JPS63274439A - Liquid and powder weighing and mixing apparatus - Google Patents

Liquid and powder weighing and mixing apparatus

Info

Publication number
JPS63274439A
JPS63274439A JP62106416A JP10641687A JPS63274439A JP S63274439 A JPS63274439 A JP S63274439A JP 62106416 A JP62106416 A JP 62106416A JP 10641687 A JP10641687 A JP 10641687A JP S63274439 A JPS63274439 A JP S63274439A
Authority
JP
Japan
Prior art keywords
powder
liquid
weighing
control
metering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62106416A
Other languages
Japanese (ja)
Inventor
Noboru Higuchi
登 樋口
Keizo Matsui
敬三 松井
Chuzo Kobayashi
小林 忠造
Shigeru Yamaguchi
滋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62106416A priority Critical patent/JPS63274439A/en
Publication of JPS63274439A publication Critical patent/JPS63274439A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/881Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise by weighing, e.g. with automatic discharge

Abstract

PURPOSE:To always keep stable weighing accuracy, by a method wherein flow speed controllers are respectively provided to a plurality of liquid and powder supply containers while a cumulative weighing detector is provided on the side of a receiving container to control the flow speed controllers on the basis of an actually weighed value and a weighing set value. CONSTITUTION:For example, in a weighing and mixing apparatus for weighing and mixing N-kinds of liquids and one kind of a powder, a weighing set value is set to a weighing control apparatus 44 on the basis of a given manufacturing condition and, when weighing start is indicated, a powder storage hopper 30 is operated at first through a change-over apparatus 46. That is, a screw feeder 32 is rotated in the predetermined number of rotations by the driving of a servo motor 31 and a powder is transferred to a receiving container 40. The load cell 42 of the receiving container 40 detects the wt. of the transferred powder and the value thereof is fed back to a weighing control part 44a which in turn operates the next number-of-rotation order from the deviation with the set value to perform the alteration control of a flow speed. In the same way, liquid tanks are successively controlled by opening degree control valves.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多種類の粉体及び液体を1つの容器に供給し
て計量後、混合・反応させて新たな材料を製造する液体
・粉体計量混合装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is a liquid/powder product that manufactures new materials by supplying many types of powders and liquids into one container, measuring them, and then mixing and reacting them. The present invention relates to a body weighing and mixing device.

(従来技術) 従来、液体・粉体計量混合装置に適用される計量装置と
して、高精度な計量を達成するために、流速可変に設け
たものはなく、流速を制限した計量装置が用いられてい
る。
(Prior art) Conventionally, in order to achieve high precision measurement, there has been no measuring device applied to liquid/powder measuring and mixing devices that has a variable flow rate, but a metering device with a limited flow rate has been used. There is.

また、液体と粉体をそれぞれ計量し、その後下流の混合
容器にて混合、反応、調製を行うシステムを考えた際、
従来装置では、液体と粉体の計量は別々の計量装置にて
第4図のように計量してから下流の混合容器に添加する
方法であった。そのため、計量装置としては、粉体では
重量計量、液体では容積式計量等の異なる計量方式を採
用してシステムを構成する必要があった。
In addition, when considering a system that measures liquid and powder separately, and then mixes, reacts, and prepares them in a downstream mixing container,
In the conventional apparatus, liquid and powder were measured using separate measuring devices as shown in FIG. 4, and then added to a downstream mixing container. Therefore, it is necessary to construct a system using different measuring methods such as gravimetric measuring for powder and volumetric measuring for liquid.

また、高精度な計量を実現するため、流速の異なるノ々
ルプを並列に設置して、所定の計量偏差にて切替る(例
えば、特開昭56−74715号、特開昭58−163
426号公報に開示)方法、或いは、流速が2徨類の固
定条件に切り換えられる機能を有した装置を設蓋し、所
定の計量偏差にて切替える(例えば、特開昭57−72
015号公報に開示)方法かめるが、何れの方法に於て
も、制御機能は当然2ループの制御を必要とし、システ
ム構成を複雑にした。
In addition, in order to achieve high-accuracy metering, norupu with different flow velocities are installed in parallel and switched at a predetermined metering deviation (for example, JP-A-56-74715, JP-A-58-163).
426) method, or a device having a function of changing the flow rate to two fixed conditions is installed, and the change is made at a predetermined measurement deviation (for example, Japanese Patent Application Laid-Open No. 57-72
However, in either method, the control function naturally requires two loops of control, which complicates the system configuration.

すなわち、このような独立の制御系を必要とする理由は
、計量時に計量容器に添加される粉流体の流量が、計量
設定値、供給容器内の粉流体量、粉流体物性値等により
異なるため、たとえ、液体または粉体だけの同一物体の
計量及び混合であっても、常時同一の制御機能では高精
度な計量値が得られなかった。
In other words, the reason why such an independent control system is required is because the flow rate of the powder added to the measuring container during measurement varies depending on the measurement setting value, the amount of powder in the supply container, the physical properties of the powder, etc. However, even when measuring and mixing the same object, such as liquid or powder, highly accurate measured values cannot be obtained using the same control function all the time.

(発明が解決しようとする問題点) 従来の液体及び/又は粉体の計量混合装置では、流速一
定を前提とした計量制御のため、以下の欠点を有する。
(Problems to be Solved by the Invention) Conventional liquid and/or powder metering and mixing devices have the following drawbacks because the metering control is based on a constant flow rate.

■計量精度:外乱及び液体・粉体の物性値の変化による
流速変動により、精度が保証されない事態を生じる。
■Measuring accuracy: Accuracy may not be guaranteed due to fluctuations in flow velocity due to disturbances and changes in the physical properties of liquids and powders.

すなわち、重力移送の場合、例えば供給側容器の液体・
粉体残存量により、流下する粉及び液の流速は変動する
が、残存量の変化が大きいと流速がある条件範囲をはみ
出すため、精度を悪くした。
In other words, in the case of gravity transfer, for example, the liquid in the supply container
The flow rate of the powder and liquid flowing down varies depending on the amount of powder remaining, but if the change in the remaining amount is large, the flow rate goes outside a certain range of conditions, so accuracy was reduced.

また、このことは、供給側容器の粉量及び液量をある中
白で制限し、粉量及び液量を常にある一定量以上に確保
する必要性を示すものであり、液体・粉体のロスを生じ
てランニングコストを増加させた。
This also indicates the need to limit the amount of powder and liquid in the supply side container to a certain level, and to always ensure that the amount of powder and liquid is above a certain level. This caused losses and increased running costs.

さらに、吸湿性のある粉体とかブリッジを起こし易い粉
体では、その保存環境条件によってその粉体の流動性は
異なる。従って、供給容器に保存しながら使用するシス
テムでは、環境条件の変化(例えば、温度、湿度とか粉
体の流動性促進のための付帯設備−)ζイブレータやエ
アーノツカー等−による振動)により、その粉体の流動
性は変化する。このため、流速の条件が異なシ計量精度
を悪化させてしまう。
Furthermore, in the case of hygroscopic powder or powder that is prone to bridging, the fluidity of the powder differs depending on the storage environment conditions. Therefore, in a system that is used while being stored in a supply container, the powder may be affected by changes in environmental conditions (e.g., temperature, humidity, auxiliary equipment for promoting powder fluidity, vibrations caused by ζibrators, air knockers, etc.). The fluidity of the body changes. For this reason, measurement accuracy is deteriorated under different flow velocity conditions.

■計量範囲:計量範囲が狭い。■Measuring range: The measuring range is narrow.

この理由は、計量停止しても、系の応答遅れによる流れ
込み量があシ、この量が流速により決定されるため、流
速一定のもとでは、計量範囲を狭めることにより、許容
できる流れ込み量を保証している。従って、同一粉流体
の計量であっても、おのおの適性な計量範囲の計量装置
が必要であり、装置数が増加する。
The reason for this is that even if the metering is stopped, the amount of inflow remains due to the response delay of the system, and this amount is determined by the flow velocity. Therefore, when the flow rate is constant, the allowable inflow amount can be determined by narrowing the metering range. Guaranteed. Therefore, even when measuring the same liquid powder, measuring devices each having an appropriate measuring range are required, and the number of devices increases.

■計量時間:計量設定値により計量時間が左右される。■Measuring time: Measuring time is affected by the measurement setting value.

計量設定値が小さい場合は、計量時間は短かく、大きい
場合は長くなる。従って、製造サイクル上適性な計量装
置が計量値に応じて必要であシ、装置数が増加する。
If the metering setting value is small, the metering time will be short; if it is large, the metering time will be long. Therefore, a measuring device suitable for the manufacturing cycle is required depending on the measured value, and the number of devices increases.

■設 備:計量設備の複雑化及び装置台数の増加。■Equipment: Measuring equipment becomes more complex and the number of devices increases.

計量装置に適した流速設定が必要であり、かつ設定流速
値に対して適性な計量制御装置が必要であシ、装置数が
増加する。
It is necessary to set a flow rate suitable for the metering device, and a metering control device appropriate for the set flow rate value is required, which increases the number of devices.

また、従来装置では、液体と粉体の共有した計量装置は
なく、液体用、粉体用の各々の計量装置が必要であり、
計量装置台数が増加する。
In addition, in conventional devices, there is no shared measuring device for liquids and powders, and separate measuring devices are required for liquids and powders.
The number of weighing devices will increase.

本発明の目的は、上記事情に基づいてなされたもので、
外乱や液体・粉体の物性の変化による流速変動に影響さ
れない高精度な計量を実現すると共に、ワイrレンジの
計量範囲を確保し、かつ計量設定値の大小に左右されな
いで短時間計量を実現する計量制御装置を用い、これに
よりシステムを構成し、設備の簡素化並びに製造能力の
増強と、原材料ロスの低減を計量、 ■ 装置台数の低減によるイニシャルコスト低減 ■ 装置台数の低減によるメンテナンス工数低減 ■ 装置台数の低減による信頼性向上による故障低減 ■ 原材料ロスの低減によるランニングコスト低減 の経済効果の高い液体・粉体計量混合装置を提供するこ
とにある。
The object of the present invention was achieved based on the above circumstances, and
Achieves high-accuracy measurement that is not affected by flow rate fluctuations caused by external disturbances or changes in the physical properties of liquids and powders, secures a wire range measurement range, and achieves short-time measurement without being affected by the size of the measurement setting value. The system is configured using a weighing control device that simplifies equipment, increases manufacturing capacity, and reduces raw material loss. ■ Reducing initial costs by reducing the number of devices ■ Reducing maintenance man-hours by reducing the number of devices ■ Reducing failures by improving reliability by reducing the number of devices ■ Providing a highly economical liquid/powder measuring and mixing device that reduces running costs by reducing raw material loss.

(問題点を解決するための手段) 本発明の上記目的は、被計量粉流体の計量時に、クロー
ズトループ制御にて流速を時々刻々可変にする計量制御
装置を適用すると共に、前記計量制御装置の設備台数が
低減化できる液体・粉体計量混合装置により達成される
。そのため、下記の基本構成要素により本発明の液体・
粉体計量混合装置は構成される。
(Means for Solving the Problems) The above object of the present invention is to apply a metering control device that changes the flow rate from time to time by closed loop control when measuring powdery fluid to be measured, and to This is achieved using a liquid/powder measuring and mixing device that can reduce the number of equipment. Therefore, the basic components of the present invention are as follows:
The powder metering and mixing device is configured.

1)供給容器:計量される原材料液又は粉を貯蔵する容
器。
1) Supply container: A container that stores the raw material liquid or powder to be measured.

容器の容量は、製造に適したスケールを要する。The capacity of the container requires a scale suitable for manufacturing.

本発明にて、容器の残量の制限はなく、理論的には残−
toまで計量できる。又、原材料の物性値(例えば、液
体であれば粘度等、粉体であれば粒径等)に影響されず
、流出可能な物性値を有していれば、どんな液及び粉で
も残量Oまで計量可能である。。
In the present invention, there is no limit to the amount remaining in the container;
It is possible to measure up to to. In addition, any liquid or powder can be used without being affected by the physical properties of the raw material (e.g., viscosity for liquids, particle size for powders, etc.) as long as it has physical properties that allow it to flow out. It is possible to measure up to .

2)流速制御装置:供給容器数に対応した個数分の流速
制御機を有し、例えば、スクリューフィーダでは、回転
数を指令することで流れを制御する。ダンパーでは開度
を変化させることで流れを変化させる流速制御装置であ
る以上は、粉体用のものであるが、液体用としては開度
調整弁等がある。
2) Flow rate control device: It has a number of flow rate control devices corresponding to the number of supply containers. For example, in a screw feeder, the flow is controlled by commanding the rotation speed. A damper is a flow rate control device that changes the flow by changing the opening degree, and is used for powder, but for liquids, there are opening adjustment valves and the like.

駆動手段としては、例えばACサーダ、モータ等がある
Examples of the driving means include an AC radar, a motor, and the like.

3)受入容器:製造スケールに適した容量の容器。3) Receiving container: A container with a capacity suitable for the manufacturing scale.

4)検出器二計量値の時々刻々の変化を観測する機器で
あり、受入容器に付属され、混合可能な原材料について
は複数の材料を同一容器にて累積計量を可能にする。
4) Detector 2 This is a device that observes moment-to-moment changes in measured values, and is attached to a receiving container. For raw materials that can be mixed, it is possible to cumulatively measure multiple materials in the same container.

5)計量制御装置:流速を変化させるクローズトループ
制御の精密計量制御装置であシ、1台の計量装置にて、
各粉体及び液体の計量を可能にする。
5) Metering control device: A precision metering control device with closed-loop control that changes the flow rate.With one metering device,
Enables measurement of each powder and liquid.

6)切替装置:複数の流速制御機を、1台の駆動制御装
置にて制御するための装置である。流速制御装置に駆動
制御装置を有する場合は必要ないが、コスト低減のため
に、本発明では設置する。
6) Switching device: A device for controlling multiple flow rate controllers with one drive control device. Although it is not necessary when the flow rate control device includes a drive control device, it is provided in the present invention in order to reduce costs.

7)撹拌機:累積計量された粉流体を撹拌して混合する
7) Stirrer: stirs and mixes the cumulatively measured powder fluid.

本発明の基本構成要素は、上記の通シであるが、粉体の
流速を可変する流速制御機は、各種タイプがある。回転
数の指令にて流れを可変させるスクリューフィーダ、ロ
ータリ式があシ、流動性のよい粉体であれば、開度ダン
Aにて位置指令にて開度を可変して流れを変化させるも
のがある。又、流れを停止させるものとしてシャッター
ゲート等がある。
The basic component of the present invention is the above-mentioned system, but there are various types of flow rate controllers that vary the flow rate of powder. A screw feeder that changes the flow by commanding the rotation speed, a rotary type feeder, and if the powder has good fluidity, a device that changes the flow by varying the opening with the position command at opening Dan A. There is. Additionally, there are shutter gates and the like that stop the flow.

また、本発明は、液体及び粉体の計量混合であシ、洗浄
等のため、種々の付帯装置を設置する場合がある。例え
ば、計量容器、液体ストックタンク等にスプレーd−ル
等を設置し、配管途中に切夛替え弁を設置する。又、各
容器に混合のため撹拌機を設置する。更に1保温のため
恒温槽等からの温水循環等を行う。
Further, in the present invention, various auxiliary devices may be installed for measuring and mixing liquids and powders, cleaning, etc. For example, a spray d-rule or the like is installed in a measuring container, a liquid stock tank, etc., and a switching valve is installed in the middle of the piping. Also, install a stirrer in each container for mixing. Furthermore, to maintain the temperature, hot water is circulated from a constant temperature bath, etc.

(実施態様) 以下、図面によ)本発明の実施態様を詳説する。(Embodiment) Embodiments of the present invention will be described in detail below (with reference to the drawings).

第1図の1実施態様は、N種類の液と1種類の粉体の計
量混合装置を示している。
One embodiment of FIG. 1 shows a metering and mixing device for N types of liquids and one type of powder.

