JPS63300576A - Color sensor - Google Patents

Color sensor

Info

Publication number
JPS63300576A
JPS63300576A JP62137188A JP13718887A JPS63300576A JP S63300576 A JPS63300576 A JP S63300576A JP 62137188 A JP62137188 A JP 62137188A JP 13718887 A JP13718887 A JP 13718887A JP S63300576 A JPS63300576 A JP S63300576A
Authority
JP
Japan
Prior art keywords
conductive material
organic dye
light
color sensor
dye layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62137188A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Kurata
哲之 蔵田
Makoto Tsunoda
誠 角田
Yuji Hizuka
裕至 肥塚
Torahiko Ando
虎彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62137188A priority Critical patent/JPS63300576A/en
Publication of JPS63300576A publication Critical patent/JPS63300576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To simplify the manufacture of a color sensor and to improve the stability of the operation by inserting first, second organic colorant layers containing specific skeleton between light transmissible first and second conductive materials and further a light transmissible third conductive material between the first and second organic colorant layers. CONSTITUTION:A first organic colorant layer 2 inserted between first and second conductive materials 1 and 5 contains at least tetra (4-pyridyl) porphyrin skeleton. A second organic colorant layer 4 contains at least phthalocyanine skeleton. Further, the working functions of the materials 1, 5 are larger than that of a transmissible third conductive material 3 inserted between first and second organic colorant layers 2 and 4. The first and second layers respectively have light absorption peaks at short and long wavelength sides, and further have N-and P-type semiconductor properties. Both have highly efficient photoelectric converting function, and an anisotropic junction is formed at the side in which the lights of the colorant layers are incident. A bias can be eliminated, and substantially all visible light wavelength bands can be identified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はカラーセンサに関し、特に、光の波長に対す
る感度の異なる2つのフォトダイオードを作り、それぞ
れのフォトダイオードの光出力電流を電気回路を用いて
信号処理することにより光の波長に対応する出力を得る
ことのできるカラーセンサに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a color sensor, and in particular, the present invention relates to a color sensor, and in particular, it creates two photodiodes with different sensitivities to light wavelengths, and calculates the optical output current of each photodiode using an electric circuit. This invention relates to a color sensor that can obtain an output corresponding to the wavelength of light through signal processing.

〔従来の技術〕[Conventional technology]

従来、このようなカラーセンサとしては、例えば半導体
を第10図のように配したものがあげられている(鈴木
忠二:エレクトロニクス、昭和57年2月号、181−
184頁)。
Conventionally, such a color sensor has, for example, one in which semiconductors are arranged as shown in Figure 10 (Chuji Suzuki: Electronics, February 1981 issue, 181-
184 pages).

第10図はこの半導体カラーセンサを示す構造図(a)
、および等価回路図(b)である。このセンサでは、p
型シリコン基板54の上にn型層55.さらにp型層5
6を作り、電極51.52.および53を設けている。
Figure 10 is a structural diagram (a) showing this semiconductor color sensor.
, and an equivalent circuit diagram (b). In this sensor, p
An n-type layer 55. is formed on the silicon substrate 54. Furthermore, p-type layer 5
6 and electrodes 51.52. and 53 are provided.

まず、短波長光は上部のpn接合で吸収され、伽)に示
すフォトダイオードPD8の光電流となる0次に長波長
光は下部のnp接合で吸収され、フォトダイオードPD
tの光電流となる。この結果、(b)に示すような接続
として2つのフォトダイオード短絡電流1 +SC、I
 、scが得られ、この比1 、sc / I 、sc
の値が入射光の波長に対応する。また、ここに用いられ
るp型またはn型土4体としては、単結晶シリコン、ア
モルファスシリコン、CdS、PbSなどの無機の半導
体が用いられていた。
First, the short wavelength light is absorbed by the upper pn junction, and the 0th-order long wavelength light is absorbed by the lower np junction, resulting in the photocurrent of photodiode PD8 shown in Fig.
The photocurrent becomes t. As a result, the short circuit current of the two photodiodes is 1 +SC, I as shown in (b).
, sc is obtained, and this ratio 1, sc/I, sc
The value of corresponds to the wavelength of the incident light. Furthermore, as the four p-type or n-type soils used here, inorganic semiconductors such as single crystal silicon, amorphous silicon, CdS, and PbS have been used.

一方、有機半導体材料を用いたカラーセンサも提案され
ている(K、クドウおよびT、モリイズミ(K、Kud
o and T、Moriizumi)  ;アプライ
ド フィジクス レターズ、第39巻(8)  (Ap
pl、Phys。
On the other hand, color sensors using organic semiconductor materials have also been proposed (K, Kudou and T, Mori Izumi (K, Kud).
o and T, Moriizumi); Applied Physics Letters, Volume 39 (8) (Ap
pl, Phys.

