JPS63270483A - Method for removing thin film - Google Patents

Method for removing thin film

Info

Publication number
JPS63270483A
JPS63270483A JP10533687A JP10533687A JPS63270483A JP S63270483 A JPS63270483 A JP S63270483A JP 10533687 A JP10533687 A JP 10533687A JP 10533687 A JP10533687 A JP 10533687A JP S63270483 A JPS63270483 A JP S63270483A
Authority
JP
Japan
Prior art keywords
thin film
substrate
laser light
deposited
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10533687A
Other languages
Japanese (ja)
Inventor
Yukio Morishige
幸雄 森重
Tsutomu Niizawa
新澤 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10533687A priority Critical patent/JPS63270483A/en
Publication of JPS63270483A publication Critical patent/JPS63270483A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To simplify remove the desired part of a thin film formed on a substrate with no accumulation of residue by holding the substrate in a soln. which is not chemically reactive with the thin film and by radiating pulsating laser light on the desired part of the thin film. CONSTITUTION:Al is vapor-deposited on SiO2 formed on an Si substrate by thermal oxidation and polyimide is deposited on the vapor-deposited Al. The substrate 5 is held at a prescribed position in a processing cell 3 and water 11 is introduced into the cell 3 from a soln. feeding unit 2 so that the surface of the water is made higher than the surface of a thin film on the substrate by about 100mu. Laser light emitted from a pulsating laser light source 1 is reflected by a mirror 10, shaped through a aperture 9 and radiated on the substrate 5 through a lens 8 and a window 4. At this time, the substrate 5 is accurately positioned to the processing position with an X-Y stage 6. Thus, the desired part of the thin film on the substrate 5 can easily be evaporated and removed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ光を利用する薄膜の除去方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing a thin film using laser light.

(従来の技術及びその問題点) 近年、半導体製造プロセスの薄膜除去技術において、レ
ーザプロセス技術は、レジストプロセスを用いることな
く基板上の特定の箇所のみを局所的に加工することによ
って工程を短縮するのに有効なことから、盛んに研究さ
れている。その中で、LSIの絶縁膜に用いられるSi
n、 、 SiN 、リンドープシリカガラス(PSG
)、ポリイミドなどの局所除去技術は、多層配線を形成
する際の下層配線とのコンタクトホールを形成するため
に特に重要である0例えば、直接基板上に金属線を形成
するレーザCVD技術と、絶縁膜の局所除去技術とを組
合せれば、LSIの開発時の配線設計ミスをできあがっ
たLSI上でそのまま修正することが可能となり、開発
期間の大幅な短縮を図ることが出来ると考えられている
(Conventional technology and its problems) In recent years, laser process technology has been used in thin film removal technology in semiconductor manufacturing processes to shorten the process by locally processing only specific locations on the substrate without using a resist process. It is being actively researched because it is effective. Among them, Si used for LSI insulating films
n, , SiN, phosphorus-doped silica glass (PSG
), local removal techniques such as polyimide are particularly important for forming contact holes with underlying interconnects when forming multilayer interconnects. For example, laser CVD techniques that form metal lines directly on the substrate, and It is believed that if this technology is combined with local film removal technology, it will be possible to correct wiring design errors during LSI development on the completed LSI, thereby significantly shortening the development period.

