JPS63269883A - Encoder for semi-variable length code dpcm - Google Patents

Encoder for semi-variable length code dpcm

Info

Publication number
JPS63269883A
JPS63269883A JP62105158A JP10515887A JPS63269883A JP S63269883 A JPS63269883 A JP S63269883A JP 62105158 A JP62105158 A JP 62105158A JP 10515887 A JP10515887 A JP 10515887A JP S63269883 A JPS63269883 A JP S63269883A
Authority
JP
Japan
Prior art keywords
line
code
semi
prediction
fixed length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62105158A
Other languages
Japanese (ja)
Other versions
JPH0832042B2 (en
Inventor
Masaru Fuse
優 布施
Tsutomu Tanaka
勉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62105158A priority Critical patent/JPH0832042B2/en
Publication of JPS63269883A publication Critical patent/JPS63269883A/en
Publication of JPH0832042B2 publication Critical patent/JPH0832042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To effectively use a long code and to improve a transmission quality by providing a predicting circuit for plane predicting a next appearing picture element signal and a semi-variable length quantizing circuit for limiting the long code to a fixed length code and quantizing. CONSTITUTION:The titled encoder is provided with the semi-variable length quantizing circuit 14, the preceding and current line predicting circuits 18, 17, a long code counter 12, a fixed length code selection output block 13, a picture element counter 24, a preceding line predictive stop signal output block 22, a preceding line predictive stop gate 21 and a fixed length code forcing signal output block 23 or the like. The next appearing picture element signal is plane predicted from plural picture elements before the current line and the preceding line of a digitized video signal, the predicted error of a predicted picture element is quantized to the long code or a short code, and when the prescribed number of the long codes is generated in a certain line, it is limited to the fixed length code in the line thereafter and quantized and further, a prediction is controlled so as to change to a current line prediction in the specific area of a screen. A semi-variable length quantization is limited to the fixed length code in the specific area of the screen.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、映像信号を高能率で符号量子化するDPCM
符号化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a DPCM system that encodes and quantizes video signals with high efficiency.
This invention relates to an encoding device.

従来の技術 第2図に、準可変長符号DPCM符号化装置の簡単な例
を示す。この構成において予測画素の輝度信号’I+は
、第3図(a>に示すように前ラインで既に符号化ずみ
の過去の画素b2Y+ t)Oy、及び現ライン前値a
2yを用いて ’I +−a2y+ bOy  b2y
  と予測され、色信号c、は、第3図(b)に示すよ
うに前ラインと現ラインとでは位相が反転していること
がら c、=−b。y と予測される。輝度信号・色信
号分離を2次の線形ディジタルフィルタで行うものとす
ると、輝度信号は低域通過フィルタ Z・ ((1+Z
−’)/212 、色信号は高域通過フィルタ −Z・
 + (1−Z−1> /2 +2 を用いて分離され
るので、最終的な予測値Xiは XI:yI+CI =(a1+2a2+a 3+2b−+十す、−2b 2
−b〕)/4 ・・・(1) となり、前ライン4画素、現ライン3画素を必要とする
。これを第4図(a)に示す。
2. Description of the Related Art FIG. 2 shows a simple example of a semi-variable length code DPCM encoding device. In this configuration, the luminance signal 'I+ of the predicted pixel is composed of the past pixel b2Y+t)Oy, which has already been encoded in the previous line, and the previous value a of the current line, as shown in FIG.
'I +-a2y+ bOy b2y using 2y
It is predicted that the color signal c, has an inverted phase between the previous line and the current line, as shown in FIG. 3(b), so that c,=-b. It is predicted that y. Assuming that the luminance signal and chrominance signal separation is performed using a second-order linear digital filter, the luminance signal is passed through a low-pass filter Z ((1+Z
-')/212, the color signal is passed through a high-pass filter -Z・
+ (1-Z-1> /2 +2), so the final predicted value Xi is
-b])/4 (1), and requires 4 pixels on the previous line and 3 pixels on the current line. This is shown in FIG. 4(a).