Lett、、39. (8))  609頁(1981
) )  、これは、ITO基板上に酸化亜鉛膜を設け
、その上にメロシアニン色素およびローダミンBの有機
膜を設け、さらにアルミニウム電極を設けてなるもので
あり、アルミニウム電極に対して+〇、45Vの電圧を
印加したときに素子に流れる電流が照射光の波長に依存
するというものである。
Lett,,39. (8)) 609 pages (1981
)) This is made by providing a zinc oxide film on an ITO substrate, providing an organic film of merocyanine dye and rhodamine B on it, and further providing an aluminum electrode. The current that flows through the element when a voltage of 1 is applied depends on the wavelength of the irradiated light.

しかしながら、上記した従来のカラーセンサはいずれも
欠点を有している。まず、前者では材料に無機の半導体
を用いているため、光の吸収波長域がブロードであり、
センサにフィルタを用いねばならないことが多く、また
無機半導体ではセンサ製造のための工程も複雑なものと
なり、高価なものとなっていた。またこれに対し、有機
材料を用いるセンサでは製造コストは安価なものとなる
が、4現在提案されている後者のカラーセンサでは、セ
ンサにバイアスを印加する必要があること、最も光起電
流が微妙に変化する領域で使用されることから、センサ
の動作の安定性に問題があり、またセンサの識別可能波
長域は480nm(ローダミンBの吸収極大波長)から
580nm(メロシアニン色素の吸収極大波長)までで
あり、全可視光(大体400nm〜650nm)識別と
いう観点で不十分であった。
However, all of the conventional color sensors described above have drawbacks. First, because the former uses an inorganic semiconductor as a material, the absorption wavelength range of light is broad;
In many cases, a filter must be used in the sensor, and the process for manufacturing the sensor with inorganic semiconductors is complicated and expensive. In contrast, sensors using organic materials are cheaper to manufacture, but the latter color sensor currently being proposed requires the application of a bias to the sensor, and the photovoltaic current is the most delicate. Since the sensor is used in a region that changes in temperature, there is a problem with the stability of the sensor's operation, and the wavelength range that the sensor can identify is from 480 nm (maximum absorption wavelength of rhodamine B) to 580 nm (maximum absorption wavelength of merocyanine dye). Therefore, it was insufficient in terms of discrimination of all visible light (approximately 400 nm to 650 nm).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のカラーセンサは以上のように構成されているので
、無機材料を用いる場合には製造工程が複雑で高価とな
り、また有機材料を用いる場合には動作の安定性、全可
視光識別という点で不十分であるなどの問題点があった
Conventional color sensors are constructed as described above, so if inorganic materials are used, the manufacturing process is complicated and expensive, and if organic materials are used, there are problems in terms of operational stability and full visible light discrimination. There were problems such as insufficient.

この発明は上記のような問題点を解消するためになされ
たもので、製造工程が簡単でしかも動作安定性に優れ、
全可視光に対し広い波長域に感度を有するカラーセンサ
を得ることを目的とする。
This invention was made to solve the above problems, and has a simple manufacturing process and excellent operational stability.
The objective is to obtain a color sensor that is sensitive to a wide wavelength range for all visible light.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るカラーセンサは、少なくとも一方が透光性
を有する第1.第2の4電材料の間に少な(ともテトラ
(4−ピリジル)ポルフィリン骨格を含む第1の有機色
素層および少なくともフタロシアニン骨格を含む第2の
有機色素層を挿入し、さらに該第1.第2の有機色素層
の間に透光性を有する第3の導電材料を挿入し、上記第
1ないし第3の導電材料を上記各有機色素層の光が入射
する側の面とは異方接合を形成し、該光入射面の反対側
の面とは等方接合を形成するような仕事関数を有する材
料としたものである。
The color sensor according to the present invention includes a first color sensor, at least one of which has translucency. A first organic dye layer containing a small amount of tetra(4-pyridyl)porphyrin skeleton and a second organic dye layer containing at least a phthalocyanine skeleton are inserted between the second tetraelectric material; A third conductive material having translucency is inserted between the two organic dye layers, and the first to third conductive materials are anisotropically bonded to the surface of each organic dye layer on which light enters. , and is made of a material having a work function such that it forms an isotropic junction with the surface opposite to the light incident surface.

〔作用〕[Effect]

この発明においては、光電変換材料にそれぞれテトラ(
4−ピリジル)ポルフィリン、フタロシアニンを含む2
つの有機色素層を用いることにより、各有機色素層がそ
れぞれ短波長側、長波長側に光吸収ピークを持ち、しか
もn型、p型半導体的性質を有することから、さらにい
ずれも高効率の光電変換機能を有し、この各有機色素層
のp型かn型かの特性と各導電材料の仕事関数の大小と
をうま(組合せて各有機色素層の光が入射する側に異方
接合を形成することにより、バイアス不用となり動作安
定性が向上し、450〜600nmのほぼ全可視光波長
域にわたり識別が可能となる。
In this invention, each photoelectric conversion material has tetra(
2 containing 4-pyridyl) porphyrin and phthalocyanine
By using two organic dye layers, each organic dye layer has light absorption peaks on the short wavelength side and long wavelength side, respectively, and also has n-type and p-type semiconducting properties. It has a conversion function, and adjusts the p-type or n-type characteristics of each organic dye layer and the size of the work function of each conductive material (combining them to form an anisotropic junction on the light incident side of each organic dye layer). By forming such a structure, a bias is not required, operational stability is improved, and discrimination can be performed over almost the entire visible light wavelength range of 450 to 600 nm.