これまでにパルスレーザ光を用いる高速な薄膜の除去方
法としては、強いパルスレーザ光を薄膜に吸収させ、薄
膜を瞬間的に高温にして蒸散きせる方法、および基板を
薄膜に対して反応性の高い気体中に置き、パルスレーザ
光照射による局所的な加熱効果を利用して薄膜をエツチ
ング除去する方法が知られている。しかしながら、絶縁
膜をエツチング除去する場合、絶縁膜は半導体や金属な
どに比べ反応性が低ν゛)ことから、使用できる反応性
の気体には、水素やフッ素tどの危険性の高い気体を用
いなければならず、この方法を用いた装置は、安全性を
確保するために複雑な構成となり、高価となる欠点があ
る。
Up to now, methods for high-speed thin film removal using pulsed laser light include a method in which strong pulsed laser light is absorbed into the thin film, and the thin film is instantly heated to a high temperature to evaporate, and a method in which the substrate is highly reactive to the thin film. A method is known in which a thin film is etched away by placing it in a gas and utilizing the local heating effect of pulsed laser light irradiation. However, when removing an insulating film by etching, since the insulating film has lower reactivity than semiconductors or metals, highly dangerous gases such as hydrogen and fluorine are used as reactive gases. However, a device using this method has the disadvantage of being complicated in structure to ensure safety and being expensive.

エツチング除去する方法に対し、レーザ光による蒸散作
用を用いる方法は、使用する雰囲気にとくに制限がない
ことから、簡便で、高速な薄膜加工方法であり、LDI
製造の露光工程で用いられるフォトマスクの修正などの
用途に実用化されている。
In contrast to the etching removal method, the method using the evaporation effect of laser light is a simple and fast thin film processing method because there are no particular restrictions on the atmosphere used.
It has been put to practical use in applications such as modifying photomasks used in the manufacturing exposure process.

ポリイミド等の有機絶縁体を、高速でしかも微細に加工
した例として、光源にArFおよびKrFエキシマレー
ザを用い、空気中で除去したものが、1986年のrジ
ル−ナル・才ブ・アプライド・フィジックスJ (J、
 Appl、 Phys、 )誌の第59巻11号の3
861ページから3867ページに、スリニバサン等に
より報告されている。この文献によれば、パルスレーザ
光の吸収による過渡的な温度上昇及び、非熱的にポリマ
ーの結合がレーザ光により直接切断されることの両方の
効果により薄膜の除去が行なわれることが記述きれてい
る。この時の最小力口エサイズは、0.4−程度と優れ
た値が得られている。
As an example of high-speed and fine processing of organic insulators such as polyimide, an ArF and KrF excimer laser was used as a light source to remove the material in air, which was published in 1986 by R.N.A. Applied Physics. J (J,
Appl, Phys, ) Vol. 59 No. 11 No. 3
As reported by Srinivasan et al. on pages 861-3867. According to this document, it is not stated that the thin film is removed due to both effects of transient temperature rise due to absorption of pulsed laser light and direct non-thermal cleavage of polymer bonds by laser light. ing. The minimum force size at this time was approximately 0.4, which was an excellent value.

しかしながら、この方法を用いて増配線上の3ρ厚のポ
リイミド絶縁膜に約3泗径のコンタクトホールを形成し
た後、Mo(Co)=からのMOのレーザCVD法を用
いて、このコンタクトホールに金属を埋め込み、配線を
形成しようとしたところ、この薄膜除去方法には以下に
示す重大な欠点があることが分かった。すなわち、ポリ
イミドの薄膜除去を行う前に、CVD原料ガス中でレー
ザ光を走査すれば、走査した部分には、金属光沢のある
良好な配線を描画できるのに対し、薄膜除去を行ったの
ちレーザ光を走査すると、薄膜除去を行った付近を中心
に金属光沢のない黒い物がレーザ光の照射部周辺に汚く
堆積するために配線形成が困難なことが分かった。この
現象は、ポリイミド以外にPSG 、 SiN膜の除去
の場合にも起こることから、実用上大きな問題である。
However, after using this method to form a contact hole with a diameter of approximately 3 μm in a polyimide insulating film with a thickness of 3 μ on the expanded wiring, a laser CVD method of MO from Mo(Co)= is used to fill this contact hole with metal. When attempting to bury the thin film and form wiring, it was discovered that this thin film removal method had the following serious drawbacks. In other words, if a laser beam is scanned in the CVD raw material gas before removing a polyimide thin film, good wiring with metallic luster can be drawn in the scanned area, but if the laser beam is scanned after removing a thin film of polyimide, When the light was scanned, it was found that wiring formation was difficult because a black substance with no metallic luster accumulated around the laser beam irradiation area, mainly in the area where the thin film was removed. This phenomenon is a big problem in practice because it occurs when removing PSG and SiN films as well as polyimide.

