JPS63273016A - Resonance alarm - Google Patents

Resonance alarm

Info

Publication number
JPS63273016A
JPS63273016A JP10694987A JP10694987A JPS63273016A JP S63273016 A JPS63273016 A JP S63273016A JP 10694987 A JP10694987 A JP 10694987A JP 10694987 A JP10694987 A JP 10694987A JP S63273016 A JPS63273016 A JP S63273016A
Authority
JP
Japan
Prior art keywords
signal
circuit
resonance
output
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10694987A
Other languages
Japanese (ja)
Other versions
JPH0476616B2 (en
Inventor
Minoru Nishimura
稔 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP10694987A priority Critical patent/JPS63273016A/en
Publication of JPS63273016A publication Critical patent/JPS63273016A/en
Publication of JPH0476616B2 publication Critical patent/JPH0476616B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To remove the effect of an amplitude noise mixed in the output signal of a sensor and obtain a reliable alarm signal by multiplying measurement signal obtained by the sensor by a delay signal obtained by delaying the measurement signal for a prescribed time and averaging a resultant multiplication output. CONSTITUTION:A delay circuit 4 delays a measurement signal chi(t) obtained by a sensor 1 for a prescribed time tau to output a delayed measurement signal chi(t-tau) and changes the delay time tau on the basis of a signal from a judging circuit 7. A multiplying circuit 5 is inputted with the signals chi(t) and chi(t-tau) to conduct a multiplication on both the signals and an obtained multiplication output is averaged in an averaging circuit 6. Inputted with the output of the circuit 6, the judging circuit 7 judges the resonance of an object to be measured and outputs a signal for changing the time tau of the circuit 4, namely, a signal for urging a gradual change from the initial value of the resonant frequency width of the object to be measured initially set by a signal (m) or a signal for initializing the resonant frequency width. The circuit 7 also outputs an alarm signal alpha as required. Thus, by suitably selecting the time tau, the effect of an amplitude noise other than a resonant frequency can be removed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、共振振動数(共振周波数)が種々の状態によ
り変化する被測定体の前記共振振動を検出して共振警報
を発生する共振警報装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a resonance alarm that generates a resonance alarm by detecting the resonance vibration of a measured object whose resonance frequency changes depending on various conditions. Regarding equipment.

〈従来の技術〉 以下、従来の技術を図面を用いて説明する。<Conventional technology> The conventional technology will be explained below with reference to the drawings.

第4図は従来の共振警報装置のブロック線図である。FIG. 4 is a block diagram of a conventional resonance alarm device.

第4図において、被測定体である建造物(例えば建築物
や貯蔵タンクやプラントにおけるパイプ等)や構造物(
形状の大小や構造の内容に関係しない)等の振動は、例
えば加速度計や歪み計や圧力計等の連続信号を出力する
センサ(以下ここでは「加速度計」を用いた場合で説明
する)1を用いて測定することができる。尚、ここでは
被測定体としてプラントにおけるパイプを例として以下
説明する(但しこれに限定されない)。
In Figure 4, the object to be measured is a building (for example, a building, a storage tank, a pipe in a plant, etc.) or a structure (
Vibrations such as those that are not related to the size of the shape or the content of the structure) can be detected by sensors that output continuous signals such as accelerometers, strain gauges, and pressure gauges (hereinafter, we will explain using an "accelerometer")1 It can be measured using Note that the following explanation will be given using a pipe in a plant as an example of the object to be measured (however, it is not limited to this).

加速度計1の出力である加速度信号χ(1>は、積分器
2を用いて平均化された上で比較器3において基準値S
tと比較されて共振判定が為され、平均化した加速度信
号が基準値St以上となプた時に警報信号を発生する構
成となっている。
The acceleration signal χ (1>) which is the output of the accelerometer 1 is averaged using an integrator 2 and then set to a reference value S
t is compared to determine resonance, and when the averaged acceleration signal exceeds a reference value St, an alarm signal is generated.