〔実施例〕 以下、本発明の一実施例を図について説明する。〔Example〕 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例によるカラーセンサの素子断
面図であり、図において、■は第1の導電材料、2は第
1の有機色素層、3は第3の導電材料、4は第2の有機
色素層、5は第2の4電材料である。
FIG. 1 is a cross-sectional view of a color sensor according to an embodiment of the present invention. In the figure, ■ is a first conductive material, 2 is a first organic dye layer, 3 is a third conductive material, and 4 is a The second organic dye layer 5 is a second tetraelectric material.

この素子では、第1の有機色素層2が少なくともテトラ
(4−ピリジル)ポルフィリン骨格を含み、第2の有機
色素層4が少なくともフタロシアニン骨格を含み、しか
も第1.第2の導電材料1゜5の仕事関数は第3の導電
材料3の仕事関数より大きい。また、第1の有機色素層
2が少なくともフタロシアニン骨格を含む場合には、第
2の有機色素層4は少なくともテトラ(4−ピリジル)
ポルフィリン骨格を含み、しかも第1.第2の導電材料
1.5の仕事関数は第3の導電材料3の仕事関数より小
さい。
In this device, the first organic dye layer 2 contains at least a tetra(4-pyridyl)porphyrin skeleton, the second organic dye layer 4 contains at least a phthalocyanine skeleton, and the first... The work function of the second conductive material 1°5 is greater than the work function of the third conductive material 3. Further, when the first organic dye layer 2 contains at least a phthalocyanine skeleton, the second organic dye layer 4 contains at least a tetra(4-pyridyl) skeleton.
It contains a porphyrin skeleton, and the first. The work function of the second conductive material 1.5 is smaller than the work function of the third conductive material 3.

さらに詳しく説明すると、本実施例で用いるテトラ(4
−ピリジル)ポルフィリンは、可視光短波長域(400
〜440nm)に光吸収ピークを有し、n型半導体的性
’It(4−ピリジル基存在の効果による)を示し、し
かも高効率の光電変換特性を示す色素であり、例えば5
,10.15.20−テトラ(4−ピリジル)ポルフィ
リンや、5.10.15.20−テトラ(4−ピリジル
)ポルフィリンのFe、Co、Ni、Zn’、Cu、M
gなどの金属錯体が単独あるいは混合、もしくは高分子
マトリックス中に化学的あるいは物理的手法でトラップ
して用いられる。
To explain in more detail, tetra (4
-pyridyl) porphyrins are visible light in the short wavelength region (400
It is a dye that has a light absorption peak at 440 nm), exhibits n-type semiconducting properties (due to the effect of the presence of 4-pyridyl group), and exhibits highly efficient photoelectric conversion properties.
, 10.15.20-tetra(4-pyridyl)porphyrin and 5.10.15.20-tetra(4-pyridyl)porphyrin of Fe, Co, Ni, Zn', Cu, M
Metal complexes such as g are used alone, in combination, or by being trapped in a polymer matrix by chemical or physical methods.

またフタロシアニンは、テトラ(4−ピリジル)ポルフ
ィリンとは逆に可視光長波長域(550〜700nm)
に光吸収ピークを有し、p型半導体的性質を示し、しか
も高効率の光電変換特性を示す色素であり、例えばメタ
ルフリーのフタロシアニンや、フタロシアニンのFe、
Co、Ni、Zn、Cu、Mg、Pb、Mn、Agなど
の金属錯体が単独あるいは混合、もしくは高分子マトリ
ックス中に化学的あるいは物理的手法でトラップして用
いられる。
In addition, phthalocyanine, contrary to tetra(4-pyridyl)porphyrin, has a long wavelength range of visible light (550 to 700 nm).
It is a dye that has a light absorption peak in
Metal complexes such as Co, Ni, Zn, Cu, Mg, Pb, Mn, and Ag are used alone or in combination, or by being trapped in a polymer matrix by a chemical or physical method.

また、これらの有機色素層の形成には、通常のキャスト
法、スピンコード法、真空W’tr法など一般に行なわ
れている方法がそのまま用いられる。
Further, for forming these organic dye layers, commonly used methods such as the usual casting method, spin code method, vacuum W'tr method, etc. can be used as they are.