すなわち、この実施態様では、供給容器とじて上流側に
配置され、原料液を充填したN個のタンク及び原料粉を
充填した1個の貯蔵ホラ・ぞから、受入容器として下流
何に配置され、かつ重量検出器を備えた1個の計量タン
クにそれぞれ原材料を供給し、原材料の重量を累積計1
後調製タンクに移送して調製する場合を示す。
That is, in this embodiment, the supply container is arranged on the upstream side, N tanks filled with raw material liquid and one storage tank filled with raw material powder are arranged downstream as a receiving container, The raw materials are each fed into one weighing tank equipped with a weight detector, and the cumulative weight of the raw materials is calculated as 1.
The case where preparation is performed by transferring to a post-preparation tank is shown.

原料液が充填されたタンクl、2.・・・、N(但し、
本実施態様ではN≦9とする。)は、それぞれ液供給配
管に、サーゼモータ61,62.・・・。
Tank l filled with raw material liquid, 2. ..., N (however,
In this embodiment, N≦9. ) are connected to the liquid supply pipes, respectively, by serze motors 61, 62 . ....

6Nにより駆動される開度調整弁11,12.・・・。Opening adjustment valves 11, 12 . ....

IN及び閉止弁21.22.・・・、2Nをj@次配置
している。
IN and shutoff valves 21.22. ..., 2N are arranged in the j@th order.

また、前記タンク1,2.・・・、Nは閉止弁21゜2
2、・・・、2Nの出力を受入容器40に案内する共通
の連結管41と連設されている。
Further, the tanks 1, 2. ..., N is the shutoff valve 21゜2
2, . . . , 2N output to the receiving container 40.

一方、原料粉が充填された貯蔵ホッパ30は、サー〆モ
ータ31により駆動されるスクリューフィーダ32を介
して供給配管がシャッタゲート33と接続しており、ゲ
ート出力は配管により前記受入容器40に案内されてい
る。
On the other hand, the storage hopper 30 filled with raw material powder has a supply pipe connected to a shutter gate 33 via a screw feeder 32 driven by a servo motor 31, and the gate output is guided to the receiving container 40 by the pipe. has been done.

前記受入容器40には、各供給容器から移送されて来る
液体及び粉体の重量を計量する検出器として、ロードセ
ル42が配置されている。
A load cell 42 is arranged in the receiving container 40 as a detector for measuring the weight of the liquid and powder transferred from each supply container.

前記ロードセル42はロードセルアンプ43を通して計
量制御装置44と接続されており、計量制御装置はチー
2ドライノS45を介して切替装置46と接続されてい
る。
The load cell 42 is connected to a weighing control device 44 through a load cell amplifier 43, and the weighing control device is connected to a switching device 46 via a Q2 Drino S45.

前記切替装置46は、前記制御装置440指令に基づい
て切替わり、原料供給系の1つの系を選択して、制御装
置から発せられる制御信号を切替えて出力する。
The switching device 46 switches based on a command from the control device 440, selects one of the raw material supply systems, and switches and outputs a control signal issued from the control device.

受入容器40の下流には、底弁47を通して調製タンク
48が配置されており、調製タンク48には撹拌機49
が配置されている。
A preparation tank 48 is arranged downstream of the receiving container 40 through a bottom valve 47, and a stirrer 49 is connected to the preparation tank 48.
is located.

なお、粉体の受入容器への移送及び調製タンクへの移送
について、粉体の流動性を促進するため、図示はしない
が、貯蔵ホラ・ぐ及び受入容器には・々イブレータ又は
エアレーショ等が使用されている。
Regarding the transfer of powder to the receiving container and to the preparation tank, in order to promote the fluidity of the powder, an iblator or aeration device is used in the storage container and receiving container, although not shown. has been done.

次にこのように構成された粉流体計量装置の計量混合プ
ロセスについて、WJ1図と共に、第2図の制御ブロッ
ク図を併用して説明する。
Next, the measuring and mixing process of the powder measuring device configured as described above will be explained using the control block diagram of FIG. 2 as well as the WJ1 diagram.

最初に、計量制御装置44に、原料供給を受ける供給容
器の指定、受入容器における対象原材料の計量順序の設
定等の製造条件が与えられる。
First, the measurement control device 44 is given manufacturing conditions such as designation of a supply container that receives raw materials and setting of the measurement order of target raw materials in a receiving container.

計量制御装置44に計量設定値が設定され、計量開始が
指示されると、切替装置46が切替わシ、最初に選択さ
れた供給系、ここでは粉体の計量が最先されて貯蔵ホラ
A30のシャッターゲート33が開となり、スクリュー
フィーダ32が予め定められた回転数で粉体を移送する
ように、計量制御装置44からサーゼドライ/々45に
回転数指令が伝送され、サーゼモータ31を駆動して指
示された回転数にスクリューフィーダを回転させ、原材
料の流れを引き起こす。これにより、貯蔵ホツノソ30
の原材料は、受入容器40に移送され始める。
When the metering setting value is set in the metering control device 44 and the start of metering is instructed, the switching device 46 switches to the first selected supply system, in this case, the metering of powder is carried out first, and the storage hole A30 is switched. The shutter gate 33 is opened, and a rotation speed command is transmitted from the metering control device 44 to the Serze Dry/45 to drive the Serze motor 31 so that the screw feeder 32 transfers the powder at a predetermined rotation speed. Rotate the screw feeder to the indicated rotation speed and cause the flow of raw materials. This allows storage of 30
The raw materials begin to be transferred to the receiving container 40.

受入容器40のロードセル42は、移送された原材料の
重量を検知し、その値をロードセルアンプ43を通じて
計量制御部44aにフィーPノ々ツクする。
The load cell 42 of the receiving container 40 detects the weight of the transferred raw material, and sends the value to the weighing controller 44a via the load cell amplifier 43.

計量制御部44aは、この実重量値から、設定値との偏
差、偏差の時間変化を等々を演算し、ファジィ制御、最
適制御、学習制御等々の制御方式に基づき、次の適切な
流速となる速度指令(回転(ス指令)を演算にて求める
。そして、次の制御周期において、スクリューフィーダ
32に適切な回転数指令を指示し、流速を変更する。
The metering control unit 44a calculates the deviation from the set value, the time change of the deviation, etc. from this actual weight value, and obtains the next appropriate flow rate based on a control method such as fuzzy control, optimal control, learning control, etc. A speed command (rotation command) is calculated. Then, in the next control cycle, an appropriate rotation speed command is given to the screw feeder 32 to change the flow speed.

以上の様に、ロードセル42の観測量を基に、定められ
た制御周期にてスクリューフィーダの回転数をクローズ
Pループ(第2図)にて制御し、結果として流速を制御
する。
As described above, the rotation speed of the screw feeder is controlled in a closed P loop (FIG. 2) at a predetermined control period based on the observed amount of the load cell 42, and as a result, the flow velocity is controlled.

計量偏差が小さくなると、スクリューフィーダの回転数
は小さくなシ、流速は微小となる。計量偏差、計量偏差
時間の時間変化量が小さくなり、計量偏差がある値以下
となると、計量停止し、シャッタゲート33は閉となり
、スクリューフィーダの回転数は0となり、回転を停止
する。このとき、流速は微小であり、流れ込み量は微小
である。
When the measurement deviation becomes small, the rotation speed of the screw feeder becomes small and the flow velocity becomes very small. When the amount of change over time in the metering deviation and metering deviation time becomes small and the metering deviation becomes less than a certain value, metering is stopped, the shutter gate 33 is closed, the rotation speed of the screw feeder becomes 0, and the rotation is stopped. At this time, the flow velocity is minute and the amount of inflow is minute.

よって、計量停止後の流れ込み量は小さくなり、計量精
度は、流速変動に依存せず向上する。更に、計量範囲に
おいて、計量設定値とかプロセスの系によりスクリュー
フィーダ32の動作が変わり、計量設定値の大小を問わ
ず同一計量装置にて計量ができ、計量範囲が拡大する。
Therefore, the amount of flow after the metering is stopped becomes small, and the metering accuracy is improved regardless of the flow velocity fluctuation. Further, in the measurement range, the operation of the screw feeder 32 changes depending on the measurement setting value and the process system, so that regardless of the size of the measurement setting value, the same weighing device can perform measurement, and the measurement range is expanded.

但し、検出端の静的精度内である。However, it is within the static accuracy of the detection end.

又、計量時間においても、スクリューフィーダ32の動
作パターンが変化し、計量設定値の大小を問わず、はぼ
同一の短時間の計量ができる。
Also, during the measurement time, the operation pattern of the screw feeder 32 changes, and regardless of the magnitude of the measurement setting value, almost the same short-time measurement can be performed.

次に1混合対象となるタンク1の液の計tK切りかわる
。切替装置46が切替わり、タンクl側の開度調整弁1
1が所定開度に開き、かつ閉止弁21が開くと、タンク
lの原材料は受入容器40へ供給される。計量設定値は
予め設定されておシ、計量開始指令に従い前記粉体の場
合と同様な制御により累積計量が行われる。計量制御装
置内の制御機能は同一であり、制御信号は切替装置46
によυ切替えられて操作端の開度調整弁11及び閉止弁
21に出力される。この際、制御出力は回転数から弁開
度に対応した位置指令値に変換されて出力される。すな
わち、計量制御部44aは、系統選択信号指令から回転
数出力か位置出力かを判断して切替わシ、位置出力の場
合は、位置指令変換部44bを経由して制御信号を駆動
制御部(ブー/ドライ・々)45に出力する。
Next, the total amount tK of the liquid in tank 1 to be mixed is changed. The switching device 46 switches, and the opening adjustment valve 1 on the tank l side
1 opens to a predetermined opening degree and the shutoff valve 21 opens, the raw material in the tank 1 is supplied to the receiving container 40. The measurement setting value is set in advance, and cumulative measurement is performed according to the measurement start command under the same control as in the case of powder. The control functions within the metering control device are the same, and the control signal is transmitted through the switching device 46.
The signal is switched by υ and output to the opening adjustment valve 11 and the shutoff valve 21 at the operating end. At this time, the control output is converted from the rotational speed into a position command value corresponding to the valve opening degree and output. That is, the metering control section 44a determines whether it is a rotational speed output or a position output based on the system selection signal command and switches the output, and in the case of a position output, the control signal is sent to the drive control section ( Boo/Dry etc.) Output to 45.

選択されたタンクの液の供給が順次行われ、最先された
粉体と共に受入容器40による複数種の原料液の累積計
量が終了すると、受入容器40の底弁47が開き、粉流
体を調製タンク48へ導入する。調製タンク48では、
撹拌機49が駆動して混合が行われ、撹拌終了により粉
流体は排出される。
The liquids are sequentially supplied to the selected tanks, and when the cumulative measurement of the plurality of raw material liquids in the receiving container 40 is completed along with the powder that has been supplied first, the bottom valve 47 of the receiving container 40 is opened, and the liquid powder is prepared. Introduced into tank 48. In the preparation tank 48,
The agitator 49 is driven to perform mixing, and when the agitation is completed, the liquid powder is discharged.

次に、本発明に基づいて行った実験結果について述べる
Next, the results of experiments conducted based on the present invention will be described.

この実験は、先の第1図に示した計量装置において、液
体用貯蔵タンクlと粉体用貯蔵ホラA30を有し、受入
容器40にで順次計量する実験を行った。
In this experiment, the measuring device shown in FIG. 1 had a liquid storage tank 1 and a powder storage hole A30, and the receiving container 40 was used to sequentially measure the amount.

本結果の計量装置は、最大10に9の計量ができ、ロー
Pセルの精度は5000分の1でるる。液体計量系では
、開度調整弁11の位置制御をサーゼモータ61にて行
い、粉体計量系では、スクリューフィー/32をサーー
モータ31にて回転数制御し、計量制御装置から液体計
量では、位置指令出力を切替装置にてサーフモータ61
を駆動し、粉体計量では、回転数出力を切替装置にてサ
ーフモータ31を駆動する。
The resulting weighing device can measure up to 9 times out of 10, and the accuracy of the low P cell is 1/5000. In the liquid measuring system, the position of the opening adjustment valve 11 is controlled by the sirze motor 61, in the powder measuring system, the rotation speed of the screw fee/32 is controlled by the sirze motor 31, and in liquid metering, the position command is sent from the metering control device. Surf motor 61 with output switching device
In powder measurement, the surf motor 31 is driven by a rotation speed output switching device.

第5図は、その時の液体(実験では水を使用)の1 k
g計量結果を示す。又、第6図に粉体の5001計量結
果を示す。第5図と第6図から明らかな通り、操作器の
動作パターン(液体:開度調整弁、粉体ニスクリユーフ
ィーダ)は変わるが、はぼ同じ計量時間で高精度の計量
結果が得られた。
Figure 5 shows 1 k of the liquid at that time (water was used in the experiment).
gWeighing results are shown. Further, Fig. 6 shows the results of 5001 measurements of powder. As is clear from Figures 5 and 6, although the operation pattern of the operating device (liquid: opening adjustment valve, powder varnish feeder) changes, highly accurate measurement results can be obtained in approximately the same measurement time. Ta.

又、液体の場合、貯蔵タンクlのレベルや開度調整弁の
流量特性の異なるものを使用して、流速変化に対する影
響を確認したが、同一の制御方法にて高精度の計量結果
を得た。更に、粉体の場合についても、貯蔵ホツノクに
振動を加え粉体を圧縮し、流動性を変化させるなど、流
量特性に変化を加えたが、当然スクリューフィーダの動
作パターンは異なるものの、計量時間、計量精度共に同
一の結果を得た。
In addition, in the case of liquids, we used different storage tank levels and opening adjustment valves with different flow characteristics to check the effect on flow rate changes, but we obtained highly accurate measurement results using the same control method. . Furthermore, in the case of powder, we applied vibration to the storage container to compress the powder and change its fluidity, making changes to the flow characteristics.Although the operation pattern of the screw feeder is of course different, the metering time, The same results were obtained for both measurement accuracy.

第3図は、本発明の変更例を示している。FIG. 3 shows a modification of the invention.

この変更例では、受入容器50に撹拌機51等の調製用
付帯設備を配置して、受入容器50を調製タンクとして
兼用している。従って、受入容器50より上流側の原材
料供給系は、先の実施態様で述べたものと同一構成から
なっている。このように構成することでシステムを簡単
化できる。しかし、反面、同一容器で計量、混合並びに
反応等の一連処理が出来ない原材料を含んだ場合、シス
テムの汎用性は低下する。
In this modification, incidental equipment for preparation such as a stirrer 51 is arranged in the receiving container 50, so that the receiving container 50 also serves as a preparation tank. Therefore, the raw material supply system upstream of the receiving container 50 has the same configuration as that described in the previous embodiment. With this configuration, the system can be simplified. However, on the other hand, if the system contains raw materials that cannot be subjected to a series of processes such as measurement, mixing, and reaction in the same container, the versatility of the system decreases.

また、本発明の他の変更例として、先の実施態様で述べ
た受入容器に検出器を設置して計量する加算計量方式と
、これとは別に供給容器に検出器を設置して流下量を計
量する減算計量方式と、を組み合わせることもできる。
In addition, as other modified examples of the present invention, there is an addition measurement method in which a detector is installed in the receiving container to measure the amount as described in the previous embodiment, and a detector is installed in the supply container separately to measure the flow rate. It is also possible to combine it with the subtraction weighing method.

このように設けることにより、例えば、減算計量にて微
小計量を行い、加算式計量にて計量設定値の大きなもの
を計量することで、更に広い計量範囲の計量ができる。
By providing in this manner, for example, by performing minute measurements using subtraction weighing and weighing items with large measurement settings using additive weighing, it is possible to perform measurements over a wider measurement range.

また、本発明の他の変更例として、受入容器の下流(m
K配装された調製タンクを移動式に設けることが出来る
。このように設けた計量混合装置では、適用される前述
した計量装置が、短時間計量を実現できるため、計量時
間が調製タンクの搬送能力に制限を加えることがない。
Further, as another modification of the present invention, downstream of the receiving vessel (m
A preparation tank equipped with K can be provided in a mobile manner. In the metering and mixing device provided in this manner, the above-mentioned metering device applied thereto can realize metering in a short time, so that the metering time does not limit the conveyance capacity of the preparation tank.