〈発明が解決しようとする問題点〉 ところでこの従来の共振警報装置は、加速度計1の出力
にある程度の大きさを持った振幅ノイズが混入した場合
、比較器3から共振判定した警報信号が出力される場合
があるという、問題点がある。
<Problems to be Solved by the Invention> By the way, in this conventional resonance alarm device, when amplitude noise of a certain level is mixed in the output of the accelerometer 1, an alarm signal determined as resonance is output from the comparator 3. There is a problem in that it may be done.

文法のような問題点もある。例えば今バイブに加速度計
1を設置してパイプの共振を測定して警報する場合を考
えてみる。プラントにおけるパイプは、場所によって形
状と流れる内容の状態で共振振動数が異なる。例えばパ
イプ内の液体が充満している時とゼロの時とでは共振振
動数が異なる。
There are also problems such as grammar. For example, let's consider a case where an accelerometer 1 is installed in a vibrator to measure the resonance of a pipe and issue an alarm. Pipes in plants have different resonant frequencies depending on their shape and the state of the flowing contents. For example, the resonant frequency is different when the pipe is full of liquid and when it is zero.

ここで例えば地震が発生してこのパイプの状態を把握し
たい場合に、図の構成の共振警報装置を用いてパイプの
共振を検知し、必要に応じて警報を発生する必要が生じ
た場合にパイプの内容が種々に異なる(例えば時間に応
じてパイプ内を流れる液体の充満度や流山等が異なる)
ような場所に就いては、夫々基準値を異なえて測定する
必要があるが、現実の問題としてパイプ内の状態に応じ
た設定値を設けた上での正確な振動検知はできない。
For example, if an earthquake occurs and you want to understand the condition of this pipe, you can use a resonance warning device with the configuration shown in the figure to detect the resonance of the pipe, and if necessary, issue a warning. The contents of the pipes vary in various ways (for example, the degree of filling of the liquid flowing in the pipe and the amount of flow differ depending on the time)
In such places, it is necessary to measure with different reference values, but as a practical matter, it is not possible to accurately detect vibrations by setting values according to the conditions inside the pipe.

従ってこの様な装置では正確にパイプの共振状態を測定
して共振警報を発生することはできない。
Therefore, with such a device, it is not possible to accurately measure the resonance state of the pipe and generate a resonance alarm.

本発明は、この従来の技術の問題点に鑑みてなされたも
のであって、センサの出力信号に振幅ノイズが混入した
場合にあっても、この振幅ノイズの影響を除去して信頼
性ある警報信号を得るようにすると共に、どのような被
測定体にあっても対応が可能な構成から成る共振警報装
置を提供することを目的とする。
The present invention has been made in view of the problems of the conventional technology, and even if amplitude noise is mixed in the output signal of the sensor, the influence of this amplitude noise can be removed to provide a reliable alarm. It is an object of the present invention to provide a resonance alarm device configured to obtain a signal and to be compatible with any object to be measured.

く問題点を解決するための手段〉 上述の目的を達成するための本発明の共振警報装置は、
被測定体の振動をセンサを用いて測定して共振判定を行
い警報する構成の共振警報装置において、前記センサで
得た測定信号を所定時間遅延する遅延回路と、前記測定
信号と前記遅延回路からの測定遅延信号とを乗算する乗
算回路と、該乗算回路の乗算出力を平均化する平均化回
路と、該平均化回路の出力を入力して前記被測定体の共
振判定を行い前記遅延回路の遅延時間を変更させる信号
を出力すると共に必要に応じて警報信号を出力する判定
回路と、から成ることを特徴とするものである。
Means for Solving the Problems> The resonance alarm device of the present invention for achieving the above-mentioned object has the following features:
A resonance alarm device configured to measure vibration of a measured object using a sensor, make a resonance determination, and issue an alarm, comprising: a delay circuit that delays a measurement signal obtained by the sensor for a predetermined time; an averaging circuit that averages the multiplication output of the multiplication circuit; and an averaging circuit that inputs the output of the averaging circuit to determine the resonance of the object to be measured. It is characterized by comprising a determination circuit that outputs a signal for changing the delay time and also outputs an alarm signal as necessary.

〈実施例〉 以下本発明を図面に基づき説明する。尚、以下の図面に
おいて、第4図と重複する部分は同一番号を付してその
説明は省略する。
<Example> The present invention will be described below based on the drawings. In the following drawings, parts that overlap with those in FIG. 4 are given the same numbers and their explanations will be omitted.

第1図は、本発明の具体的実施例を示す被測定体の振動
をセンサを用いて測定して共振判定を行い警報する構成
の共振警報装置のブロック線図である。
FIG. 1 is a block diagram of a resonance alarm device according to a specific embodiment of the present invention, which is configured to measure the vibration of an object to be measured using a sensor, determine resonance, and issue an alarm.

第1図において、4はセンナである例えば加速度計1で
得た測定信号である加速度信号χ(1)を所定時間τだ
け遅延して測定遅延信号である加速度遅延信号χ(t−
で)を出力すると共に、以下に詳述する判定回路からの
信号に基づいて遅延時間τを変更(ここでいう変更とは
逐次更新する場合と初期化されて最初の設定値に戻る場
合を指す)する構成の遅延回路である。尚、mはここで
は加速度計1が測定すべき被測定体の共振周波数幅の値
(例えば前記したパイプにあっては、流量がゼロの状態
から満タンまでの状態におけるパイプの共振状態を測定
できるような幅を有する設定値、或は想定できる輸送流
騒の変化状態幅におけるパイプの共振状態を測定できる
ような設定値)、即ち、この値に対応する遅延時間を設
定するための信号を表わす(通常被測定体の共振周波数
はあ ゛る程度わかっている場合が多いのでこの様な構
成とすることができるが、この幅は又設計によって任意
に変更するようにできることはいうまでもない)。5は
加速度信号χ(1)と遅延信号χ(を−τ)とを入力し
てこれ等入力信号を乗算する乗算回路である。6は乗算
回路5の乗算出力χ(1)・χ(を−τ)、を平均化す
るために設けられた平均化回路であり、例えば積分回路
で表わすことができる。1は平均化回路6の積分出力を
入力して被測定体の共振の判定を行い遅延回路4の遅延
時間τを変更させる信号、即ち、最初に信号mで設定し
た被測定体の共振周波数幅の値の最初から次第に変更を
促す信号β又は初期化する信号γを出力すると共に、必
要に応じて警報信号αを出力する判定回路である。  
 。
In FIG. 1, reference numeral 4 denotes an acceleration signal χ(t-
), and also change the delay time τ based on the signal from the determination circuit detailed below (change here refers to the case of sequential updating and the case of returning to the initial setting value after initialization) ) is a delay circuit configured to do this. Here, m is the value of the resonant frequency width of the object to be measured that should be measured by the accelerometer 1 (for example, in the case of the pipe described above, the resonant state of the pipe is measured from the flow rate of zero to the full tank). (or a setting value that can measure the resonant state of the pipe in a range of possible changes in transport flow noise), that is, a signal for setting the delay time corresponding to this value. (Usually, the resonant frequency of the object to be measured is often known to some extent, so such a configuration can be used, but it goes without saying that this width can also be changed arbitrarily depending on the design.) ). 5 is a multiplication circuit which receives the acceleration signal χ(1) and the delay signal χ(-τ) and multiplies these input signals. Reference numeral 6 denotes an averaging circuit provided to average the multiplication output χ(1)·χ(−τ) of the multiplication circuit 5, and can be represented by, for example, an integrating circuit. 1 is a signal that inputs the integral output of the averaging circuit 6, determines the resonance of the object to be measured, and changes the delay time τ of the delay circuit 4, that is, the resonant frequency width of the object to be measured that was initially set with the signal m. This is a determination circuit that outputs a signal β or a signal γ that initializes the value of , which is gradually changed from the beginning, and also outputs an alarm signal α as necessary.
.

第2図は本発明の説明に供する図である。以下第2図を
用いて上述のことを式の上から説明する。
FIG. 2 is a diagram for explaining the present invention. The above will be explained below using FIG. 2 from the top of the equation.