薄膜除去を行った後、基板を洗浄すれば、レーザCVD
特性が改善きれる傾向が見られることから、薄膜除去に
より発生した薄膜の破片が周辺に降り積もった残さいが
原因であることがわかった。ただし、薄膜除去の後、洗
浄工程が加わることは、装置構成が複雑となることや、
プロセス時間の増大を招くなどの欠点があり、レーザ蒸
散による薄膜除去法の利点である簡便さを失うことにな
る。
After removing the thin film, if the substrate is cleaned, laser CVD
Since there was a tendency for the characteristics to improve, it was found that the cause was the residue of thin film fragments that were generated when the thin film was removed and accumulated in the surrounding area. However, adding a cleaning process after thin film removal complicates the equipment configuration and
This method has drawbacks such as an increase in process time, and loses the simplicity that is an advantage of thin film removal using laser ablation.

本発明の目的は、従来のレーザ蒸散作用を利用した薄膜
除去方法で問題となる残きいの降り積もりを起こさず、
かつ蒸散作用を利用する薄膜除去方法の利点である簡便
きを合わせ持つ優れた薄膜除去方法を提供することにあ
る。
The purpose of the present invention is to avoid the accumulation of residue, which is a problem with conventional thin film removal methods using laser ablation, and
It is an object of the present invention to provide an excellent thin film removal method that also has the advantage of simplicity, which is an advantage of a thin film removal method that uses transpiration.

(問題点を解決するための手段) 本発明が提供する手段は、基板上の薄膜の所要部にパル
スレーザ光を照射して該薄膜を蒸散させて除去する薄膜
除去方法であって、該薄膜に対して化学反応性のない液
体中に該基板を保持しながら該薄膜に前記パルスレーザ
光を照射して該薄膜を蒸散させ除去することを特徴とす
る。
(Means for Solving the Problems) The means provided by the present invention is a thin film removal method in which a predetermined portion of a thin film on a substrate is irradiated with pulsed laser light to evaporate and remove the thin film. The method is characterized in that the thin film is irradiated with the pulsed laser beam while the substrate is held in a liquid that has no chemical reactivity with the substrate to evaporate and remove the thin film.

(作用・原理) 従来の蒸散作用による薄膜除去方法では、基板は、空気
中もしくは真空中に置かれていたのに対し、本発明では
、薄膜に対しで反応性のない液体中に基板を保持する点
が異なっている4本発明の原理は、薄膜の蒸散により生
じた薄膜の破片が非常に小さいならば、破片を液体中に
コロイド状態に保つことができ、基板上に沈澱さ姐ずに
すむという知見に立っている。以下にこの知見の妥当性
について説明する。
(Operation/Principle) In the conventional thin film removal method using transpiration, the substrate is placed in air or vacuum, but in the present invention, the substrate is held in a liquid that is not reactive to the thin film. The principle of the present invention is that if the fragments of the thin film produced by the evaporation of the thin film are very small, the fragments can be kept in a colloidal state in the liquid and not deposited on the substrate. I am based on the knowledge that I will survive. The validity of this finding will be explained below.

