JPS6328794A - Autopilot device - Google Patents

Autopilot device

Info

Publication number
JPS6328794A
JPS6328794A JP61174176A JP17417686A JPS6328794A JP S6328794 A JPS6328794 A JP S6328794A JP 61174176 A JP61174176 A JP 61174176A JP 17417686 A JP17417686 A JP 17417686A JP S6328794 A JPS6328794 A JP S6328794A
Authority
JP
Japan
Prior art keywords
speed
ship
course
deviation
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61174176A
Other languages
Japanese (ja)
Other versions
JPH0633076B2 (en
Inventor
Akira Sugiyama
暁 杉山
Kenji Itani
健二 井澗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP61174176A priority Critical patent/JPH0633076B2/en
Publication of JPS6328794A publication Critical patent/JPS6328794A/en
Publication of JPH0633076B2 publication Critical patent/JPH0633076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform useful steering of a ship, by a method wherein a present position, a moving direction, and a speed are measured by means of a global position measuring system receiver, a distance in a vertical direction serving as displacement from a scheduled route is calculated, and a speed in a vertical direction is calculated to restore a displacement course to the scheduled route. CONSTITUTION:By means of a global position measuring system (NAVSTAR /GPS) receiver 2, an output is transmitted to a control device 1 which determines a present position T, the moving direction, and the speed of a ship under sailing. The control device 1 calculates a distance L0 in a vertical direction as displacement from a scheduled route 7 being a straight course running between a starting point S and an object point O. From the moving direction and a speed V, a displacement speed VH in a vertical direction as a displacement speed is calculated, and a speed VX in a vertical direction required for restoration to the scheduled route 7 is calculated. Through orderly repetition of the above computation, a time, in which a course is restored to the scheduled route, and a state can be grasped, by driving a steering device 5 through the working of a course control device 3, useful and efficient steering of a ship can be effected.

Description

【発明の詳細な説明】 (a)産業上の利用分野 この発明は、予め定めた二点間の直線コースを予定航路
として自動操舵するオートパイロット装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an autopilot device that automatically steers a vehicle along a straight course between two predetermined points as a scheduled route.

tb+発明の1既要 この発明に係るオートパイロット装置は、二点間の直線
コースを予定航路として自動操舵するもので、予定航路
からのずれに応じて船の針路を予定航路に向ける方法に
特徴を有する。
tb+ Invention 1 Existing Summary The autopilot device according to the present invention automatically steers a straight course between two points as a scheduled route, and is characterized by a method of directing the course of a ship to the scheduled route in response to deviation from the scheduled route. has.

この発明は特に予定航路からのずれに応じて予定航路に
近づく速度をスムーズに変えて、無駄のない操船を行う
ようにしたものである。
In particular, the present invention is designed to smoothly change the speed at which a vessel approaches a planned course in response to deviations from the planned course, thereby achieving efficient ship maneuvering.

fc)従来の技術 従来の所謂オートパイロット装置は磁気コンパスに針路
設定器を設け、船が常に設定された方位を維持するよう
自動操舵を行うものであった。このような従来のオート
パイロット装置は、潮流や風の影響によって船が流され
、予定航路に対して並行移動したコースを走行する欠点
があった。そこでロランCを用いて、船の設定コースか
らのずれを検知して自動的に補正をしつつ航行する航法
援助機能を備えたオートパイロット装置が開発されてい
る。
fc) Prior Art A conventional so-called autopilot device has a magnetic compass equipped with a course setting device, and automatically steers the ship so that the ship always maintains a set heading. Such conventional autopilot devices have the disadvantage that the ship is swept along by the influence of tides and winds, and travels on a course that is parallel to the planned route. Therefore, an autopilot device has been developed using Loran C that has a navigation aid function that detects deviations from the ship's set course and automatically makes corrections while navigating.

このようなロランCを用いたオートパイロット装置の場
合、現在の予定航路からのずれを距離として求めること
ができるが、船が潮流や風によって流されている方向と
速度を直ちに求めることができないため、予定航路に近
づく早さも即時に分からず、操船に無駄が生じる。その
結果燃料消費が増加し、また計画的な航行も困難であっ
た。
In the case of an autopilot device using such Loran C, it is possible to determine the deviation from the current planned course as a distance, but it is not possible to immediately determine the direction and speed in which the ship is being carried by currents and winds. , it is not immediately clear how quickly the ship is approaching the planned route, resulting in wasteful maneuvering. As a result, fuel consumption increased and planned navigation was difficult.