以上は、映像信号が平面的な相関性をもつために予測誤
差が小さくなるが、画像の境界等によって前値、あるい
は前ライン画素と予測画素との相関性が失われた場合、
この予測は成り立たず伝送画像の品質劣化を引き起こす
ことがある。準可変長量子化回路は、通常は短符号に量
子化し、予測した画素の予測誤差が大きい時のみ、これ
を長符号に量子化して、平均的な符号長を短くするもの
である。この場合、1ライン中で長符号が所定の個数発
生した後は、そのラインでの量子化を固定長符号に限定
している。従って、1ライン中の前半より後半で画像品
質が劣る傾向にあるのは避けられないと言える。
In the above, the prediction error is small because the video signal has a two-dimensional correlation, but if the previous value or the correlation between the previous line pixel and the predicted pixel is lost due to an image boundary, etc.
This prediction may not hold true and may cause quality deterioration of the transmitted image. The semi-variable length quantization circuit normally quantizes into short codes, and only when the prediction error of predicted pixels is large, quantizes them into long codes to shorten the average code length. In this case, after a predetermined number of long codes are generated in one line, quantization in that line is limited to fixed length codes. Therefore, it can be said that it is inevitable that the image quality tends to be inferior in the latter half of one line than in the first half.

発明が解決しようとする問題点 このような前ライン予測動作、あるいは準可変長量子化
回路の長符号発生に対し、従来何等の制御も加えていな
いために、以下のような問題が生ずる。第一に、前ライ
ン予測は第4図(a)に示したように予測点を選ぶわけ
であるが、第4図(b)、(c)に示すように有効画面
の前端・終端、または有効画面第1ラインの画素に対す
る予測時には、必要とする前ライン予測点が水平ブラン
キング期間、または垂直ブランキング期間に位置する場
合が生ずる。水平・垂直ブランキング期間の信号は有効
画面とは同等相関性を持たないために、この時の予測誤
差は現ラインのみによる予測誤差よりもむしろ大きなも
のとなり、更にこの誤差は、平面予測を用いる性質上、
その後のラインの有効画面中央部に向かって波及して伝
送品質の劣化を招く大きな原因となり得る。第二に、こ
の有効画面の周辺部で生ずる誤差に対しては、その大き
さに応じ伝送時に準可変長量子化回路によって長符号で
量子化される可能性が高くなるが、これは有効画面周辺
部であるがゆえに視覚的には長符号量子化の利点があま
り生がされない。特に、伝送速度によって使用できる長
符号発生数が限定される場合においては、このような長
符号の使い方は、非常に不利である。
Problems to be Solved by the Invention Conventionally, no control has been applied to the previous line prediction operation or the long code generation of the quasi-variable length quantization circuit, so the following problems occur. First, in front line prediction, a prediction point is selected as shown in Figure 4(a), but as shown in Figures 4(b) and (c), the prediction point is selected from the front edge, end, or When predicting pixels of the first line of the effective screen, a necessary previous line prediction point may be located in a horizontal blanking period or a vertical blanking period. Since the signals in the horizontal and vertical blanking periods do not have the same correlation with the effective screen, the prediction error at this time is larger than the prediction error due only to the current line. Due to its nature,
This can spread toward the center of the effective screen of subsequent lines and become a major cause of deterioration in transmission quality. Second, depending on the size of the error that occurs at the periphery of the effective screen, there is a high possibility that it will be quantized using a long code by the semi-variable length quantization circuit during transmission; Since it is a peripheral area, the advantages of long code quantization are not visually apparent. Particularly when the number of long codes that can be used is limited depending on the transmission speed, this use of long codes is very disadvantageous.

本発明は上記問題点解消し、長符号を有効に使用し伝送
品質の向上を可能にするDPCM符号化装置を提供する
ものである。
The present invention solves the above-mentioned problems and provides a DPCM encoding device that makes it possible to effectively use long codes and improve transmission quality.

問題点を解決するための手段 本発明は、ディジタル化された映像信号の現ラインと前
ライン以前の複数の画素から、次に出現する画素信号を
平面予測し、予測した画素の予測誤差を長符号または短
符号に量子化し、あるラインで長符号が所定の個数発生
した場合、その後、そのラインでは固定長符号に限定し
て量子化し、更に前記予測を画面の特定領域で現ライン
予測に変更するべく制御し、また前記準可変長量子化を
画面の特定領域で固定長符号に限定するものである。
Means for Solving the Problems The present invention predicts the pixel signal that will appear next from a plurality of pixels before the current line and the previous line of the digitized video signal, and lengthens the prediction error of the predicted pixel. code or short code, and if a predetermined number of long codes occur in a certain line, then quantization is limited to fixed length codes in that line, and the prediction is changed to the current line prediction in a specific area of the screen. In addition, the semi-variable length quantization is limited to fixed length codes in specific areas of the screen.

