JPS63293874A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS63293874A
JPS63293874A JP62129319A JP12931987A JPS63293874A JP S63293874 A JPS63293874 A JP S63293874A JP 62129319 A JP62129319 A JP 62129319A JP 12931987 A JP12931987 A JP 12931987A JP S63293874 A JPS63293874 A JP S63293874A
Authority
JP
Japan
Prior art keywords
polysilicon
charge storage
grooves
becoming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62129319A
Other languages
Japanese (ja)
Inventor
Yohei Ichikawa
洋平 市川
Toshiro Yamada
俊郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62129319A priority Critical patent/JPS63293874A/en
Publication of JPS63293874A publication Critical patent/JPS63293874A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/39DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
    • H10B12/395DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enhance the soft error resistance as well as to achieve a high integration by forming charge storage regions through a dielectric film on the side surfaces and the bottoms of the grooves provided in a substrate, and forming a field-effect transistor on the charge storage regions in the vertical direction. CONSTITUTION:Thin grooves are formed in a P-type silicon substrate 1 of a high impurity concentration, and after forming a dielectric film 6 on the surface of the grooves, the grooves are filled with N<+> polysilicon 7 becoming charge storage regions. Then, an insulating film 8 is formed on the polysilicon 7, further N<+> polysilicon 3 becoming a word line is formed on the film 8, and an insulating film 9 is formed. Then, thin grooves passing through the polysilicon 3 is formed, and a gate oxide film 4 is formed. Then, thin grooves are formed till they reach the polysilicon 7, and P-type polysilicon 5 becoming a channel region and N<+> polysilicon 2 becoming a bit line is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体メモリに関するものである。[Detailed description of the invention] Industrial applications The present invention relates to semiconductor memory.

従来の技術 高集積半導体メモリ用メモリセルとして1つのトランジ
スタと1つの容量部から構成されたいわゆる″1トラン
ジスタ型”メモリは、構成要素が少なく、セル面積の微
小化が容易なため広く使われている。
Conventional technology As a memory cell for highly integrated semiconductor memory, so-called "one-transistor type" memory, which is composed of one transistor and one capacitor, is widely used because it has few components and the cell area can be easily miniaturized. There is.

近年、半導体メモリは、高集積化と大容量化が追求され
、素子の微細化が要請されている。1トランジスタ型メ
モリセルにおいては、情報判定の容易さを維持するため
に、メモリセル容量の減少は極力避けなければならない
。このため、従来の技術では、半導体基板に溝を堀り溝
の側面を容量部として利用することにより、容量部の平
面面積を縮小し、素子の微細化をはかっていた。例えば
第3図に示す構成では、半導体基板11に溝を掘り溝内
にプレート電極17を埋め込み、溝の側面に容量部を形
成していた。12はピット線、13は1領域、14はワ
ード線、16は誘電体膜、16は分離領域、18はゲー
ト酸化膜、19は電荷蓄積領域である。
In recent years, higher integration and larger capacity of semiconductor memories have been pursued, and miniaturization of elements has been required. In a one-transistor type memory cell, a decrease in memory cell capacity must be avoided as much as possible in order to maintain ease of information determination. For this reason, in the conventional technology, a groove is dug in a semiconductor substrate and the side surfaces of the groove are used as a capacitor part, thereby reducing the planar area of the capacitor part and miniaturizing the element. For example, in the configuration shown in FIG. 3, a groove is dug in the semiconductor substrate 11 and the plate electrode 17 is embedded in the groove, and a capacitive portion is formed on the side surface of the groove. 12 is a pit line, 13 is one region, 14 is a word line, 16 is a dielectric film, 16 is an isolation region, 18 is a gate oxide film, and 19 is a charge storage region.

発明が解決しようとする問題点 しかしながら、上記の従来の構成では、容量部となる溝
とトランジスタが別々の位置にあり、かつメモリセル間
に分離領域が必要なため、高集積化は困難であった。
Problems to be Solved by the Invention However, in the conventional configuration described above, the trench serving as the capacitor portion and the transistor are located at different locations, and a separation region is required between the memory cells, making it difficult to achieve high integration. Ta.