ここで遅延回路4と乗算回路5と積分回路6とから成る
構成は、自己相関関数を求めるための回路となっている
。自己相関関数は、縦軸に自己相関l1lI敗の変化、
横軸に遅延時間での変化をとって表わすことができる。
Here, the configuration consisting of the delay circuit 4, the multiplication circuit 5, and the integration circuit 6 is a circuit for determining an autocorrelation function. The autocorrelation function shows the change in autocorrelation l1lI loss on the vertical axis,
It can be expressed by plotting the change in delay time on the horizontal axis.

即ち被測定体の共振周波数はある限られた範囲にあるか
ら、信号扉で共振周波数幅内で遅延時間τの値を設定し
、判定回路1の判定結果に応じた信号β、γで逐次この
設定した遅延時間を変更したり(共振周波数の帯域が検
出できるような時間を選ぶ)初期化したりして、結果的
にセンサの信号に混入する振幅ノイズ等による影響を除
去した測定結果を得ることができることとなる。
In other words, since the resonant frequency of the object to be measured is within a certain limited range, the value of the delay time τ is set within the resonant frequency width using the signal door, and the signals β and γ according to the judgment results of the judgment circuit 1 are used to sequentially perform this process. By changing the set delay time or initializing it (selecting a time that allows the resonance frequency band to be detected), you can obtain measurement results that remove the effects of amplitude noise, etc. mixed into the sensor signal. will be possible.

一般に、被測定体が共振している場合、加速度計1の加
速度信号χ(1)は、 χ(t)−8(t)+N (t) で示すように、共振による周期成分5(t)とノイズN
(t)より構成される。ここで加速度信号の自己相関関
数ψ^^ (τ)をとると、95AA(τ)−ψss(
τ)  +9’s N  (τ)+9’NS  (τ)
+95NN(τ)とで表わすことができる。但し、9’
ss(τ)は周期成分の自己相関関数、?’sN(τ)
 + F N S(τ)は周期成分とノイズ成分の相互
相関関数、PNN(τ)はノイズ成分の自己相関l1I
I!数を表わす。ところで、周期成分とノイズ成分の間
には、一般に相関は無いと考えられるので、加速度信号
の自己相関関数55AA(τ)は、 9’AA(τ)−9’ss(τ)+9’NN(τ)のよ
うに表わすことができる。9’A^ (τ)は第2図(
A)の破線で+95ss(τ)は第2図(A)の実線で
、PNN(τ)は第2図<8>の実線で表わすことがで
きる。この第2図(A>において、5’AA(τ)は、
一度ゼロのラインを横切り、その後で=0の時の値に対
し、その絶対値が周期的にに倍まで回復する。この特性
を利用して判定回路7で共振の検出を行う。即ち、共振
を起こしてない時は加速度信号の自己相関ψA^ (τ
)はノイズの自己相関となり第2図(B)のようになっ
て自己相関関数は一度ゼロのラインを横切るが、その後
τ−〇の時の値に対してその絶対値の回復は共振時より
小さく成るので判定回路1では共振と判定しないことと
なる。
Generally, when the measured object is resonating, the acceleration signal χ(1) of the accelerometer 1 has a periodic component 5(t) due to resonance, as shown by χ(t)-8(t)+N(t) and noise N
(t). Here, if we take the autocorrelation function ψ^^ (τ) of the acceleration signal, we get 95AA(τ)−ψss(
τ) +9's N (τ)+9'NS (τ)
+95NN(τ). However, 9'
ss(τ) is the autocorrelation function of the periodic component, ? 'sN(τ)
+ F N S (τ) is the cross-correlation function of the periodic component and the noise component, PNN (τ) is the autocorrelation l1I of the noise component
I! represents a number. By the way, it is generally considered that there is no correlation between the periodic component and the noise component, so the autocorrelation function 55AA(τ) of the acceleration signal is 9'AA(τ) - 9'ss(τ) + 9'NN( τ). 9'A^ (τ) is shown in Figure 2 (
+95ss(τ) can be represented by the broken line in A) by the solid line in FIG. 2(A), and PNN(τ) can be represented by the solid line in FIG. 2 <8>. In this Figure 2 (A>), 5'AA(τ) is
Once it crosses the zero line, its absolute value periodically recovers to double the value when =0. Using this characteristic, the determination circuit 7 detects resonance. In other words, when resonance is not occurring, the autocorrelation of the acceleration signal ψA^ (τ
) becomes the autocorrelation of the noise, as shown in Figure 2 (B), and the autocorrelation function crosses the zero line once, but after that, its absolute value recovers from the value at τ-〇 compared to the time of resonance. Since it becomes smaller, the determination circuit 1 does not determine that it is resonance.

第3図は第1図のフローチャートである。FIG. 3 is a flowchart of FIG. 1.

以下、第1図及び第2図を用いて説明を続ける。The explanation will be continued below with reference to FIGS. 1 and 2.

今、時刻tにおいて加速度計1からの加速度信号χ(1
)が読込まれると、遅延回路4からは加速度信号χ(1
)に対して最初にその被測定体に応じて信号mで設定さ
れた被測定体の共振周波数幅の値最初の遅延時間だけ遅
れた加速度遅延信号χ(を−τ)が出力する。従って乗
算回路5においては、加速信号χ(1)と1時間前の時
間の加速度遅延信号χ(t−τ)とが乗算されて、平均
化回路6にχ(1)・χ(t−で)を出力することとな
る。平均化回路6においては、この乗算信号の時間平均
χ   ・χ  −τ を、(1/ (i2−t+ )
) ・f χ(1)・χ(t−τ)dt の演算式に基づく回路構成により求める。この値が加速
度信号を遅延時間だけ遅らせた時の自己相rIA関数で
ある。この自己相関関数の値を判定回路γに導くことで
被測定体の共振判定が行われる。
Now, at time t, acceleration signal χ(1
) is read, the delay circuit 4 outputs the acceleration signal χ(1
), an acceleration delay signal .chi. (-.tau.) delayed by the value of the resonant frequency width of the object to be measured set by the signal m according to the object to be measured by the initial delay time is output. Therefore, in the multiplier circuit 5, the acceleration signal χ(1) is multiplied by the acceleration delay signal χ(t-τ) from one hour ago, and the averaging circuit 6 is supplied with the signal χ(1)·χ(t-). ) will be output. In the averaging circuit 6, the time average χ ・χ −τ of this multiplied signal is expressed as (1/(i2−t+)
)・fχ(1)・χ(t−τ)dt It is determined by a circuit configuration based on the calculation formula. This value is the self-phase rIA function when the acceleration signal is delayed by the delay time. Resonance determination of the object to be measured is performed by introducing the value of this autocorrelation function to the determination circuit γ.

判定回路7においては、平均化回路出力が正常ならば遅
延回路4の遅延時間を最初に設定した遅延時間時間から
次ぎの遅延時間に更新する。この更新の後に、再度加速
度計1の加速度信号の読込みを行う。このようにして被
測定体の共振状態がキャッチできると判定回路7は警報
信号αを出力すると同時に、この場合は以後の遅延時間
の変更は必要が無いので、遅延時間の設定値を初期化す
る信号γが遅延回路4に出力され、遅延時間τが初期化
される。一方、判定回路7において警報信号αが出力さ
れない場合は、信号βにより遅延回路4においては信号
mで設定した被測定体の共振周波数幅の値に基づく遅延
時間の値を最初から最後まで次第に変更し、最後の設定
時開までいったら父兄に戻って以下これを繰返す。
In the determination circuit 7, if the averaging circuit output is normal, the delay time of the delay circuit 4 is updated from the initially set delay time to the next delay time. After this update, the acceleration signal of the accelerometer 1 is read again. When the resonance state of the object to be measured can be detected in this way, the determination circuit 7 outputs the alarm signal α, and at the same time initializes the set value of the delay time since there is no need to change the delay time in this case. The signal γ is output to the delay circuit 4, and the delay time τ is initialized. On the other hand, if the judgment circuit 7 does not output the alarm signal α, the signal β causes the delay circuit 4 to gradually change the value of the delay time based on the value of the resonant frequency width of the measured object set by the signal m from the beginning to the end. Then, when you reach the final setting time, return to the parent and repeat this process.

この様に本発明にあっては、遅延時間τを更新しながら
被測定体の共振判定を行うために、共振検出の高精度化
と高速化がはかれる。
In this way, in the present invention, since the resonance determination of the object to be measured is performed while updating the delay time τ, high accuracy and high speed resonance detection can be achieved.

尚、ここでは判定回路から信号β、γを入力して遅延回
路の遅延時間を変更するように構成しているがこれに限
定されるものではない。例えば判定回路の警報信号をリ
アルタイムで監視する監視回路(図省略)を設けて、こ
の監視回路からの信号に基づいて遅延時間の変更を行う
ように構成することもできる。又、この監視回路に遅延
時間設定機能を持たせた総合指令回路(図省略)の構成
とすれば、遅延回路に信号mを入力する構成としなくと
も、この総合指令回路からの信号に基づいて遅延回路の
遅延時間は任意に設定・変更することができることとな
る。但し、考え方からいって、前記監視回路の機能や総
合指令回路の機能を判定回路に内臓させるようにしても
よく、これ等は設計事項に属するものである。
Note that although the configuration is such that the signals β and γ are inputted from the determination circuit to change the delay time of the delay circuit, the present invention is not limited to this. For example, it is also possible to provide a monitoring circuit (not shown) that monitors the alarm signal of the determination circuit in real time, and to change the delay time based on the signal from this monitoring circuit. Also, if this monitoring circuit is configured as a general command circuit (not shown) that has a delay time setting function, the signal m from the general command circuit can be used without inputting the signal m to the delay circuit. The delay time of the delay circuit can be set and changed as desired. However, from a conceptual point of view, the function of the monitoring circuit and the function of the general command circuit may be built into the determination circuit, and these belong to design matters.

尚、警報信号を用いて、前記したバイブに7クチユエー
タ等を取付、このアクチュエータを前記警報装置に関連
する信号で動作させてバイブ内の流量を変化させてバイ
ブの共振周波数をかえるように応用させることもできる
In addition, using the alarm signal, a 7 actuator or the like is attached to the above-mentioned vibrator, and this actuator is operated by the signal related to the above-mentioned alarm device to change the flow rate inside the vibrator and change the resonance frequency of the vibrator. You can also do that.

〈発明の効果〉 以上、実施例と共に具体的に本発明を説明したように、
本発明の共振警報装置によれば、被測定体の共振周波数
に基づき遅延回路の遅延時間を適切に選ぶことにより、
被測定体の共振周波数以外の撮幅ノイズによる影響を受
けない。又、自己相関関数法は信号の大きさと周波数の
両方を共振の判定に使用している。従ってこれ等のこと
から共振判定の信頼性が向上し、信頼性の高い共振警報
装置を実現できる。同時にこのように遅延時間を被測定
体の条件に応じて随意に変更設定できるのので、その使
用用途は広く活用ができる(被測定体を選択する必要が
無くなる)ものとなる、という効果を得ることができる
<Effects of the Invention> As described above, the present invention has been specifically explained along with the examples.
According to the resonance alarm device of the present invention, by appropriately selecting the delay time of the delay circuit based on the resonance frequency of the object to be measured,
Not affected by imaging width noise other than the resonant frequency of the object to be measured. Furthermore, the autocorrelation function method uses both the magnitude and frequency of the signal to determine resonance. Therefore, the reliability of resonance determination is improved due to these factors, and a highly reliable resonance warning device can be realized. At the same time, since the delay time can be changed and set at will according to the conditions of the object to be measured, it can be used for a wide range of purposes (there is no need to select the object to be measured). be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的実施例を示す共振警報装置のブ
ロック線図、第2図は本発明の説明に供する図、第3図
はフローチャート、第4図は従来の共振警報装置のブロ
ック線図である。 1・・・加速度計、2・・・積分器、3・・・比較器、
4・・・遅延回路、5・・・乗算回路、6・・・平均化
回路、7・・・第、1図 第2図
Fig. 1 is a block diagram of a resonance alarm device showing a specific embodiment of the present invention, Fig. 2 is a diagram for explaining the invention, Fig. 3 is a flowchart, and Fig. 4 is a block diagram of a conventional resonance alarm device. It is a line diagram. 1... Accelerometer, 2... Integrator, 3... Comparator,
4... Delay circuit, 5... Multiplier circuit, 6... Averaging circuit, 7... Figure 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 被測定体の振動をセンサを用いて測定して共振判定を行
い警報する構成の共振警報装置において、前記センサで
得た測定信号を所定時間遅延する遅延回路と、前記測定
信号と前記遅延回路からの測定遅延信号とを乗算する乗
算回路と、該乗算回路の乗算出力を平均化する平均化回
路と、該平均化回路の出力を入力して前記被測定体の共
振判定を行い前記遅延回路の遅延時間を変更させる信号
を出力すると共に必要に応じて警報信号を出力する判定
回路と、から成ることを特徴とする共振警報装置。
A resonance alarm device configured to measure vibration of a measured object using a sensor, make a resonance determination, and issue an alarm, comprising: a delay circuit that delays a measurement signal obtained by the sensor for a predetermined time; an averaging circuit that averages the multiplication output of the multiplication circuit; and an averaging circuit that inputs the output of the averaging circuit to determine the resonance of the object to be measured. A resonance alarm device comprising: a determination circuit that outputs a signal for changing a delay time and also outputs an alarm signal as necessary.
JP10694987A 1987-04-30 1987-04-30 Resonance alarm Granted JPS63273016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10694987A JPS63273016A (en) 1987-04-30 1987-04-30 Resonance alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10694987A JPS63273016A (en) 1987-04-30 1987-04-30 Resonance alarm

Publications (2)

Publication Number Publication Date
JPS63273016A true JPS63273016A (en) 1988-11-10
JPH0476616B2 JPH0476616B2 (en) 1992-12-04

Family

ID=14446616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10694987A Granted JPS63273016A (en) 1987-04-30 1987-04-30 Resonance alarm

Country Status (1)

Country Link
JP (1) JPS63273016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592531A (en) * 1995-04-03 1997-01-07 Motorola, Inc. Selective call communication system having adaptive voice data entry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592531A (en) * 1995-04-03 1997-01-07 Motorola, Inc. Selective call communication system having adaptive voice data entry

Also Published As

Publication number Publication date
JPH0476616B2 (en) 1992-12-04

Similar Documents

Publication Publication Date Title
TWI470227B (en) Fluid density measurement device
EP3318899A1 (en) Seismic sensor and earthquake determination method
JP4503068B2 (en) Emergency shutdown system and method of using emergency shutdown system
JPH06129940A (en) Method and device for monitoring pipe line
US9176165B2 (en) Vibrating micro-system with automatic gain control loop, with integrated control of the quality factor
WO2002075256A3 (en) Apparatus for detecting the condition of the flow of liquid metal in and from a teeming vessel
JPH06129941A (en) Method and device for monitoring pipeline
WO2017159076A1 (en) Seismic sensor and earthquake detection method
WO2015141129A1 (en) Speed-of-sound calculation device, speed-of-sound calculation method, and speed-of-sound calculation program
WO2013173592A2 (en) Transducer acceleration compensation using a delay to match phase characteristics
JP2011002371A (en) Seismic intensity estimation method and device
Ribeiro et al. Using the FFT-DDI method to measure displacements with piezoelectric, resistive and ICP accelerometers
JPS63273016A (en) Resonance alarm
JPH0476617B2 (en)
Onuorah et al. Development of a Vibration Measurement Device based on a MEMS Accelerometer
KR101931686B1 (en) System for monitoring wall-thinning of pipe and method thereof
Vasile et al. Calibration of an active ultrasound bedload monitoring system for underwater environments
JPH0288921A (en) Pressure correcting type differential pressure transmitter
US11448565B2 (en) Measurement time determination device, measurement time determination method, and computer-readable recording medium
JP3596085B2 (en) Flow measurement device
JPH1082700A (en) Fluid temperature measuring apparatus
KR101890718B1 (en) Method For Monitoring Aging Status of Pipe
JP3594931B2 (en) Erroneous output prevention device and vortex flowmeter provided with the device
Papageorgiou et al. A method for remote measurements of velocity for vibration analysis
JP2000009516A (en) Sloshing liquid level measuring instrument