また、第1図において、第1の有機色素層2の方がテト
ラ(4−ピリジル)ポルフィリン骨格を含む場合には、
第1.第2の導電材料1. 5の仕事関数が第3の導電
材料3の仕事関数より大きく、第1の導電材料1と第1
の有機色素層2.および第3の導電材料3と第2の有機
色素層4がいずれも異方接合を形成し、第3の導電材料
3と第1の有機色素層2.および第2の導電材料5と第
2の有機色素層4がいずれも等方接合を形成するように
しなければならない。この条件を満足する第1゜第2の
導電材料としては、例えばAu、Cr、Pt、Ni、T
Iなどの金属や、アクセプタをドープした導電性高分子
例えばポリアセチレン、ポリピロール、ポリチオフェン
などの中から単独にあるいは組合せて用いられ、第3の
導電材料としては、AI、Inなどの金属や、S n 
Oz 、  I T O+ZnOなどの金属酸化物が用
いられる。
In addition, in FIG. 1, when the first organic dye layer 2 contains a tetra(4-pyridyl)porphyrin skeleton,
1st. Second conductive material 1. 5 is larger than the work function of the third conductive material 3, and the first conductive material 1 and the first
Organic dye layer 2. The third conductive material 3 and the second organic dye layer 4 both form an anisotropic junction, and the third conductive material 3 and the first organic dye layer 2. The second conductive material 5 and the second organic dye layer 4 must both form an isotropic junction. Examples of the first and second conductive materials that satisfy this condition include Au, Cr, Pt, Ni, and T.
Metals such as I, conductive polymers doped with acceptors such as polyacetylene, polypyrrole, polythiophene, etc. are used singly or in combination, and as the third conductive material, metals such as AI and In, and conductive polymers doped with acceptors are used.
Metal oxides such as Oz, ITO+ZnO, etc. are used.

また、これとは逆に、第1図において、第1の有機色素
層2の方がフタロシアニン骨格を含む場合には、第1.
第2の4電材料1,5の仕事関数が第3の導電材料3の
仕事関数より小さく、第1の導電材料1と第1の有機色
素層2.および第3の導電材料3と第2の有機色素N4
がいずれも異方接合を形成し、第3の導電材料3と第1
の有機色素層2.および第2の導電材料5と第2の有機
色素層4がいずれも等方接合を形成するようにしなけれ
ばならない、この条件を満足する第1.第2の導電材料
としては、例えばAI、Inなどの金属や、Snow 
、ITo、ZnOなどの金属酸化物や、ドナーをドープ
した導電性高分子例えばポリアセチレン、ポリピロール
、ポリチオフェンなどの中から単独にあるいは組合せて
用いられ、第3の導電材料としては、Au、Cr、Pt
、Nt、’rtなどの金属が用いられる。
Conversely, in FIG. 1, when the first organic dye layer 2 contains a phthalocyanine skeleton, the first organic dye layer 2 contains a phthalocyanine skeleton.
The work functions of the second tetraelectric materials 1 and 5 are smaller than the work functions of the third conductive material 3, and the first conductive material 1 and the first organic dye layer 2. and third conductive material 3 and second organic dye N4
form an anisotropic junction, and the third conductive material 3 and the first
Organic dye layer 2. The second conductive material 5 and the second organic dye layer 4 must both form an isotropic junction. Examples of the second conductive material include metals such as AI and In, and Snow
, ITo, ZnO and other metal oxides, and donor-doped conductive polymers such as polyacetylene, polypyrrole, polythiophene, etc., and the third conductive material is Au, Cr, Pt, etc.
, Nt, 'rt, and the like are used.

なお、第1図において、センサ上の光照射が第1の導電
材料1側から行なわれる場合には第1の導電材料1が、
第2の導電材料5側から行なわれる場合には第2の導電
材料5が、それぞれ透光性を有するものでなければなら
ないことは言うまでもない。
In addition, in FIG. 1, when the light irradiation on the sensor is performed from the first conductive material 1 side, the first conductive material 1
Needless to say, in the case of performing from the second conductive material 5 side, each second conductive material 5 must have light-transmitting properties.

次に本実施例によるカラーセンサの動作原理を、第1の
有機色素層2の方がテトラ(4−ピリジル)ポルフィリ
ン骨格を含み、光照射が第1の4電材料1側から行なわ
れる場合を例にとって説明する。
Next, the operating principle of the color sensor according to this embodiment will be explained in the case where the first organic dye layer 2 contains a tetra(4-pyridyl)porphyrin skeleton and light irradiation is performed from the first tetraelectric material 1 side. Let me explain using an example.

第1.第2の有機色素層2,4はそれぞれn型。1st. The second organic dye layers 2 and 4 are each of n-type.

p型であり、その光電変換スペクトルはそれぞれ波長λ
1.λ2に極大を持ち、そのスペクトルはお互いに重な
らないがそのすそ領域で接しているものとする。この様
子を第2図に示す。
It is p-type, and its photoelectric conversion spectrum is each wavelength λ
1. It is assumed that the spectra have a maximum at λ2, and their spectra do not overlap with each other, but are in contact at their base regions. This situation is shown in FIG.

このように素子を構成したとき、本素子は従来より提案
されている有機光電変換素子を直列に配置したものであ
ることがわかる。すなわち第1゜第3の導電材料1,3
と第1の有機色素層2からなる部分は波長λ1の光に対
して第1の導電材料1側に負の光起電力を生ずる。また
、第2.第3の導電材料5.3と第2の有機色素層4か
らなる部分は波長λ2の光に対して第2の導電材料5側
に正の光起電力を生ずる。このとき、光は第1の導電材
料1側から照射されるが、波長λ8の光が入射したとき
第1の有機色素層2はこれを感じることなく透過し、は
とんど減光することなく第2の有機色素層4に到達する
。従って、波長λ、からλ2まで光量一定のちとに連続
的に変化する入射光に対して第3の導電材料3を基準に
とった第1、第2の導電材料1.5上に現れる光起電力
の様子は、第3図のようになる((a)は第1導電材料
側、 (blは第2導電材料側)。
When the device is configured in this way, it can be seen that the device is one in which conventionally proposed organic photoelectric conversion devices are arranged in series. That is, the first and third conductive materials 1 and 3
The portion consisting of the first organic dye layer 2 and the first organic dye layer 2 generates a negative photovoltaic force on the first conductive material 1 side with respect to light of wavelength λ1. Also, the second. The portion consisting of the third conductive material 5.3 and the second organic dye layer 4 generates a positive photovoltaic force on the second conductive material 5 side with respect to light of wavelength λ2. At this time, light is irradiated from the first conductive material 1 side, but when the light of wavelength λ8 is incident, the first organic dye layer 2 passes through without sensing it, and the light is almost attenuated. The second organic dye layer 4 is reached without any problems. Therefore, for incident light that changes continuously after the light intensity is constant from wavelength λ to λ2, the photovoltaic material appearing on the first and second conductive materials 1.5 with respect to the third conductive material 3 will be The state of the electric power is as shown in Fig. 3 ((a) is the first conductive material side, (bl is the second conductive material side).

そこで、第3の導電材料3を接地し、第1の導電材料1
および第2の導電材料5からの出力を対数圧縮回路に導
き、その後オペアンプ増幅器の(+)  (−)入力に
入力すれば、第4図のような波長特性を持つ出力が得ら
れ、これによって入射光の波長をλ、からλ2の範囲で
特定することが可能となる。
Therefore, the third conductive material 3 is grounded, and the first conductive material 1
If the output from the second conductive material 5 is led to a logarithmic compression circuit and then input to the (+) and (-) inputs of an operational amplifier amplifier, an output having wavelength characteristics as shown in Fig. 4 is obtained. It becomes possible to specify the wavelength of the incident light in the range from λ to λ2.

この動作原理により、安価な有機材料系であるn型ポル
フィリン系色素とp型フタロシアニン系色素とを用いて
、実動作可能でしかも高感度で信頼性、安定性などに優
れた特性を示すカラーセンサが可能となった。
Based on this operating principle, a color sensor that uses inexpensive organic materials, n-type porphyrin dyes and p-type phthalocyanine dyes, is capable of actual operation, and has excellent characteristics such as high sensitivity, reliability, and stability. became possible.

なお、上記動作原理において、第1の有機色素N2の方
がフタロシアニン骨格を含む場合も、原理自身は上記と
同様であり、光起電力の出力の極性が反転するのみであ
る。
Note that in the above operating principle, even when the first organic dye N2 contains a phthalocyanine skeleton, the principle itself is the same as above, and only the polarity of the output of photovoltaic force is reversed.

以下、具体例にてさらに詳細に説明する。A more detailed explanation will be given below using specific examples.

具体例1 第5図に示すように、Cr−Au15を真空蒸着(厚さ
それぞれ800人と1000人)した青板ガラス10基
板上に、フタロシアニンのNttW体14全14000
人の厚さで真空蒸着し、その上にスパッタリング法で3
 n Oz膜13 (面抵抗約200Ω/口)を形成し
、次いで5.10.15.20−テトラ(4−ピリジル
)ポルフィリンのZn錯体12を約700人の厚さで真
空蒸着し、さらにその上にAu1lを透過率約70%(
at 550nm)になるように真空蒸着して、カラー
センサ1を得た。
Specific Example 1 As shown in FIG. 5, a total of 14,000 phthalocyanine NttW bodies 14 were deposited on a soda-lime glass 10 substrate on which Cr-Au 15 was vacuum-deposited (thickness: 800 and 1,000, respectively).
Vacuum-deposited to a thickness of about 100 yen, and then sputtered 3 layers on top.
A Zn complex 12 of 5.10.15.20-tetra(4-pyridyl)porphyrin is vacuum-deposited to a thickness of about 700 mm, and then Transmittance of Au1L on top is about 70% (
At 550 nm), color sensor 1 was obtained.

具体例2 第6図に示すように、具体例1で用いた基板上に、電解
重合法でCl 04− ドープしたポリピロール膜26
を約3000人の厚さで設け(H,コエヅカ()1.K
oezuka )等;ジャーナル オブ アプライド 
フィジックス、第54巻、 2511頁(J、Appl
Phys、、54.2511 (1983) ) 、こ
の上にメタルフリーのフタロシアニン24を約1500
人の厚さで真空蒸着し、その上にAI  (Alz O
s >23を透過率約60%(at 550nm)にな
るように真空蒸着し、次いで5.10.15.20−テ
トラ(4−ピリジル)ポルフィリン22のクロロホルム
溶液をスピンコード法により膜厚約1000人で形成し
、さらにその上にAu21を透過率約70%(at 5
50rtm)になるように真空蒸着して、カラーセンサ
2を得た。
Concrete Example 2 As shown in FIG. 6, a polypyrrole film 26 doped with Cl 04- by electrolytic polymerization was formed on the substrate used in Concrete Example 1.
Established with a thickness of about 3,000 people (H, Koezuka () 1.K
oezuka ) et al; Journal of Applied
Physics, Vol. 54, p. 2511 (J, Appl.
Phys, 54.2511 (1983)), and on top of this, approximately 1500% of metal-free phthalocyanine 24 is added.
Vacuum evaporated to the thickness of a person, and then coated with AI (AlzO).
s>23 was vacuum evaporated to a transmittance of about 60% (at 550 nm), and then a chloroform solution of 5.10.15.20-tetra(4-pyridyl)porphyrin 22 was formed into a film with a thickness of about 1000 nm using a spin code method. Au21 is formed on top of it with a transmittance of about 70% (at 5
50 rpm) to obtain a color sensor 2.

具体例3 第7図に示すように、ITO基板10.35C面抵抗5
0Ω/口)上に、ポリ塩化ビニル(PVC)と5.10
.15.20−テトラ(4−ピリジル)ポルフィリン(
重量比で30ニア0)34のテトラヒドロフラン溶液を
スピンコード法により膜厚約2000人で形成し、その
上にAu33を透過率約70%(at 550nse)
になるように真空蒸着し、次いでメタルフリーのフタロ
シアニン32を約1000人の厚さで真空蒸着し、さら
にA131を透過率約60%(at 550nm)にな
るように真空蒸着して、カラーセンサ3を得た。
Specific example 3 As shown in FIG. 7, ITO substrate 10.35C surface resistance 5
0Ω/mouth) with polyvinyl chloride (PVC) and 5.10
.. 15.20-tetra(4-pyridyl)porphyrin (
A tetrahydrofuran solution with a weight ratio of 30nse (0)34 was formed to a film thickness of approximately 2000 nm using the spin code method, and Au33 was deposited on top of it at a transmittance of approximately 70% (at 550nse).
The color sensor 3 I got it.

以上の具体例1ないし3で得たカラーセンサ1ないし3
を第8図に示すように接続し、センサの上方からそれぞ
れ光照射を行なった。光照射はタングステンランプを用
い、分光器にコン社製:モノクロメータ G−250)
を通して、波長域400nm〜650nmで行なった。
Color sensors 1 to 3 obtained in the above specific examples 1 to 3
were connected as shown in FIG. 8, and light was irradiated from above each sensor. A tungsten lamp was used for light irradiation, and a monochromator G-250 (manufactured by Kon Co., Ltd.) was used as a spectrometer.
The experiment was carried out in the wavelength range of 400 nm to 650 nm.

各センサについて、第8図の対数圧縮回路およびオペア
ンプ6のゲインを8周節したところ、いずれのセンサも
光照射波長域が大体450nm〜600nmの範囲では
、第9図に示すように良好な波長・出力電圧特性が得ら
れた。
For each sensor, when the gain of the logarithmic compression circuit and operational amplifier 6 shown in Fig. 8 was adjusted 8 times, it was found that all sensors had good wavelengths in the light irradiation wavelength range of approximately 450 nm to 600 nm, as shown in Fig. 9.・Output voltage characteristics were obtained.

