軸15を一方
に押圧するばね部材16とこのばね部材16に抗するよ
うに配置されたベローズ18からなり、ベローズ18に
は過給圧力等を導入する孔19が設けられている。また
、制御弁12の下流の閉鎖スクロール1oにはバイパス
穴21が穿設され、タービン出口に通じるバイパス流路
20に連通される。バイパス穴21にはバイパス弁22
が軸23まわりに回転できるように構成され、軸23は
アーム24を介してアクチュエータ27の軸25に接続
されている。アクチュエータ27は軸25を一方に押圧
するバネ部材26に抗す−るように配置されたベローズ
28とからなり、ベローズ28には過給圧力等を導入す
る孔29が設けられている。
The control valve 12 is configured to be rotatable around a shaft 13, and the shaft 13 is connected to a shaft 15 of an actuator 17 via an arm 14.
It is connected to the. The actuator 17 includes a spring member 16 that presses the shaft 15 in one direction, and a bellows 18 that is arranged to resist the spring member 16. The bellows 18 is provided with a hole 19 for introducing supercharging pressure or the like. Further, a bypass hole 21 is bored in the closed scroll 1o downstream of the control valve 12, and communicates with a bypass passage 20 leading to the turbine outlet. A bypass valve 22 is provided in the bypass hole 21.
is configured to be able to rotate around a shaft 23, and the shaft 23 is connected to a shaft 25 of an actuator 27 via an arm 24. The actuator 27 consists of a bellows 28 arranged so as to resist a spring member 26 that presses the shaft 25 in one direction, and the bellows 28 is provided with a hole 29 through which supercharging pressure or the like is introduced.

本発明は上記構成であり、制御弁12が穴11を閉鎖し
ている状態ではタービン人ロアの排気は開放スクロール
9を経てスクロール室4bへ集中する。
The present invention has the above configuration, and when the control valve 12 closes the hole 11, the exhaust gas from the turbine lower passes through the open scroll 9 and concentrates into the scroll chamber 4b.

第2図はスクロール、タービン羽根車部の拡大図である
。タービン羽根車1のスクロール室4bに対向した羽根
車入口部1bを隔壁先端位置5′より半径方向外側に伸
ばし、スクロール室4aに対向した羽根車入口部1aを
隔壁先端部5′に近接させた形状にしてあり、スクロー
ル室4bに集中した排気は第2図矢印Aのように全て羽
根車1へ流入し、スクロール室4aへの漏れ流れBが生
じても流れが羽根車入口部1bから1aへ流れる間に流
体がもっているエネルギをタービン羽根車に与えてしま
い、低速になった排気が漏れることになるので損失は小
さく、過給性能を大幅に向上させることができる。
FIG. 2 is an enlarged view of the scroll and turbine impeller. The impeller inlet part 1b of the turbine impeller 1, which faces the scroll chamber 4b, is extended radially outward from the partition wall tip position 5', and the impeller inlet part 1a, which faces the scroll chamber 4a, is brought close to the partition wall tip part 5'. Therefore, all the exhaust gas concentrated in the scroll chamber 4b flows into the impeller 1 as shown by the arrow A in FIG. Since the energy of the fluid is given to the turbine impeller while flowing to the turbine impeller, and the low-speed exhaust gas leaks, loss is small and supercharging performance can be greatly improved.

過給圧力をベローズ18の穴19に導入しておけばエン
ジン低速域で過給圧力が設定値に達しない場合には上記
のように制御弁12は閉鎖されており、出来だけエンジ
ン低速から過給効果を高めるように動作し、過給圧力が
十分高まるとベローズ18内の圧力に基づく力は、ばね
部材16の力より大きくなり、アクチュータ17の軸1
5を押圧し、制御弁12は穴11を開口し、排気はスク
ロール室4a、4bの両方からタービン羽根車1に流入
し、タービンスクロールの容量が大きくなり過給圧力が
過大になるのを防止することができる。
If the boost pressure is introduced into the hole 19 of the bellows 18, the control valve 12 will be closed as described above when the boost pressure does not reach the set value in the low engine speed range, and the control valve 12 will be closed as described above. When the supercharging pressure increases sufficiently, the force based on the pressure inside the bellows 18 becomes larger than the force of the spring member 16, and the shaft 1 of the actuator 17
5 is pressed, the control valve 12 opens the hole 11, and the exhaust gas flows into the turbine impeller 1 from both the scroll chambers 4a and 4b, thereby preventing the capacity of the turbine scroll from increasing and the supercharging pressure from becoming excessive. can do.

また、ベローズ28の穴29にも過給圧力を導入し、さ
らに過給圧力が過大になろうとした時にフクチュエータ
27が作動するようにバネ部材26のバネ力を調整して
おけば、バイパス弁22が開口することによりさらに広
い運転範囲で適正な過給圧力となるよう制御できる。
In addition, by introducing supercharging pressure into the hole 29 of the bellows 28 and adjusting the spring force of the spring member 26 so that the futurator 27 operates when the supercharging pressure is about to become excessive, the bypass valve By opening 22, it is possible to control the boost pressure to an appropriate level over a wider operating range.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればタービンスクロー
ルの内部を隔壁によって二つのスクロール室に分割し、
エンジンの運転状態に応じてスクロール室を流れる排気
を制御し、特にエンジン低速回転域で一方のスクロール
室のみを使用した場合にもう一方のスクロール室への漏
れ流れによる損失を大幅に低減できるだめ、エンジン低
速域から十分な過給圧力が得られ、広い運転範囲で良好
な走向性能と燃費の改善が得られる効果がある。
As explained above, according to the present invention, the inside of the turbine scroll is divided into two scroll chambers by the partition wall,
The exhaust gas flowing through the scroll chamber is controlled according to the engine operating condition, and when only one scroll chamber is used in the low engine speed range, losses due to leakage to the other scroll chamber can be significantly reduced. Sufficient boost pressure can be obtained from the low engine speed range, resulting in good running performance and improved fuel efficiency over a wide operating range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す要部断面図、第2図は
第1図のスクロール及びタービン羽根車の拡大断面図、
第3図は従来のタービンの要部断面図である。 1・・・タービン羽根車、la、lb・・・タービン羽
根車入口部、4・・・タービンスクロール、4a、4b
・・・スクロール室、5・・・隔壁、12・・・制御弁
、22・・・バイパス弁。
FIG. 1 is a sectional view of essential parts showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the scroll and turbine impeller shown in FIG. 1,
FIG. 3 is a sectional view of a main part of a conventional turbine. DESCRIPTION OF SYMBOLS 1... Turbine impeller, la, lb... Turbine impeller inlet part, 4... Turbine scroll, 4a, 4b
...Scroll chamber, 5...Partition wall, 12...Control valve, 22...Bypass valve.

Claims (1)

【特許請求の範囲】[Claims] 1、タービンとコンプレッサを同一軸上に固定配置した
排気タービン過給機において、タービンのスクロール内
部を隔壁によって軸方向に二つのスクロール室に分割し
て該隔壁の先端部とタービンケーシングの側壁部で二つ
のノズル部を構成し、この二つのノズル部に対面するタ
ービン羽根車入口部のうち片側のノズル部に対面したタ
ービン羽根車入口部を隔壁先端位置よりも半径方向外側
へ伸びしてノズル内部へ挿入させ、エンジンの運転状態
に応じて前記のタービン羽根車入口部を伸ばしていない
側のノズル部に通じるスクロール室の流量を制御する手
段を具えてなることを特徴とする排気タービン過給機。
1. In an exhaust turbine supercharger in which a turbine and a compressor are fixedly arranged on the same axis, the inside of the scroll of the turbine is divided into two scroll chambers in the axial direction by a partition, and the tip of the partition and the side wall of the turbine casing are separated. Two nozzle parts are configured, and among the turbine impeller inlet parts facing the two nozzle parts, the turbine impeller inlet part facing one nozzle part extends radially outward from the partition wall tip position to form the inside of the nozzle. An exhaust turbine supercharger, characterized in that the exhaust turbine supercharger is equipped with means for controlling the flow rate of the scroll chamber that is inserted into the scroll chamber and communicates with the nozzle section on the side where the turbine impeller inlet section is not extended, depending on the operating state of the engine. .
JP62134881A 1987-06-01 1987-06-01 Exhaust gas turbine supercharger Pending JPS63302134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62134881A JPS63302134A (en) 1987-06-01 1987-06-01 Exhaust gas turbine supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62134881A JPS63302134A (en) 1987-06-01 1987-06-01 Exhaust gas turbine supercharger

Publications (1)

Publication Number Publication Date
JPS63302134A true JPS63302134A (en) 1988-12-09

Family

ID=15138684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62134881A Pending JPS63302134A (en) 1987-06-01 1987-06-01 Exhaust gas turbine supercharger

Country Status (1)

Country Link
JP (1) JPS63302134A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023894A (en) * 2005-07-15 2007-02-01 Toyota Motor Corp Turbocharger
JP2007192172A (en) * 2006-01-20 2007-08-02 Toyota Motor Corp Turbocharger
WO2012077359A1 (en) 2010-12-07 2012-06-14 三菱重工業株式会社 Radial turbine
CN102536433A (en) * 2012-01-11 2012-07-04 康跃科技股份有限公司 Staged flow-adjustable turbine shell
WO2012132514A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Exhaust-heat recovery power generation device
WO2013011842A1 (en) 2011-07-20 2013-01-24 三菱重工業株式会社 Multi-pressure radial turbine system
JP2013024139A (en) * 2011-07-21 2013-02-04 Denso Corp Exhaust device for internal combustion engine
JP2013130133A (en) * 2011-12-22 2013-07-04 Denso Corp Exhaust device of internal combustion engine
EP2669473A1 (en) * 2011-01-27 2013-12-04 Mitsubishi Heavy Industries, Ltd. Radial turbine
US10662904B2 (en) 2018-03-30 2020-05-26 Deere & Company Exhaust manifold
US11073076B2 (en) 2018-03-30 2021-07-27 Deere & Company Exhaust manifold

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023894A (en) * 2005-07-15 2007-02-01 Toyota Motor Corp Turbocharger
JP2007192172A (en) * 2006-01-20 2007-08-02 Toyota Motor Corp Turbocharger
WO2012077359A1 (en) 2010-12-07 2012-06-14 三菱重工業株式会社 Radial turbine
JP2012122377A (en) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd Radial turbine
CN103052763A (en) * 2010-12-07 2013-04-17 三菱重工业株式会社 Radial turbine
EP2669473A1 (en) * 2011-01-27 2013-12-04 Mitsubishi Heavy Industries, Ltd. Radial turbine
EP2669473A4 (en) * 2011-01-27 2014-10-08 Mitsubishi Heavy Ind Ltd Radial turbine
US8845278B2 (en) 2011-01-27 2014-09-30 Mitsubishi Heavy Industries, Ltd. Radial turbine
WO2012132514A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Exhaust-heat recovery power generation device
JP2012215124A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Exhaust-heat recovery power generation device
US9500205B2 (en) 2011-07-20 2016-11-22 Mitsubishi Heavy Industries, Ltd. Multi-pressure radial turbine system
WO2013011842A1 (en) 2011-07-20 2013-01-24 三菱重工業株式会社 Multi-pressure radial turbine system
JP2013024139A (en) * 2011-07-21 2013-02-04 Denso Corp Exhaust device for internal combustion engine
JP2013130133A (en) * 2011-12-22 2013-07-04 Denso Corp Exhaust device of internal combustion engine
WO2013104090A1 (en) * 2012-01-11 2013-07-18 Wang Hang Staged variable flow turbine housing
CN102536433A (en) * 2012-01-11 2012-07-04 康跃科技股份有限公司 Staged flow-adjustable turbine shell
US10662904B2 (en) 2018-03-30 2020-05-26 Deere & Company Exhaust manifold
US11073076B2 (en) 2018-03-30 2021-07-27 Deere & Company Exhaust manifold
US11384716B2 (en) 2018-03-30 2022-07-12 Deere & Company Exhaust manifold
US11486297B2 (en) 2018-03-30 2022-11-01 Deere & Company Exhaust manifold

Similar Documents

Publication Publication Date Title
US5092126A (en) Twin scroll turbine
US5857337A (en) Turbocharger
US4776168A (en) Variable geometry turbocharger turbine
US4177006A (en) Turbocharger control
US4512714A (en) Variable flow turbine
JP4354257B2 (en) Variable form turbine
US20090151350A1 (en) Variable Flow Turbocharger
US5584181A (en) Waste gate structure of a turbocharger
JP4005025B2 (en) Controlled turbocharger with integrated bypass
JPH0192531A (en) Variable volume exhaust turbine supercharger
JPS63302134A (en) Exhaust gas turbine supercharger
JPS58138222A (en) Supercharger of exhaust turbine
JPS63117124A (en) Engine with twin scroll turbo-charger
JPS6146420A (en) Turbosupercharger
JP2528317B2 (en) Pure fluid type variable capacity turbocharger
JPH1182036A (en) Exhaust turbo-charger
JPS6229723A (en) Turbosupercharger
JPS61160526A (en) Variable capacity turbocharger
JPH0444088B2 (en)
JPS63215829A (en) Exhaust turbo-supercharger
JPS60212623A (en) Exhaust turbo-supercharger
JPS62251422A (en) Exhaust turbine supercharger
JPS61108830A (en) Exhaust turbine type supercharger
JPH0758041B2 (en) Variable capacity nozzleless radial bottle
JPS6019918A (en) Exhaust turbine in turbo-supercharger