また、容量部に入射したα粒子は飛跡に沿って電子・正
孔対を発生させるが、正孔は基板11に移動し容量部に
は電子のみが残り、蓄積情報が変化してしまうという欠
点がある。
In addition, α particles that enter the capacitor generate electron-hole pairs along the trajectory, but the holes move to the substrate 11 and only the electrons remain in the capacitor, resulting in a change in the stored information. There is.

本発明の目的は、前記従来の方法と比較して、より高集
積化され、かつα線によるソフトエラー耐性の高い半導
体メモリを提供することにある。
An object of the present invention is to provide a semiconductor memory that is more highly integrated and has higher resistance to soft errors caused by alpha rays than the conventional method.

問題点を解決するための手段 本発明の半導体メモリのメモリセルは、半導体基板に設
けた溝内に、前記溝部の側面及び底面に誘電体膜を形成
し、前記誘電体膜上に電荷蓄積領域を形成し、前記電荷
蓄積領域の上に縦方向に電界効果トランジスタを形成し
ている。
Means for Solving the Problems The memory cell of the semiconductor memory of the present invention includes a dielectric film formed in a trench provided in a semiconductor substrate on the side and bottom surfaces of the trench, and a charge storage region on the dielectric film. A field effect transistor is formed in the vertical direction on the charge storage region.

作用 この構成をとることにより、電荷蓄積領域の上の電界効
果トランジスタをスイッチング素子とし半導体基板と電
荷蓄積領域との間に誘電体膜を介して容量部を形成して
いる。
By adopting this configuration, the field effect transistor above the charge storage region is used as a switching element, and a capacitor portion is formed between the semiconductor substrate and the charge storage region via a dielectric film.

実施例 以下、図面を用いて本発明の詳細な説明する。Example Hereinafter, the present invention will be explained in detail using the drawings.

本発明の半導体メモリの構造の一例を第1図に示す。第
1図&は平面図、第1図すはムーム′線に沿った断面図
、第1図CはB −B/線に沿った断面図である。1は
高不純物濃度?領域でシリコン基板、2はn+ポリシリ
コンでピット線、3はn+ポリシリコンでワード線、4
はゲート酸化膜、6はP型ポリシリコンでチャンネル領
域、6は誘電体膜、7はn+ポリシリコンで電荷蓄積領
域、8は絶縁膜である。ピット線2と電荷蓄積領域7と
の間にワード線3をゲート電極として電界効果トランジ
スタを形成している。基板1と電荷蓄積領域7との間に
誘電体膜6を介して容量部を形成している。
An example of the structure of a semiconductor memory according to the present invention is shown in FIG. FIG. 1 & is a plan view, FIG. 1 is a sectional view taken along the line Mumm', and FIG. 1 C is a sectional view taken along the line B--B/. Is 1 a high impurity concentration? Area is silicon substrate, 2 is n+ polysilicon for pit line, 3 is n+ polysilicon for word line, 4 is
6 is a gate oxide film, 6 is a P-type polysilicon channel region, 6 is a dielectric film, 7 is an n+ polysilicon charge storage region, and 8 is an insulating film. A field effect transistor is formed between pit line 2 and charge storage region 7 using word line 3 as a gate electrode. A capacitor portion is formed between the substrate 1 and the charge storage region 7 with a dielectric film 6 interposed therebetween.

第2図a、b、cは本実施例の製造方法を説明するため
の工程断面図である。
FIGS. 2a, 2b, and 2c are process cross-sectional views for explaining the manufacturing method of this embodiment.