作用 上記の方法により準可変長符号DPCM符号化装置の有
効画面周辺部における誤り増大を防ぐと共に、限られた
数の長符号をより有効に使用することによって、伝送品
質の向上を可能にする。
Operation: The method described above prevents an increase in errors in the periphery of the effective screen of the semi-variable length code DPCM encoding device, and also makes it possible to improve transmission quality by using the limited number of long codes more effectively.

実施例 本発明によるDPCM符号化装置の一実施例について、
第1I21と共にその回!?8f11I成を示す。これ
は、準可変長量子北回&’814 、及び前ライン・現
ライン予測回路18・17と、長符号カウンタ12及び
固定長符号選択信号出力ブロック13と、画素カウンタ
24と、前ライン予測停止信号出力ブロック22、及び
前ライン予測停止ゲート21と、固定長符号強制信号出
力ブロック23等から成る。ここでは−例として、サン
プリング周波数を8.91MHzとし、従って1ライン
のサンプル点は566個、有効画面での画素数は460
60画素る。伝送速度を32.06Mbpsとした場合
、この46060画素46画素までを8ビツトの長符号
として伝送することが可能で、残りを4ビツトの短符号
で伝送することになる。固定長符号選択信号出力ブロッ
ク13は゛、長符号カウンタ12が長符号の数を46個
数えた直後に、固定長符号(短符号)選択信号を準可変
長量子化回路14に出力する。
Embodiment Regarding an embodiment of the DPCM encoding device according to the present invention,
That episode with the 1st I21! ? 8f11I formation is shown. This includes a semi-variable length quantum north circuit &'814, previous line/current line prediction circuits 18 and 17, a long code counter 12, a fixed length code selection signal output block 13, a pixel counter 24, and a previous line prediction stop. It consists of a signal output block 22, a previous line prediction stop gate 21, a fixed length code forced signal output block 23, etc. Here, as an example, the sampling frequency is 8.91MHz, so the number of sample points per line is 566, and the number of pixels on the effective screen is 460.
60 pixels. When the transmission speed is 32.06 Mbps, up to 46 pixels (46,060 pixels) can be transmitted as 8-bit long codes, and the rest can be transmitted as 4-bit short codes. The fixed length code selection signal output block 13 outputs a fixed length code (short code) selection signal to the semi-variable length quantization circuit 14 immediately after the long code counter 12 counts 46 long codes.

本回路の予測式は、既に(1)式に示したもので、第4
図によれば画素X量の予測には前ラインにおいて前方向
に最大3画素、後方向に最大1画素を必要とすることに
なるので、これらが水平ブランキング期間内に属する場
合、第5図に示すように有効画面の前端3画素、及び後
端1画素の信号を前ライン予測停止ゲート21において
マスクしてやれば、予gt++に必要な前ライン画素が
水平ブランキング期間に属した場合に起こり得る現ライ
ン予測点に対する悪影響を取り除くことができる。
The prediction formula for this circuit is already shown in formula (1), and the fourth
According to the figure, prediction of the pixel If the signals of three front-end pixels and one rear-end pixel of the effective screen are masked in the front line prediction stop gate 21 as shown in Fig. 3, this can occur if the front line pixels necessary for gt++ belong to the horizontal blanking period. The negative influence on the current line prediction point can be removed.

前ライン予測結果は、入力PCM信号との誤差検出のた
めの減算器11までに2遅延(現ライン予測回路内)を
通過すること、及び画素カウンタ24が準可変長量子北
回路14人力時の画素信号よりも1クロック早くカウン
トシていることの2点から、前ライン予測停止信号出力
ブロック22が前ライン予測停止ゲート21に与えるマ
スク信号は第6図のようになる。
The previous line prediction result must pass through two delays (in the current line prediction circuit) before reaching the subtracter 11 for error detection with the input PCM signal, and the pixel counter 24 must pass through the semi-variable length quantum north circuit 14 when manually operated. The mask signal that the previous line prediction stop signal output block 22 gives to the previous line prediction stop gate 21 is as shown in FIG. 6 because of the fact that the count is one clock earlier than the pixel signal.