空気中でポリイミド膜を蒸散啓上だのち、電子顕微鏡で
薄膜除去を行った周辺を観察したところでは、100Å
以上の塊は観測できないことから、蒸散した膜の破片は
100Å以下の非常に小さな粒子であることが予測され
る6通常の液体、例えば水やアルコールなどでは、微粒
子をそのサイズが17JITI程度より小さければコロ
イド状態で溶゛かすことが可能になることから、蒸散に
より発生した破片は十分コロイド状態で溶かすことがで
きると考えられる。使用する液体としては、溶液として
の性質に優れ、かつ基板からの除去の容易な水、アルコ
ール類やアセトン等の有機溶液が適当である。
After the polyimide film was evaporated in the air, the area around which the thin film was removed using an electron microscope revealed that it was 100 Å.
Since it is not possible to observe agglomerates larger than this, it is predicted that the evaporated film fragments are very small particles of less than 100 Å.6 In normal liquids, such as water and alcohol, fine particles are smaller than about 17 JITI. Since it is possible to dissolve the particles in a colloidal state, it is thought that the fragments generated by transpiration can be sufficiently dissolved in a colloidal state. Suitable liquids to be used include organic solutions such as water, alcohols, and acetone, which have excellent properties as a solution and can be easily removed from the substrate.

また、パルスレーザ光による蒸散作用は、通常10ns
程度の非常に短い光パルスにより瞬間的に起こされるた
めに、液体中でも、気体中でも薄膜が蒸発する段階では
差はないと考えられるので、液体中の方が気相中に比べ
、薄膜の除去に要する所要照射強度などが高くなる恐れ
はない。
In addition, the transpiration effect caused by pulsed laser light usually takes 10 ns.
Since it is caused instantaneously by a very short light pulse, it is thought that there is no difference in the stage of evaporation of a thin film in a liquid or a gas, so it is easier to remove a thin film in a liquid than in a gas phase. There is no risk that the required irradiation intensity will increase.

(実施例) 以下図面を参照して、本発明について詳細に説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は、本発明の一実施例を適用する薄膜除去装置の
構成図である。この実施例はM上のポリイミド薄膜への
、コンタクトホール用微細穴の形成に本発明を適用した
ものである。Nd : YAGレーザの第2高調波発生
光源から構成されるパルスレーザ光源1からの出射光は
、ミラー10で反射され、アパーチャ9で整形され、レ
ンズ8及び窓4を通して加工セル3内の基板5に照射さ
れる。このときレンズ8はアパーチャ9のイメージが、
基板5上へ縮小投影きれる様な位置に置かれている。加
工セル3は、加工位置を精密に位置決めできるX−Yス
テージ6上に保持されている。溶液供給ユニット2は、
基板5が浸たるまで液体を加工セル3内に供給する。液
体には水を用いた。排液ユニット7は、薄膜除去が終了
したのちの液体を回収するために用いる。基板の構成は
、Si基板上の熱酸化5i0*上に、0.5−厚のMを
蒸着し、その上に3Nrnのポリイミドを堆積させたも
のである。パルスレーザ光f1.1から出射されるレー
ザ光の波長は534nm 、パルス幅はIons、基板
表面の照射ビーム径は3−とした、残さい除去の効果は
、基板を取り出して、Mo(Co)sからのMoのレー
ザCVD法を用いて、膜の堆積状態により判断した。
FIG. 1 is a block diagram of a thin film removing apparatus to which an embodiment of the present invention is applied. In this example, the present invention is applied to the formation of microholes for contact holes in a polyimide thin film on M. Nd: Emitted light from a pulsed laser light source 1 composed of a second harmonic generation light source of a YAG laser is reflected by a mirror 10, shaped by an aperture 9, and passed through a lens 8 and a window 4 to a substrate 5 in a processing cell 3. is irradiated. At this time, the image of the aperture 9 of the lens 8 is
It is placed in such a position that it can be reduced and projected onto the substrate 5. The processing cell 3 is held on an XY stage 6 that allows precise positioning of the processing position. The solution supply unit 2 is
Liquid is supplied into the processing cell 3 until the substrate 5 is submerged. Water was used as the liquid. The liquid drain unit 7 is used to recover the liquid after the thin film removal is completed. The structure of the substrate is such that 0.5-thick M is deposited on a thermally oxidized 5i0* Si substrate, and 3Nrn polyimide is deposited thereon. The wavelength of the laser beam emitted from the pulsed laser beam f1.1 was 534 nm, the pulse width was Ions, and the irradiation beam diameter on the substrate surface was 3-. Judgment was made based on the deposition state of the film using the laser CVD method of Mo from s.

この装置は以下のように動作する。基板5を加工セル3
内の所定の位置に保持した後、溶液供給ユニット2より
、水11を加工セル3に導入する。
This device operates as follows. Processing cell 3 for substrate 5
After holding the water 11 at a predetermined position within the processing cell 3, water 11 is introduced into the processing cell 3 from the solution supply unit 2.

液面が薄膜表面よりおよそ100−程度高くなったとこ
ろで水の供給を停止する。そののち、レーザ光を照射し
てコンタクトホールを形成する。
The water supply is stopped when the liquid level becomes approximately 100 mm higher than the thin film surface. After that, laser light is irradiated to form a contact hole.

基板を空気中に保持してコンタクトホールを形成した従
来の方法ではレーザCVDで良好な金属描画は困難で、
レーザ光の強度が強いほど、また照射パルス数が多いほ
ど汚い堆積の範囲が広がる傾向がみられた。これに対し
、本発明により水中でコンタクトホールを形成する方法
では、コンタクトホールを形成する前と同様に、きれい
な金属線を描画することができ、し・−ザ光の照射強度
や照射パルス数の増大による堆積膜の状態の劣化はみら
れなかった。このことは、本発明による液体中での蒸散
による薄膜除去方法が、薄膜上に残さいを残さないきれ
いな加工法であることを示している。また、加工形状は
、この照射ビーム径と同し37mで加工断面はほぼ垂直
に切り立っており、加工の分解能は、0.5−であった
With the conventional method of forming contact holes by holding the substrate in the air, it is difficult to achieve good metal drawing with laser CVD.
There was a tendency that the stronger the laser beam intensity and the greater the number of irradiation pulses, the wider the area of dirty deposits. In contrast, with the method of forming contact holes underwater according to the present invention, it is possible to draw a clean metal line in the same manner as before forming the contact hole, and the irradiation intensity and number of irradiation pulses of the laser light can be adjusted. No deterioration in the condition of the deposited film due to the increase was observed. This shows that the method of removing a thin film by evaporation in a liquid according to the present invention is a clean processing method that leaves no residue on the thin film. The processed shape was 37 m, the same as the irradiation beam diameter, and the processed cross section was steeply vertical, and the processing resolution was 0.5-.

以上の実施例では、ポリイミド薄膜の加工について述べ
たが、PSGや、S iN膜の加工においても同様に、
本発明による良好な残芒い除去効果が観測された。また
溶液としての液体も、エチルアルコール、アセトン、ト
リクレン等の有機溶液でも水を用いた場合と同様に、良
好な残きい除去効果が得られた。
In the above example, processing of polyimide thin film was described, but processing of PSG or SiN film is also similar.
A good aw removal effect according to the present invention was observed. In addition, even when using a liquid as a solution, an organic solution such as ethyl alcohol, acetone, or trichlene was used, and a good residue removal effect was obtained, as in the case where water was used.

(発明の効果) 以上述べたように、本発明によれば、従来の蒸散作用を
利用した薄膜除去方法で問題となる残さいの降り積もり
の発生を起こすとがない。また本発明を用いて構成する
装置は、危険性のない液体を用いていることから装置構
成が簡単である。また蒸散作用を利用する薄膜除去方法
の利点である高速かつサブ−オーダの高分解能の加工を
行うことができる。
(Effects of the Invention) As described above, according to the present invention, there is no possibility of accumulation of residue, which is a problem in conventional thin film removal methods that utilize transpiration. Further, since the device constructed using the present invention uses a non-hazardous liquid, the device construction is simple. Furthermore, high-speed and sub-order high-resolution processing can be performed, which is an advantage of the thin film removal method that utilizes transpiration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を適用する薄膜除去装置の
概略的構成図である。 1・・・パルスt・−ザ光源、2・・・溶液供給ユニッ
ト、3・・・加工セル、4・・・窓、5・・・基板、6
・・・X−Yステージ、7・・・排気ユニット、8・・
・レンズ、9・・・アパーチャ、10・・・ミラー。
FIG. 1 is a schematic diagram of a thin film removing apparatus to which an embodiment of the present invention is applied. DESCRIPTION OF SYMBOLS 1...Pulse t-the light source, 2...Solution supply unit, 3...Processing cell, 4...Window, 5...Substrate, 6
...X-Y stage, 7... Exhaust unit, 8...
・Lens, 9...Aperture, 10...Mirror.