また、カラーセンサ1ないし3をそれぞれシリコーン系
樹脂でモールドし、上記特性の経時変化を測定した。い
ずれのカラーセンサも、少なくとも4ケ月間はほとんど
経時変化は認められなかった。
In addition, color sensors 1 to 3 were each molded with silicone resin, and changes in the above characteristics over time were measured. Almost no change over time was observed in any of the color sensors for at least 4 months.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、第1.第2の導電材
料の間にテトラ(4−ピリジル)ポルフィリン骨格を含
む第1の有機色素層およびフタロシアニン骨格を含む第
2の有機色素層を挿入し、さらに該第1.第2の有機色
素層の間に第3の導電材料を挿入し、上記第1ないし第
3の4電材料を上記各有機色素層の光が入射する側の面
と異方接合を形成するような仕事関数を有する材料とし
たので、それぞれ短波長側、長波長側に光吸収ピークを
持ち、いずれも高効率の充電変換機能を有する2つの光
電変換層を構成することができ、バイアス不用で動作安
定性などに優れ、450〜600nmのほぼ全可視光波
長域にわたり識別が可能なカラーセンサが安価に得られ
る効果がある。
As described above, according to the present invention, the first. A first organic dye layer containing a tetra(4-pyridyl)porphyrin skeleton and a second organic dye layer containing a phthalocyanine skeleton are inserted between the second conductive material; A third conductive material is inserted between the second organic dye layers, and the first to third quaternary materials are arranged to form an anisotropic junction with the light incident side surface of each of the organic dye layers. Since the material has a work function, it is possible to construct two photoelectric conversion layers that have light absorption peaks on the short wavelength side and long wavelength side, respectively, and both have a highly efficient charge conversion function, and do not require a bias. This has the advantage that a color sensor that has excellent operational stability and can discriminate over almost the entire visible light wavelength range from 450 to 600 nm can be obtained at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるカラーセンサの素子断
面図、第2図は波長λ1.λ2に極大を持つ第1.第2
の有機色素層の光電変換スペクトルを示す図、第3図は
各有機色素層により発生する光起電カスベクトルを示す
図、第4図は本発明によるカラーセンサの出力特性を示
す図、第5図。 第6図、第7図はそれぞれ本発明の具体例1,2゜3に
より作成したカラーセンサの断面図、第8図は本発明の
一実施例によるカラーセンサの出力を取り出すための素
子接続図、第9図は本発明の一実施例によるカラーセン
サの波長・出力電圧特性を示す図、第10図は従来の半
導体カラーセンサを示す図である。 l・・・第1導電材料、2・・・第1有機色素層、3・
・・第3導電材料、4・・・第2有機色素層、5・・・
第2導電材料。 なお図中同一符号は同−又は相当部分を示す。
1 is a cross-sectional view of a color sensor according to an embodiment of the present invention, and FIG. 2 is a sectional view of a color sensor having a wavelength of λ1. The first one has a maximum at λ2. Second
FIG. 3 is a diagram showing the photovoltaic cass vector generated by each organic dye layer, FIG. 4 is a diagram showing the output characteristics of the color sensor according to the present invention, and FIG. figure. FIGS. 6 and 7 are cross-sectional views of color sensors prepared according to specific examples 1 and 2 of the present invention, and FIG. 8 is an element connection diagram for extracting the output of the color sensor according to an embodiment of the present invention. 9 is a diagram showing wavelength/output voltage characteristics of a color sensor according to an embodiment of the present invention, and FIG. 10 is a diagram showing a conventional semiconductor color sensor. l: first conductive material, 2: first organic dye layer, 3:
...Third conductive material, 4...Second organic dye layer, 5...
Second conductive material. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも一方が透光性を有する第1、第2の導
電材料の間に第1および第2の有機色素層が挿入され、
さらに該第1、第2の有機色素層の間に透光性を有する
第3の導電材料が挿入されてなるカラーセンサであって
、 上記第1の有機色素層が少なくともテトラ(4−ピリジ
ル)ポルフィリン骨格を含み、第2の有機色素層が少な
くともフタロシアニン骨格を含み、上記第1ないし第3
の導電材料は上記各有機色素層の光が入射する側の面と
は異方接合を形成し、該光入射面の反対側の面とは等方
接合を形成するような仕事関数を有するものであること
を特徴とするカラーセンサ。
(1) first and second organic dye layers are inserted between first and second conductive materials, at least one of which is translucent;
Furthermore, a color sensor comprising a third conductive material having translucency inserted between the first and second organic dye layers, wherein the first organic dye layer contains at least tetra(4-pyridyl). the second organic dye layer contains at least a phthalocyanine skeleton;
The conductive material has a work function such that it forms an anisotropic junction with the surface of each of the organic dye layers on the light incident side and an isotropic junction with the surface opposite to the light incident surface. A color sensor characterized by:
JP62137188A 1987-05-29 1987-05-29 Color sensor Pending JPS63300576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137188A JPS63300576A (en) 1987-05-29 1987-05-29 Color sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137188A JPS63300576A (en) 1987-05-29 1987-05-29 Color sensor

Publications (1)

Publication Number Publication Date
JPS63300576A true JPS63300576A (en) 1988-12-07

Family

ID=15192857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137188A Pending JPS63300576A (en) 1987-05-29 1987-05-29 Color sensor

Country Status (1)