(d)発明が解決しようとする問題点 この発明は、二点間の直線コースを予定航路として自動
操舵する場合に、予定航路からのずれに応じて予定航路
に近づく早さを予測しながら効率よく自動操舵を行うこ
とを可能としたオートパイロ、ト装置を提供するもので
ある。
(d) Problems to be Solved by the Invention This invention aims to improve efficiency by predicting the speed at which the planned route will be approached in accordance with the deviation from the scheduled route when automatically steering a straight course between two points as a scheduled route. The present invention provides an autopilot device that enables efficient automatic steering.

(Q)問題点を解決するための手段 この発明は、設定された方位に針路を定める針路制御装
置を備え、二点間の直線コースを予定航路として自動操
舵するオートパイロ・ノド装置において、 船の現在位
置、移動方向およびその速度を測定する全世界測位シス
テム(NAVSTAR/G P S)受信機と、この受
信機により求めた船の位置の前記予定航路に対する垂直
方向の距離を求めるずれ量算出手段と、前記受信機によ
り求めた船の移動方向と速度から前記予定航路に垂直方
向の速度を求めるずれ速度算出手段、および前記ずれ量
と前記ずれ速度および船速から前記ずれ量が特定時間で
Oとなる速さで船が予定航路に接近するための設定針路
を求め、前記針路制御装置に与える針路設定手段と、を
設けたことを特徴とする。
(Q) Means for Solving the Problems This invention provides an autopyro/route device that is equipped with a course control device that sets a course in a set direction and that automatically steers a ship using a straight course between two points as a planned course. A global positioning system (NAVSTAR/GPS) receiver that measures the current position, direction of movement, and speed of the ship, and deviation calculation that calculates the vertical distance of the ship's position determined by this receiver with respect to the planned route. means, deviation speed calculation means for calculating a speed perpendicular to the planned route from the moving direction and speed of the ship determined by the receiver, and calculating means for calculating the speed in the direction perpendicular to the planned route from the moving direction and speed of the ship determined by the receiver, and calculating the deviation amount at a specific time from the deviation amount, the deviation speed, and the ship speed. The present invention is characterized by further comprising a course setting means for determining a set course for the ship to approach the planned route at a speed of 0, and providing the set course to the course control device.

(f)作用 以上のように構成したことにより、全世界測位システム
の受信機は現在の船の位置だけでなく船の移動している
方向と速度を刻々と求める。この受信機により求めた船
の位置から、ずれ量算出手段は予定航路に対する垂直方
向の距離すなわち二点間の直線と船の位置との距離をず
れ量として求め、またずれ速度算出手段は前記受信機に
より求めた船の移動方向と速度から予定航路に垂直方向
の速度を求める。針路設定手段は、このようにして求め
たずれ量とずれ速度および船速からずれ量が特定時間で
Oとなる速さで船が予定航路に接近するために必要な設
定針路を求め、針路制御装置に与える。これにより針路
制御装置は設定された針路に変針するように操舵を行い
、船を回頭させる。
(f) Operation With the above configuration, the receiver of the global positioning system determines not only the current position of the ship but also the direction and speed in which the ship is moving every moment. From the position of the ship determined by this receiver, the deviation amount calculation means calculates the vertical distance to the planned route, that is, the distance between the straight line between two points and the ship's position, as the deviation amount, and the deviation speed calculation means The speed in the direction perpendicular to the planned route is determined from the direction and speed of the ship determined by the machine. The course setting means calculates a set course necessary for the ship to approach the planned route at a speed such that the deviation amount becomes O in a specific time from the deviation amount, deviation speed, and ship speed obtained in this way, and performs course control. feed into the device. As a result, the course control device performs steering to change the course to the set course and turns the ship.

以上の一連の処理は所定の時間間隔で繰り返し行われ、
その都度針路の修正が行われる。
The above series of processes are repeated at predetermined time intervals,
The course will be corrected each time.

たとえば第2図に示すように出発点Sと目的点○の直線
コースを予定航路として、船がこの予定航路からずれた
位置Tにあるとき、予定航路と船との距離L0の距離を
特定時間でOとなるように船の針路を調整する。この特
定時間は船の予定航路からのずれに応じて変化させるこ
ともできるが、これを一定値とすれば、船がT′の位置
まで航行したとき、予定航路からのずれ量L01の距離
をやはり上記特定時間で0となるように船が予定航路に
近づく方向に針路が調整される。
For example, as shown in Figure 2, when the planned route is a straight course between the starting point S and the destination point ○, and the ship is at a position T that is deviated from this planned route, the distance L0 between the planned route and the ship is determined by the specified time. Adjust the ship's course so that it points to O. This specific time can be changed according to the ship's deviation from the planned course, but if it is a constant value, when the ship has sailed to position T', the distance of deviation L01 from the planned course is Again, the course is adjusted in the direction in which the ship approaches the planned route so that it becomes 0 at the specific time.

このようにして船の針路を刻々と制御することによって
船が予定航路を行き過ぎることなく、指数関数的にスム
ーズに予定航路に収束させることができる。
By controlling the ship's course from moment to moment in this way, the ship can be exponentially smoothly converged onto the planned course without overshooting the planned course.

第3図は前記針路設定手段の設定針路を求める方法を説
明する図である。
FIG. 3 is a diagram illustrating a method for determining the course set by the course setting means.

船Tは予定航路から距離L0だけずれた位置にあり、矢
印■の方向に■の早さで移動している。
Ship T is at a position deviated from the planned route by a distance L0, and is moving in the direction of arrow ■ at a speed of ■.

船自体は針路制御装置の作用によって出発点から目的点
の方位に針路をとって速度■。の速度で航行しているが
、潮流や風の影響により、予定航路に対して垂直方向の
成分として速度■8の早さで船が流されていることを表
している。このようにずれ量L0とずれ速度■8は船の
位置と船の移動方向およびその速度から求める。
The ship itself takes a course from the starting point to the destination point by the action of the course control device, and the speed ■. However, due to the influence of currents and winds, the ship is drifting at speed ■8 as a component in the direction perpendicular to the planned route. In this way, the amount of deviation L0 and the deviation speed (8) are determined from the position of the ship, the direction of movement of the ship, and its speed.

次に潮流や風による速度■8に逆らって予定航路に特定
時間で到達するように船を予定航路側に回頭して、針路
を変更する。この鉛が予定航路に対して接近する速度■
8は、特定時間をkとすると(LO/k)−V、として
求めることができる。このとき船の進行方向に対する速
度は■。であるため、図に示すように角度θ8だけ予定
航路側に回頭することによって予定航路に対する接近速
度■8を得ることができる。
Next, the ship is turned toward the planned route in order to go against the speed (8) caused by currents and winds and to reach the planned route in a specific time, changing the course. The speed at which this lead approaches the planned route■
8 can be obtained as (LO/k)-V, where k is the specific time. At this time, the speed of the ship in the direction of travel is ■. Therefore, as shown in the figure, by turning toward the planned route by an angle θ8, an approach speed of 8 to the planned route can be obtained.

(g)実施例 第1図はこの発明に係るオートパイロット装置のブロッ
ク図である。
(g) Embodiment FIG. 1 is a block diagram of an autopilot device according to the present invention.

制御装置1は各種測定装置や設定装置からのデータを処
理し、針路制御装置3に対して設定針路を与える。GP
S受信機2は全世界測位システム(NAVSTAR/G
PS)受信機であり、現在の船の位置(緯度、経度)お
よび船の2次元方向の移動速度を求め、制御装置1へ出
力する。船速計6は船の針路方向の速度を測定する装置
であり、そのデータを制御装置1へ出力する。予定航路
設定装置7は出発点と目的点の位置を緯度、経度データ
として設定を行う。
The control device 1 processes data from various measuring devices and setting devices, and provides a set course to the course control device 3. GP
S receiver 2 is a global positioning system (NAVSTAR/G
PS) is a receiver, which determines the current position (latitude, longitude) of the ship and the moving speed of the ship in two-dimensional directions, and outputs it to the control device 1. The ship speedometer 6 is a device that measures the speed of the ship in the course direction, and outputs the data to the control device 1. The scheduled route setting device 7 sets the positions of the departure point and destination point as latitude and longitude data.

針路制御装置3はコンパスを含み、船が制御装置1から
与えられた設定針路をとるように操舵装置5を駆動して
変針を行う。また、追従発信器4から出力された舵の方
向を検出して舵角を制御する。
The course control device 3 includes a compass, and changes course by driving the steering device 5 so that the ship follows the set course given by the control device 1. Further, the direction of the rudder outputted from the follow-up transmitter 4 is detected to control the rudder angle.

第4図は前記制御装置の処理手順を表すフローチャート
である。まずGPS受信機から現在の船の位置を緯度P
N、経度P□として求め、船の移動速度を緯度方向の速
度■8と経度方向の速度■、として求める(nl−=n
2)。次にnlで求めた船の位置から船の予定航路に対
するずれ量り。
FIG. 4 is a flowchart showing the processing procedure of the control device. First, the current position of the ship is determined from the GPS receiver in latitude P.
N, longitude P□, and the moving speed of the ship as latitude speed ■8 and longitude speed ■ (nl-=n
2). Next, measure the deviation from the ship's position determined by nl to the ship's planned route.

を算出する(n3)。この演算は次のようにして行う。is calculated (n3). This calculation is performed as follows.

第5図はその方法を説明するための図である。FIG. 5 is a diagram for explaining the method.

図において出発点の位置を(LATs、LONs)、目
的点の位置を(LATo、LONo)および船の位置を
(LATt、LONt)と表す。Pは船の予定航路に対
する垂線の交わる点であり、Loがずれ量である。さら
にΔLONとΔLATは現在の船の位置を出発点を基準
とした距離をそれぞれ表している。このような関係にお
いて、次のような関係式が成り立つ。
In the figure, the starting point position is represented by (LATs, LONs), the destination point position is represented by (LATo, LONo), and the ship position is represented by (LATt, LONt). P is the point where the perpendicular to the ship's planned route intersects, and Lo is the amount of deviation. Further, ΔLON and ΔLAT each represent the distance between the current position of the ship and the starting point. In such a relationship, the following relational expression holds true.

ΔLAT=K(LATt−LATs) Δし0N=K(LONt−LONs)本cos  LA
TsここでKは緯度に対する距離の換算係数であるした
がってずれ量L0は次の弐で求めることができる。
ΔLAT=K(LATt-LATs) ΔS0N=K(LONt-LONs) cos LA
Ts Here, K is a conversion coefficient of distance to latitude, so the amount of deviation L0 can be found as follows.

LO=ICO3(2*ΔLAT−sin tx *ΔL
ON  +ここでαは cx = jan−’ (LATo−LATs)/ (
LONo−LONs)*cosLATsから求めること
ができる。
LO=ICO3(2*ΔLAT-sin tx *ΔL
ON + where α is cx = jan-' (LATo-LATs)/(
It can be obtained from LONo-LONs)*cosLATs.

以上は地球を平面として取扱える場合である。The above is a case where the earth can be treated as a flat surface.

もしΔLATが十分に大きい場合には球面三角形の公式
に従ってLoを求める。
If ΔLAT is sufficiently large, Lo is determined according to the spherical triangle formula.

このようにしてずれ量L0を求めた後、第4図に示すよ
うにずれ速度■8を算出する(n4)。
After determining the amount of deviation L0 in this manner, the deviation speed 8 is calculated as shown in FIG. 4 (n4).

これは第3図に示したように船の緯度方向の速度■8と
経度方向の速度■、から速度■を求め、これを予定航路
に平行な方向の速度■。と予定航路に垂直な方向の速度
■8に分解することによって求めることができる。 次
に予定航路に接近すべき速度■8を算出する(n5)。
As shown in Figure 3, the speed ■ is calculated from the ship's latitude speed ■8 and the longitude speed ■, and this is calculated as the speed ■ in the direction parallel to the planned route. It can be obtained by dividing into 8 and the velocity in the direction perpendicular to the planned route. Next, the speed ■8 at which the vehicle should approach the planned route is calculated (n5).

この速度VXは前述の通り特定時間をkとすれば、 (LO/k)−VMから求める。ただしここでずれ速度
V、は予定航路に接近する方向に正、遠ざかる方向に負
である。
This speed VX is obtained from (LO/k)-VM, where k is the specific time as described above. However, here, the deviation velocity V is positive in the direction of approaching the planned route and negative in the direction of moving away from the planned route.

さらにこの接近速度■8から船の回頭角θ8を算出する
(n6)。この角度θ8は第3図に示した関係から明ら
かなように、 θ8・90 °−cos−’ (Vx / Vc )を
演算することにより求める。このようにして求めた回頭
角θ8を針路制御装置に与えることによって新たな針路
が設定され、自動操舵が行われる。
Furthermore, the turning angle θ8 of the ship is calculated from this approach speed ■8 (n6). As is clear from the relationship shown in FIG. 3, this angle θ8 is obtained by calculating θ8·90°−cos−′ (Vx/Vc). By providing the turning angle θ8 thus obtained to the course control device, a new course is set and automatic steering is performed.

以上の処理は所定時間間隔で行われる(n?、−nl)
The above processing is performed at predetermined time intervals (n?, -nl)
.

なお、実施例は船が予定航路に接近する速度を、特定時
間にでずれ量が0となる条件から求め、その特定時間を
定数とした例であったが、この値をずれ量L0の値に応
じて変化させることも可能であり、またその値は航行の
目的に応じて適宜変更することができる。
In addition, in the example, the speed at which the ship approaches the scheduled route is determined from the condition that the amount of deviation becomes 0 at a specific time, and the specific time is set as a constant, but this value is used as the value of the amount of deviation L0. It is also possible to change the value according to the purpose of navigation.

(h)発明の効果 以上のようにこの発明によれば、予定航路に対する船の
ずれ量とずれ速度から船を回頭させて針路を設定するが
、この回頭は船首方位を定めることが目的ではなく、予
定航路に近づく速さを修正する目的で行われるものであ
り、船が予定航路に接近する時間が刻々と得られるため
、効率のよい操船を行うことができ、たとえば船が予定
航路を行き過ぎて再び予定航路に引き返すといった無駄
な操舵が行われない。
(h) Effects of the Invention As described above, according to this invention, a course is set by turning the ship based on the amount and speed of deviation of the ship from the planned route, but the purpose of this turning is not to determine the heading. This is done to correct the speed at which the ship approaches the planned course, and because it gives the ship time to time to approach the planned course, efficient ship maneuvering can be carried out. Wasteful steering such as turning back to the planned route again is not performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係るオートパイロット装置
のブロック図、第2図はこの発明のオートパイロット装
置により船が予定航路に接近する経過を表す図、第3図
は船の予定航路に対するずれ量とずれ速度およびそれら
の値から船が回頭すべき角度を説明する図、第4図はこ
の発明の実施例に係るオートパイロット装置の処理手順
を表すフローチャート、第5図は出発点と目的点の位置
および船の位置からずれ量を算出する方法を説明する図
である。 1−制御装置、 2−GPS受信機、 3−針路制御装置。
FIG. 1 is a block diagram of an autopilot device according to an embodiment of the present invention, FIG. 2 is a diagram showing the progress of a ship approaching a scheduled route by the autopilot device of this invention, and FIG. 3 is a diagram showing how the ship approaches its scheduled route. A diagram illustrating the amount of deviation, the speed of deviation, and the angle at which the ship should turn based on these values. Fig. 4 is a flowchart showing the processing procedure of the autopilot device according to the embodiment of this invention. Fig. 5 is the starting point and purpose. FIG. 3 is a diagram illustrating a method of calculating a deviation amount from the position of a point and the position of a ship. 1-control device, 2-GPS receiver, 3-course control device.

Claims (1)

【特許請求の範囲】[Claims] (1)設定された方位に針路を定める針路制御装置を備
え、二点間の直線コースを予定航路として自動操舵する
オートパイロット装置において、船の現在位置、移動方
向およびその速度を測定する全世界測位システム(NA
VSTAR/GPS)受信機と、 この受信機により求めた船の位置の前記予定航路に対す
る垂直方向の距離を求めるずれ量算出手段と、 前記受信機により求めた船の移動方向と速度から前記予
定航路に垂直方向の速度を求めるずれ速度算出手段、お
よび 前記ずれ量と前記ずれ速度および船速から前記ずれ量が
特定時間で0となる速さで船が予定航路に接近するため
の設定針路を求め、前記針路制御装置に与える針路設定
手段と、 を設けたことを特徴とするオートパイロット装置。
(1) An autopilot device that is equipped with a course control device that sets the course in a set direction and automatically steers a straight course between two points as the planned route, measures the current position, direction of movement, and speed of the ship worldwide. Positioning system (NA)
a VSTAR/GPS) receiver; a deviation calculation means for calculating the vertical distance of the ship's position determined by the receiver with respect to the planned route; a deviation speed calculating means for calculating the speed in the vertical direction, and calculating a set course for the ship to approach the scheduled route at a speed such that the deviation amount becomes 0 at a specific time from the deviation amount, the deviation speed, and the ship speed. An autopilot device comprising: , a course setting means for providing the course to the course control device.
JP61174176A 1986-07-23 1986-07-23 Auto pilot device Expired - Lifetime JPH0633076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174176A JPH0633076B2 (en) 1986-07-23 1986-07-23 Auto pilot device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174176A JPH0633076B2 (en) 1986-07-23 1986-07-23 Auto pilot device