Claims (1)

【特許請求の範囲】[Claims] 基板上の薄膜の所要部にパルスレーザ光を照射して該薄
膜を蒸散させて除去する薄膜除去方法において、該薄膜
に対して化学反応性のない液体中に該基板を保持しなが
ら該薄膜に前記パルスレーザ光を照射して該薄膜を蒸散
させ除去することを特徴とする薄膜除去方法。
In a thin film removal method that irradiates a predetermined portion of a thin film on a substrate with pulsed laser light to evaporate and remove the thin film, the thin film is removed while the substrate is held in a liquid that has no chemical reactivity with the thin film. A method for removing a thin film, comprising irradiating the pulsed laser beam to evaporate and remove the thin film.
JP10533687A 1987-04-27 1987-04-27 Method for removing thin film Pending JPS63270483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10533687A JPS63270483A (en) 1987-04-27 1987-04-27 Method for removing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10533687A JPS63270483A (en) 1987-04-27 1987-04-27 Method for removing thin film

Publications (1)

Publication Number Publication Date
JPS63270483A true JPS63270483A (en) 1988-11-08

Family

ID=14404883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10533687A Pending JPS63270483A (en) 1987-04-27 1987-04-27 Method for removing thin film

Country Status (1)

Country Link
JP (1) JPS63270483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416939A2 (en) * 1989-09-08 1991-03-13 Ngk Insulators, Ltd. Method of producing a core for magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416939A2 (en) * 1989-09-08 1991-03-13 Ngk Insulators, Ltd. Method of producing a core for magnetic head

Similar Documents

Publication Publication Date Title
US4980536A (en) Removal of particles from solid-state surfaces by laser bombardment
US5173441A (en) Laser ablation deposition process for semiconductor manufacture
US5114834A (en) Photoresist removal
US6881687B1 (en) Method for laser cleaning of a substrate surface using a solid sacrificial film
JPS60187026A (en) Method of etching metal layer
JPS60154619A (en) Method of etching metal layer
US20080289651A1 (en) Method and apparatus for wafer edge cleaning
TW201017762A (en) Method for patterning crystalline indium tim oxide
Oprysko et al. Nucleation effects in visible‐laser chemical vapor deposition
JPS63270483A (en) Method for removing thin film
KR100624592B1 (en) Processing method and method of manufacturing semiconductor device
JP3998974B2 (en) Circuit board patterning method
JPH01296623A (en) Thin film elimination
US5338393A (en) Method for the local removal of UV-transparent insulation layers on a semiconductor substrate
JPH09260303A (en) Semiconductor manufacturing equipment and cleaning thereof
JP2004157424A (en) Method for stripping resist and method for manufacturing semiconductor device
Brannon Excimer Laser Induced Micron-Size Pattern Etching By Image Projection
Fukami et al. Ablation of silicone rubber using UV-nanosecond and IR-femtosecond lasers
EP0389694A1 (en) Semiconductor device manufacture with laser-induced chemical etching
JP2513279B2 (en) Thin film removal method
JP2763785B2 (en) Method for removing a patterned and fired photoresist layer from a semiconductor wafer
JP2712916B2 (en) Wiring formation method
JP4537603B2 (en) Manufacturing method of semiconductor device
JPH07307314A (en) Method of eliminating thin film on substrate surface by using pulse laser
Budin et al. Laser-assisted processes in the microelectronic industry