Country Link
JP (1) JPS63300576A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039372A2 (en) * 1998-02-02 1999-08-05 Uniax Corporation Image sensors made from organic semiconductors
JP2001027564A (en) * 1999-07-14 2001-01-30 Sony Corp Optical detecting device
EP1048084A4 (en) * 1998-08-19 2001-05-09 Univ Princeton Organic photosensitive optoelectronic device
JP2002502128A (en) * 1998-02-02 2002-01-22 ユニアックス コーポレイション X-Y addressable electrical microswitch array and sensor matrix using the same
EP1255167A3 (en) * 2001-04-12 2003-12-10 Canon Kabushiki Kaisha Porphyrin compound, and electrophotographic photosensitive member, process-cartridge and apparatus using the compound
JP2004186604A (en) * 2002-12-06 2004-07-02 Fuji Photo Film Co Ltd Image recording medium
US7026041B2 (en) 1998-08-19 2006-04-11 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
US7151217B2 (en) 1998-08-19 2006-12-19 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
US7750423B2 (en) * 2006-03-31 2010-07-06 Fujifilm Corporation Photoelectric conversion device, solid-state imaging device and manufacturing method of solid-state imaging device
US20130048863A1 (en) * 2011-08-26 2013-02-28 Fujifilm Corporation Photoelectric conversion substrate, radiation detector, radiographic image capture device, and manufacturing method of radiation detector
US10199587B2 (en) 2012-08-09 2019-02-05 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300612B1 (en) 1998-02-02 2001-10-09 Uniax Corporation Image sensors made from organic semiconductors
WO1999039372A3 (en) * 1998-02-02 2000-03-02 Uniax Corp Image sensors made from organic semiconductors
WO1999039372A2 (en) * 1998-02-02 1999-08-05 Uniax Corporation Image sensors made from organic semiconductors
JP2002502128A (en) * 1998-02-02 2002-01-22 ユニアックス コーポレイション X-Y addressable electrical microswitch array and sensor matrix using the same
US7205585B2 (en) 1998-08-19 2007-04-17 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
EP2295238A1 (en) * 1998-08-19 2011-03-16 The Trustees Of Princeton University Organic photosensitive optoelectronic device
US8519258B2 (en) 1998-08-19 2013-08-27 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
EP2317567A1 (en) * 1998-08-19 2011-05-04 The Trustees Of Princeton University Organic photosensitive optoelectronic device
US7026041B2 (en) 1998-08-19 2006-04-11 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
US7151217B2 (en) 1998-08-19 2006-12-19 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
EP2312648A1 (en) * 1998-08-19 2011-04-20 The Trustees Of Princeton University Organic photosensitive optoelectronic device
EP2298547A1 (en) * 1998-08-19 2011-03-23 The Trustees Of Princeton University Organic photosensitive optoelectronic device
EP2287922A1 (en) * 1998-08-19 2011-02-23 The Trustees of Princeton University Organic photosensitive optoelectronic device
EP1048084A4 (en) * 1998-08-19 2001-05-09 Univ Princeton Organic photosensitive optoelectronic device
JP2001027564A (en) * 1999-07-14 2001-01-30 Sony Corp Optical detecting device
EP1255167A3 (en) * 2001-04-12 2003-12-10 Canon Kabushiki Kaisha Porphyrin compound, and electrophotographic photosensitive member, process-cartridge and apparatus using the compound
JP2004186604A (en) * 2002-12-06 2004-07-02 Fuji Photo Film Co Ltd Image recording medium
US7750423B2 (en) * 2006-03-31 2010-07-06 Fujifilm Corporation Photoelectric conversion device, solid-state imaging device and manufacturing method of solid-state imaging device
US20130048863A1 (en) * 2011-08-26 2013-02-28 Fujifilm Corporation Photoelectric conversion substrate, radiation detector, radiographic image capture device, and manufacturing method of radiation detector
US8829447B2 (en) * 2011-08-26 2014-09-09 Fujifilm Corporation Photoelectric conversion substrate, radiation detector, radiographic image capture device, and manufacturing method of radiation detector
US10199587B2 (en) 2012-08-09 2019-02-05 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor
US10665802B2 (en) 2012-08-09 2020-05-26 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor
US11183654B2 (en) 2012-08-09 2021-11-23 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor

Similar Documents

Publication Publication Date Title
CN111029462B (en) Multimode photoelectric detector and manufacturing method thereof
Lan et al. Electrically switchable color-selective organic photodetectors for full-color imaging
KR102058255B1 (en) Method and apparatus for integrating an infrared (ir) photovoltaic cell on a thin film photovoltaic cell
US20150372046A1 (en) A NOVEL IR IMAGE SENSOR USING A SOLUTION-PROCESSED PbS PHOTODETECTOR
CN107750403A (en) Organic photodetector and its production method
WO2005017960A2 (en) Quantum dot infrared photodetector focal plane array
JPS63300576A (en) Color sensor
Zafar et al. A MEHPPV/VOPcPhO composite based diode as a photodetector
JP2008103670A (en) Organic thin film photodetector, manufacturing method thereof, organic thin film light receiving/emitting element, manufacturing method thereof, and pulse sensor
JPH05335614A (en) Photoelectric conversion element
Nawar et al. Heterostructure device based on Brilliant Green nanoparticles–PVA/p-Si interface for analog–digital converting dual-functional sensor applications
Li et al. A filterless organic photodetector electrically switchable between visible and infrared detection
CN115461878A (en) Photoelectric conversion film, dispersion liquid, photodetection element, and image sensor
JP2008294058A (en) Imaging device and manufacturing method thereof
JPS6132481A (en) Amorphous semiconductor element
CN109285846B (en) Photosensor and photodetector using the same
JP3426211B2 (en) High-speed response photocurrent multiplier
US20160211475A1 (en) Micro electro mechanical system (mems) based wide-band polymer photo-detector
JPS63300575A (en) Color sensor
US6878960B2 (en) Multiplication device comprising resin-dispersed organic semiconductor film and method for producing the same
JPS63300574A (en) Organic continuous thin film color reading element
CN112830938A (en) Near-infrared absorbing agent, near-infrared absorbing/blocking film, photoelectric device, organic sensor, and electronic device
JPH01282875A (en) Color sensor
Klem et al. Multispectral UV-Vis-IR imaging using low-cost quantum dot technology
US8723123B2 (en) Light detector with Ge film