Publications (2)

Publication Number Publication Date
JPS6328794A true JPS6328794A (en) 1988-02-06
JPH0633076B2 JPH0633076B2 (en) 1994-05-02

Family

ID=15974039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174176A Expired - Lifetime JPH0633076B2 (en) 1986-07-23 1986-07-23 Auto pilot device

Country Status (1)

Country Link
JP (1) JPH0633076B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349599A (en) * 1986-08-18 1988-03-02 Japan Radio Co Ltd Constant turning radius course changing device
JP2000202158A (en) * 1999-01-19 2000-07-25 Taito Corp Video game device
JP2007331552A (en) * 2006-06-14 2007-12-27 Jtekt Corp Marine steering device
DE102010008807A1 (en) 2010-02-22 2011-08-25 Engelskirchen, Jürgen, Dipl.-Ing., 22395 Method for automatic remote controlling of controllable object on predetermined arbitrary virtual path, involves determining actual position of object on predetermined virtual path by one or multiple external sensors
JP2012017058A (en) * 2010-07-09 2012-01-26 Marol Ltd Control device for hull, control program for hull, and automatic steering system incorporating the control program for hull

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804032B2 (en) * 2005-05-11 2011-10-26 日本無線株式会社 Automatic navigation assistance system for ships

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990112A (en) * 1982-11-13 1984-05-24 Japan Radio Co Ltd Automatic pilot device
JPS60252097A (en) * 1984-05-29 1985-12-12 Koden Electronics Co Ltd Control system for automatic steering gear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990112A (en) * 1982-11-13 1984-05-24 Japan Radio Co Ltd Automatic pilot device
JPS60252097A (en) * 1984-05-29 1985-12-12 Koden Electronics Co Ltd Control system for automatic steering gear

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349599A (en) * 1986-08-18 1988-03-02 Japan Radio Co Ltd Constant turning radius course changing device
JP2000202158A (en) * 1999-01-19 2000-07-25 Taito Corp Video game device
JP2007331552A (en) * 2006-06-14 2007-12-27 Jtekt Corp Marine steering device
DE102010008807A1 (en) 2010-02-22 2011-08-25 Engelskirchen, Jürgen, Dipl.-Ing., 22395 Method for automatic remote controlling of controllable object on predetermined arbitrary virtual path, involves determining actual position of object on predetermined virtual path by one or multiple external sensors
JP2012017058A (en) * 2010-07-09 2012-01-26 Marol Ltd Control device for hull, control program for hull, and automatic steering system incorporating the control program for hull

Also Published As

Publication number Publication date
JPH0633076B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
CN111679669B (en) Unmanned ship autonomous accurate berthing method and system
JPS6319011A (en) Guiding method for unattended mobile machine by point tracking system
CN105511464A (en) Ship autonomous navigation control system and control method
CN111487976B (en) Backing track tracking method
JP4804032B2 (en) Automatic navigation assistance system for ships
JPS6328794A (en) Autopilot device
JP2002178990A (en) Automatic navigation device
JP3535887B2 (en) Automatic steering method and device
CN111207748B (en) Water surface/underwater unmanned vehicle target surrounding tracking method based on perception information
RU2318187C1 (en) Device for producing and displaying information for guiding a vessel across narrow sections of fairwaters
CN112068550A (en) Ship course tracking control method
JPS6320292A (en) Automatic steering device
JPS5990112A (en) Automatic pilot device
JPH07119618B2 (en) Navigation equipment
CN114894187B (en) Unmanned ship navigation method
JP7291354B2 (en) Control device
RU2207296C2 (en) Method of automatic pilotage of ship
JPH0213324B2 (en)
JPS61232993A (en) Automatic navigating device
CN109507707A (en) A kind of integrated navigation control method waterborne and its control system
Surinov Algorithms and calculation scheme for planning the way of movement of trajectory point during maneuvering for anchoring
JPS6336244Y2 (en)
JPS61151421A (en) Calibration of direction detector of unmanned piloting of vehicle
JP2629179B2 (en) Ship course change control device
JPH0363523A (en) Autonomous navigation guidance device