更に、複数個の受入容器又は調製タンクが設備される大
型のシステムでは、配管の簡素化と共に汎用性が向上で
きるO なお、本発明に適用できる検出器としては、先の実施態
様に挙げたロードセルの外に、各種検出器が挙げられる
。例えば、各種レベル計等である。
Furthermore, in a large system equipped with multiple receiving containers or preparation tanks, the piping can be simplified and the versatility can be improved. Note that the load cell mentioned in the previous embodiment can be used as a detector that can be applied to the present invention. In addition to the above, there are various types of detectors. For example, various level meters, etc.

ここで、計量範囲は、その検出器の静的精度により異な
る。
Here, the measurement range depends on the static accuracy of the detector.

(発明の効果) 以上記載したとおり、本発明の液体・粉体計量混合装置
によれば、計量設定値、供給容器内の原材料量、原材料
の物性値等に左右されない計量装置の採用により、 ■ 計量装置台数の低減 ■ 原材料のロスの低減 ができるため、下記の経済的効果を得ることができる。
(Effects of the Invention) As described above, according to the liquid/powder measuring and mixing device of the present invention, by adopting a measuring device that is not affected by the measurement setting value, the amount of raw material in the supply container, the physical property value of the raw material, etc. Reduction in the number of weighing devices ■ Since it is possible to reduce the loss of raw materials, the following economic effects can be obtained.

■ 装置台数の低減によるイニシャルコスト低減 ■ 装置台数の低減によるメンテナンス工数低減 ■ 装置台数の低減による信頼性向上による故障低減 ■ 流速制御のため原材料の残存f(ヘッド差)等に影
響されず、原材料ロスの低減によるランニングコスト低
■ Reducing initial costs by reducing the number of devices ■ Reducing maintenance man-hours by reducing the number of devices ■ Reducing failures by improving reliability by reducing the number of devices ■ Because of flow velocity control, the raw material is not affected by residual f (head difference) etc. Reducing running costs by reducing losses

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施態様による多種液体・粉体の計
量混合装置の構成図、第2図は第1図装置を説明する制
御ブロック図、第3図は本発明の変更例による液体・粉
体計量混合装置の構成図、第4図は従来装置を示す構成
図、第5図・第6図は本発明に基づいて行なわれた実験
結果による計量特性図である。 l、2.・・・、N:タンク(供給容器)、11゜12
、・・・、IN:開度調整弁、21,22.・・・。 2N:閉止弁、30:貯蔵ホツノで(供給容器)、31
:サーゼモータ、32ニスクリユーフイーダ、33:シ
ャッタゲート、40,50:受入容器、41:連結管、
42:ロードセル、43:ロードセルアンプ、44:計
量制御装f’!、45:サーIPライノ々(駆動制御部
)、46:切替装置、47:底弁、48:!51製タン
ク、49.51:撹拌機。 代理人 弁理士(8107)佐々木清隆(ほか3名) 
 − 第3図 第4図 手続補正書 1.  !Hflの表示 昭和62年特許願第106416@ 2、 発明の名称 液体・粉体計吊混合装U 3、 補任をする省 小作との関係: 特許出願人 名称: (520)富F写真フィルム株式会社4、代理
人 住所:〒100  東京都f代■区霞が関3丁[12番
5号 霞が関ビル29階霞が関ビル内郷便局私内箱第4
9号 5、 補正により増加する発明の数: 06、 補正の
対象:(1)  明mixの「発明の詳細な説明」の欄
(2)図面 第4図
FIG. 1 is a configuration diagram of a metering and mixing device for various liquids and powders according to an embodiment of the present invention, FIG. 2 is a control block diagram explaining the device shown in FIG. 1, and FIG.・A configuration diagram of a powder measuring and mixing device, FIG. 4 is a configuration diagram showing a conventional device, and FIGS. 5 and 6 are measurement characteristic diagrams based on experimental results conducted based on the present invention. l, 2. ..., N: Tank (supply container), 11°12
, ..., IN: opening adjustment valve, 21, 22. .... 2N: Shutoff valve, 30: Storage pot (supply container), 31
: Sarze motor, 32 Niscrew feeder, 33: Shutter gate, 40, 50: Receiving container, 41: Connecting pipe,
42: Load cell, 43: Load cell amplifier, 44: Weighing control device f'! , 45: Sir IP Rhino (drive control section), 46: Switching device, 47: Bottom valve, 48:! 51 tank, 49.51: Stirrer. Agent: Patent attorney (8107) Kiyotaka Sasaki (and 3 others)
- Figure 3 Figure 4 Procedural amendment 1. ! Indication of Hfl 1985 Patent Application No. 106416@2, Title of invention Liquid/Powder Meter Hanging Mixer U 3, Relationship with the subsidy tenant: Name of patent applicant: (520) Tomi F Photo Film Co., Ltd. 4. Agent address: 3-chome Kasumigaseki, F-ku, Tokyo 100 [No. 12-5 Kasumigaseki Building 29th floor Kasumigaseki Building Naigobin Bureau Private Box No. 4
No. 9 No. 5, Number of inventions increased by amendment: 06, Subject of amendment: (1) "Detailed description of the invention" column of Akira mix (2) Drawing Figure 4

Claims (1)

【特許請求の範囲】 1)流速を変化させるクローズドループの粉流体計量方
法により複数種の液体及び粉体をそれぞれ計量して混合
する液体・粉体計量混合装置であつて、少なくとも2個
の供給容器と、供給容器に充填された液体及び粉体を受
液・受粉する受入容器と、前記供給容器にそれぞれ付属
して流速を制御する流速制御機と、前記受入容器に付属
して液体・粉体を累積計量する検出器と、前記検出器に
より計量された実計量値と計量設定値とに基づいて流速
制御量を算出する計量制御装置と、前記流速制御量を前
記流速制御機に切替えて出力する切替装置と、計量され
た粉流体を撹拌する撹拌機と、を備えていることを特徴
とする液体・粉体計量混合装置。 2)任意に設定される計量設定値と実計量値との偏差及
び偏差時間変化量からファジィ制御または学習制御また
は最適制御により計量制御装置が流速制御量を算出する
ことを特徴とする特許請求の範囲第1項に記載の液体・
粉体計量混合装置。 3)粉体の流速を制御する流速制御機がスクリューフィ
ーダまたは開度ダンパまたはシャッタゲートにより設け
られており、液体の流速を制御する流速制御機が開度調
整弁により設けられていることを特徴とする特許請求の
範囲第1項に記載の液体・粉体計量混合装置。 4)受給容器に検出器を設置して計量する加算計量方式
と、供給容器に検出器を設置して流出量を計量する減算
計量方式と、を組み合わせることを特徴とする特許請求
の範囲第1項に記載の液体・粉体計量混合装置。
[Scope of Claims] 1) A liquid/powder metering and mixing device that measures and mixes multiple types of liquids and powders using a closed-loop powder metering method that changes the flow rate, the device comprising at least two supply units. a container, a receiving container that receives and pollinates the liquid and powder filled in the supply container, a flow rate controller attached to each of the supply containers to control the flow rate, and a flow rate controller attached to the receiving container to receive and pollinate the liquid and powder. a detector that cumulatively weighs the body; a metering control device that calculates a flow velocity control amount based on the actual measurement value measured by the detector and a measurement setting value; and a metering control device that switches the flow velocity control amount to the flow velocity controller. A liquid/powder measuring and mixing device characterized by comprising a switching device for outputting and a stirrer for stirring measured powder fluid. 2) The metering control device calculates the flow rate control amount by fuzzy control, learning control, or optimal control from the deviation between the arbitrarily set metering setting value and the actual metering value and the deviation time change amount. Liquids listed in scope 1.
Powder measuring and mixing device. 3) A flow rate controller for controlling the powder flow rate is provided by a screw feeder, an opening damper, or a shutter gate, and a flow rate controller for controlling the liquid flow rate is provided by an opening adjustment valve. A liquid/powder measuring and mixing device according to claim 1. 4) Claim 1, characterized in that it combines an addition measurement method in which a detector is installed in the receiving container to measure the amount, and a subtraction measurement method in which a detector is installed in the supply container to measure the outflow amount. The liquid/powder measuring and mixing device described in 2.
JP62106416A 1987-05-01 1987-05-01 Liquid and powder weighing and mixing apparatus Pending JPS63274439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62106416A JPS63274439A (en) 1987-05-01 1987-05-01 Liquid and powder weighing and mixing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106416A JPS63274439A (en) 1987-05-01 1987-05-01 Liquid and powder weighing and mixing apparatus

Publications (1)

Publication Number Publication Date
JPS63274439A true JPS63274439A (en) 1988-11-11

Family

ID=14433065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106416A Pending JPS63274439A (en) 1987-05-01 1987-05-01 Liquid and powder weighing and mixing apparatus

Country Status (1)

Country Link
JP (1) JPS63274439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516066A (en) * 2003-05-12 2007-06-21 イーコラブ インコーポレイティド Mass-based dispensing method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516066A (en) * 2003-05-12 2007-06-21 イーコラブ インコーポレイティド Mass-based dispensing method and apparatus

Similar Documents

Publication Publication Date Title
US4830508A (en) Controlling method and a measuring mixer for liquids and powders
EP0304093B1 (en) Liquid measuring apparatus
JP3882148B2 (en) Continuous automatic manufacturing system for automobiles and other paints
US4880142A (en) Powder weighing mixer and method thereof
JP2602819B2 (en) Automatic control of flowable material flow by continuous metering device
RU2086931C1 (en) Method for recording product flow and device for effecting the same
JPS6234413B2 (en)
WO2020209806A1 (en) Calibration method for liquid flowmeter
JPH07128123A (en) Method and device for distributing and mixing at least two component in weight measuring way
CA2249204C (en) Oil injection apparatus and method for polymer processing
JPS61284615A (en) Device for distributing fluidized product by weight
JPS63283731A (en) Liquid and powder metering and mixing apparatus
US3300193A (en) Control apparatus for material mixers
JPH11314027A (en) Continuous mixer, mixing apparatus comprising continuous mixer, and method for operating thereof
JPS63274439A (en) Liquid and powder weighing and mixing apparatus
JPS63274441A (en) Powder weighing and mixing apparatus
JPH01159040A (en) Method and apparatus for measuring, mixing and distributing liquid
JPS63283732A (en) Liquid-powder metering and mixing apparatus
JPH01100615A (en) Liquid/powder measuring, mixing and distributing device
JPS63274440A (en) Liquid and powder weighing and mixing apparatus
JPS63283734A (en) Powder material metering and mixing apparatus
FI103500B (en) Method and apparatus for dispensing and mixing liquid substances
JPS63283733A (en) Powder material metering and mixing apparatus
CN202399406U (en) Continuous and accurate burdening system for inorganic building material cementing material
RU2040326C1 (en) Aggregate for loose materials mixing and homogenization and apparatus for continuous flour and similar materials measuring in doses