まず第2図aに示すようにP子基板もしくはP+エピタ
キシャル層1にドライエツチング法により細溝を形成し
、溝の表面に誘電体膜6を形成して、溝を電荷蓄積領域
となるn+ポリシリコン7で埋める。次に第2図すに示
すようにポリシリコン7の上に絶縁膜例えば5i02 
Bを形成し、さらに絶縁膜8の上にワード線となるn+
ポリシリコン3を形成したのち、全面に絶縁膜9を形成
する。続いて第2図0に示すように細溝をポリシリコン
3が貫通するまで形成したのち、ゲート酸化膜4を形成
する。そして第1図すに示すように、細溝をポリシリコ
ン7に届くまで形成したのち、細溝をn+ポリシリコン
、チャンネル領域となるP型ポリシ、リコンs、n+ポ
リシリコンの順序で埋め、ピット線となるn+ポリシリ
コン2を形成する。
First, as shown in FIG. 2a, a narrow groove is formed in the P-substrate or P+ epitaxial layer 1 by dry etching, a dielectric film 6 is formed on the surface of the groove, and the groove is covered with an n+ polyethylene film which will become a charge storage region. Fill with silicon 7. Next, as shown in FIG. 2, an insulating film, for example, 5i02
B, and furthermore, on the insulating film 8, an n+
After forming polysilicon 3, an insulating film 9 is formed on the entire surface. Subsequently, as shown in FIG. 2, a narrow groove is formed until the polysilicon 3 penetrates through it, and then a gate oxide film 4 is formed. Then, as shown in Figure 1, after forming a narrow groove until it reaches the polysilicon 7, the narrow groove is filled with n+ polysilicon, P-type polysilicon that will become the channel region, silicon s, and n+ polysilicon in this order. N+ polysilicon 2 is formed to form a line.

本実施!1のメモリセルは、容量部を細溝内の誘電体膜
6を介して形成してメモリセル容量の増大をはかるとと
もに、容量部の上にトランジスタを形成し、かつ分離領
域が不要なため、第3図の従来例に比べ、メモリセルの
平面面積を約3分の1に減少させることができる。
Actual implementation! In the memory cell No. 1, the capacitive part is formed through the dielectric film 6 in the narrow groove to increase the memory cell capacity, and the transistor is formed on the capacitive part, and no isolation region is required. Compared to the conventional example shown in FIG. 3, the planar area of the memory cell can be reduced to about one-third.

また、情報の蓄積部が誘電体膜6に囲まれた電荷蓄積領
域T内にあるため、α粒子等の入射により電子と正孔が
発生しても電荷蓄積領域7の内部で再結合して消滅する
ため、蓄積された電荷を変化させることはない。すなわ
ち、ソフトエラー耐性が高いメモリセルを得ることがで
きる。
Furthermore, since the information storage section is located within the charge storage region T surrounded by the dielectric film 6, even if electrons and holes are generated due to the incidence of α particles, they are recombined within the charge storage region 7. Since it disappears, it does not change the accumulated charge. That is, a memory cell with high soft error resistance can be obtained.

上記に示した実施例は、本発明の半導体メモリの具体例
を示したものであり、これに限らない。
The embodiments shown above are specific examples of the semiconductor memory of the present invention, and are not limited thereto.

本実施例ではnチャンネル型電界効果トランジスタを用
いて構成する場合について述べたが、Pチャンネル型電
界効果トランジスタを用いる場合も同様の工程により作
製できる。またメモリセルのトランジスタあるいは容量
部の形状は如何なるものでもよい。基板についてはポリ
シリコンを用いることも可能であり、本発明に含まれる
ものである0 発明の効果 以上詳細に説明したように、本発明によれば、半導体基
板に設けた溝内に容量部と縦方向に電界効果トランジス
タを形成することにより、ソフトエラー耐性が高くしか
も高集積化された半導体メモリを得ることができるので
その効果は大きい。
In this embodiment, a case has been described in which an n-channel field effect transistor is used, but a case in which a p-channel field effect transistor is used can also be manufactured through similar steps. Further, the shape of the transistor or capacitor portion of the memory cell may be any shape. It is also possible to use polysilicon for the substrate, which is included in the present invention.0 Effects of the Invention As explained in detail above, according to the present invention, a capacitive portion and a capacitive portion are formed in a groove provided in a semiconductor substrate. By forming field effect transistors in the vertical direction, it is possible to obtain a highly integrated semiconductor memory with high soft error resistance, which is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の一実施例ておける半導体メモリの平
面図、第1図す、cはそれぞれ第1図aのムーA′線、
B−B’線に沿った断面図、第2図a。 b、cは同実施例のメモリの製造方法を説明するための
工程断面図、第3図は従来の半導体メモリの断面図であ
る。 1・・・・・・基板、2・・・・・・ビット線、3・・
・・・・ワード線、4・・・・・・ゲート酸化膜、6・
・・・・・チャンネル領域、6・・・・・・誘電体膜、
7・・・・・・電荷蓄積領域、8.9・・・・・・絶縁
膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓 
2 図
FIG. 1a is a plan view of a semiconductor memory according to an embodiment of the present invention, and FIGS.
Sectional view along line BB', Figure 2a. b and c are process cross-sectional views for explaining the method of manufacturing the memory of the same embodiment, and FIG. 3 is a cross-sectional view of a conventional semiconductor memory. 1... Board, 2... Bit line, 3...
...Word line, 4...Gate oxide film, 6.
...Channel region, 6...Dielectric film,
7...Charge storage region, 8.9...Insulating film. Name of agent: Patent attorney Toshio Nakao and one other name
2 Figure