同様に、前ライン画素が垂直ブランキング期間に属する
場合、即ち有効画面第1ラインの予測時にも前ライン予
測停止ゲート21において予測信号をマスクしてやれば
、前ライン予測による悪影響は取り除くことができる。
Similarly, if the previous line prediction stop gate 21 masks the prediction signal when the previous line pixel belongs to the vertical blanking period, that is, when predicting the first line of the effective screen, the adverse effects of the previous line prediction can be removed.

第5図には、垂直ブランキング期間、及び有効画面第1
ラインを前ライン予測停止期間として示しである。長符
号量子化禁止領域、即ち固定長符号強制領域を、第5図
に示すように水平ブランキング期間、及び有効画面前端
5画素の期間とすると、やはり画素カウンタ24が準可
変長符号(ヒ回路14人力時の画素信号より1クロック
早いことから、固定長符号強制信号出力ブロック23が
準可変長符号化回路14に与える信号は第6図(b)に
示すようなものとなる。
FIG. 5 shows the vertical blanking period and the first effective screen.
The line is shown as the predicted stop period of the previous line. If the long code quantization prohibited area, that is, the fixed length code forced area, is the horizontal blanking period and the period of 5 pixels at the front edge of the effective screen as shown in FIG. Since the pixel signal is one clock earlier than the pixel signal in the case of 14 human input, the signal given by the fixed length code forced signal output block 23 to the semi-variable length encoding circuit 14 is as shown in FIG. 6(b).

発明の効果 以上のように、本発明によれば、準可変長符号を用いる
DPCM符号化装置において有効画面の周辺部に生ずる
大きな予測誤差による伝送品質の劣化を防ぎ、また長符
号を有効的に使用することで伝送品質の向上が可能とな
る。
Effects of the Invention As described above, according to the present invention, in a DPCM encoding device using semi-variable length codes, deterioration in transmission quality due to large prediction errors occurring in the peripheral area of the effective screen can be prevented, and long codes can be effectively used. By using it, transmission quality can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の準可変長DPCM符号化装
置の構成図、第2図は従来例の準可変長DPCM符号化
装置の簡単な例を示す構成図、第3図および第4図は同
従来例における予測画素状態図、第5図は第1図におけ
る装置の予測画素状態図、第6図は同装置の動作波形図
である。 10.25.26・・・遅延器、11・・・減算器、1
2・・・長符号カウンタ、13・・・固定長符号選択信
号出力ブロック、14・・・準可変長量子化回路、15
.16・・・加算器、17・・・現ライン予測回路、1
8・・・前ライン予測回路、20・・・ANDゲート、
21 ・前ライン予測停止ゲート、22・・・前ライン
予測停止信号出力ブロック、23・・・固定長符号強制
信号出力ブロック、24・・・画素カウンタ、27・・
・NANDゲート。 代理人の氏名弁理土中尾敏男はか1名 10 − 連廷呑 11− A算 益 73−一固定委汗予&灰信号 (゛シリ出方フロ・) り 15.76−#  It  乏シ 第2図 第3図 (Q) (b) 第4図 (Q) (b) 第5図 第6図 (b)前ライン予5則傳止信号
FIG. 1 is a block diagram of a semi-variable length DPCM encoding device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a simple example of a conventional semi-variable length DPCM encoding device, and FIGS. 4 is a predicted pixel state diagram in the conventional example, FIG. 5 is a predicted pixel state diagram of the device in FIG. 1, and FIG. 6 is an operation waveform diagram of the same device. 10.25.26...Delay device, 11...Subtractor, 1
2...Long code counter, 13...Fixed length code selection signal output block, 14...Semi-variable length quantization circuit, 15
.. 16...Adder, 17...Current line prediction circuit, 1
8... Previous line prediction circuit, 20... AND gate,
21 - Previous line prediction stop gate, 22... Previous line prediction stop signal output block, 23... Fixed length code forced signal output block, 24... Pixel counter, 27...
・NAND gate. Name of agent: Patent attorney Toshio Tsuchinakao 1 person 10 - Rentei 11 - A calculation gain 73 - 1 fixed request & gray signal (゛Siri appearance flow) ri 15.76 - # It is limited Figure 2 Figure 3 (Q) (b) Figure 4 (Q) (b) Figure 5 Figure 6 (b) Front line pre-5 rule stop signal