Claims (1)

【特許請求の範囲】[Claims]  半導体基板に設けた溝内に、前記溝部の側面及び底面
に形成した記憶容量となる誘電体膜と、前記誘電体膜上
に形成した電荷蓄積領域と、前記電荷蓄積領域の上に縦
方向に形成した電界効果トランジスタとを有してなる半
導体メモリ。
In a trench provided in a semiconductor substrate, a dielectric film serving as a storage capacitor is formed on the side and bottom surfaces of the trench, a charge storage region is formed on the dielectric film, and a charge storage region is formed on the charge storage region in the vertical direction. A semiconductor memory comprising a field effect transistor formed.
JP62129319A 1987-05-26 1987-05-26 Semiconductor memory Pending JPS63293874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62129319A JPS63293874A (en) 1987-05-26 1987-05-26 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62129319A JPS63293874A (en) 1987-05-26 1987-05-26 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS63293874A true JPS63293874A (en) 1988-11-30

Family

ID=15006636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62129319A Pending JPS63293874A (en) 1987-05-26 1987-05-26 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS63293874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994735A (en) * 1993-05-12 1999-11-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a vertical surround gate metal-oxide semiconductor field effect transistor, and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994735A (en) * 1993-05-12 1999-11-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a vertical surround gate metal-oxide semiconductor field effect transistor, and manufacturing method thereof
US6127209A (en) * 1993-05-12 2000-10-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6420751B1 (en) 1993-05-12 2002-07-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6882006B2 (en) 1993-05-12 2005-04-19 Renesas Technology Corp. Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5047815A (en) Semiconductor memory device having a trench-stacked capacitor
JP3272979B2 (en) Semiconductor device
JPS6173366A (en) Semiconductor device
US20060102946A1 (en) Dynamic memory cell and method of manufacturing the same
US5183774A (en) Method of making a semiconductor memory device
US5027173A (en) Semiconductor memory device with two separate gates per block
JPS63293874A (en) Semiconductor memory
JPS62137863A (en) Semiconductor memory device
JPS62208662A (en) Semiconductor memory
JPH0286165A (en) Semiconductor storage device and its manufacture
JPS6058662A (en) Memory device for temporary storage of charge
JPS60236260A (en) Semiconductor memory device
JPH0536930A (en) Semiconductor storage device
JPS6324659A (en) Mis type semiconductor memory
JPH0191449A (en) Semiconductor memory device
JPS59110155A (en) Semiconductor memory cell
JPS62291055A (en) Semiconductor memory
JPH0319280A (en) Semiconductor device
JPS6333862A (en) Semiconductor storage device and manufacture thereof
JPH02208963A (en) Semiconductor memory cell
JPS62244164A (en) Semiconductor memory device
JPS62155558A (en) Mis type semiconductor memory device
JPH01204462A (en) Semiconductor storage device
JPS59112646A (en) Semiconductor memory device
JPS62298158A (en) Semiconductor memory