Claims (1)

【特許請求の範囲】[Claims] ディジタル化された映像信号の現ラインと前ライン以前
の複数のサンプル画素から、次に出現する画素信号を平
面予測する予測回路と、この予測した画素の予測誤差を
長符号または短符号に量子化し、あるラインで長符号が
所定の個数発生した場合、その後、そのラインでは固定
長符号に限定して量子化する準可変長量子化回路を構成
要素とし、前記予測回路は、有効画面の特定領域で現ラ
イン予測のみに変更する前ライン予測停止回路、および
前記準可変長量子化回路を画面の特定領域で固定長符号
に強制限定する強制回路を有することを特徴とする準可
変長DPCM符号化装置。
A prediction circuit predicts the pixel signal that will appear next from a plurality of sample pixels before the current line and the previous line of the digitized video signal, and quantizes the prediction error of this predicted pixel into a long code or short code. , when a predetermined number of long codes are generated in a certain line, the component is a semi-variable length quantization circuit that quantizes only fixed length codes in that line, and the prediction circuit is configured to quantize only fixed length codes in that line. Semi-variable length DPCM encoding characterized in that it has a previous line prediction stop circuit that changes only the current line prediction at a time, and a forcing circuit that forcibly limits the semi-variable length quantization circuit to a fixed length code in a specific area of the screen. Device.
JP62105158A 1987-04-28 1987-04-28 Quasi-variable-length code DPCM encoder Expired - Fee Related JPH0832042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62105158A JPH0832042B2 (en) 1987-04-28 1987-04-28 Quasi-variable-length code DPCM encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105158A JPH0832042B2 (en) 1987-04-28 1987-04-28 Quasi-variable-length code DPCM encoder

Publications (2)

Publication Number Publication Date
JPS63269883A true JPS63269883A (en) 1988-11-08
JPH0832042B2 JPH0832042B2 (en) 1996-03-27

Family

ID=14399903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105158A Expired - Fee Related JPH0832042B2 (en) 1987-04-28 1987-04-28 Quasi-variable-length code DPCM encoder

Country Status (1)

Country Link
JP (1) JPH0832042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219390A (en) * 1989-02-21 1990-08-31 Oki Electric Ind Co Ltd System for compressing and extending video signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215184A (en) * 1983-05-23 1984-12-05 Nippon Telegr & Teleph Corp <Ntt> Buffer memory control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215184A (en) * 1983-05-23 1984-12-05 Nippon Telegr & Teleph Corp <Ntt> Buffer memory control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219390A (en) * 1989-02-21 1990-08-31 Oki Electric Ind Co Ltd System for compressing and extending video signal

Also Published As

Publication number Publication date
JPH0832042B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
EP0439624B1 (en) Control system for encoding image
US4202011A (en) Television signal coder
JPH0313089A (en) Encoder
US20110200263A1 (en) Image encoder and image decoder
JP2625012B2 (en) Image signal compression coding device
EP0314356B1 (en) Predictive coding system
JPH04275790A (en) Image processor
JPS63269883A (en) Encoder for semi-variable length code dpcm
JPS5857836A (en) Forecasting encoder
JPS6033789A (en) Method for transmitting picture to be coded
CA1308474C (en) Arrangement for dpcm-coding of video signals
HATORI et al. Predictive coding for NTSC composite color television signals based on comb-filter integration method
JP2000050277A (en) Coding device and coding method
JPS6212214A (en) Nonlinear quantized mode switching device in variable length coding system
JP2603274B2 (en) Encoding device
JPS6264168A (en) Color picture encoder
JPH0634523B2 (en) Color image high efficiency coding method
JP2000050283A (en) Coding device and method
JP2524009B2 (en) Noise reduction device and noise reduction imaging device
KR930003965B1 (en) Coding system
JP3083143B6 (en) Image signal recording device
JP2547479B2 (en) Image coding control system
JPH08322047A (en) Predictive coding device and predictive decoding device
JPH03124125A (en) Pcm coding device
JPH03191674A (en) Image processor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees