JPS63269132A - Optical integrated circuit - Google Patents

Optical integrated circuit

Info

Publication number
JPS63269132A
JPS63269132A JP62105111A JP10511187A JPS63269132A JP S63269132 A JPS63269132 A JP S63269132A JP 62105111 A JP62105111 A JP 62105111A JP 10511187 A JP10511187 A JP 10511187A JP S63269132 A JPS63269132 A JP S63269132A
Authority
JP
Japan
Prior art keywords
optical waveguide
light
optical
wavelength
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62105111A
Other languages
Japanese (ja)
Inventor
Hiroaki Yamamoto
博明 山本
Yoshikazu Hori
義和 堀
Akimoto Serizawa
晧元 芹澤
Rei Otsuka
玲 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62105111A priority Critical patent/JPS63269132A/en
Publication of JPS63269132A publication Critical patent/JPS63269132A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/374Cherenkov radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/302Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating grating coupler

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To provide a simple optical system with a waveform converting function by transmitting the distribution of an electric field as Gauss's distribution in a light guide at the time of coupling light radiated into a substrate at a fixed angle by Cherenkov radiation with another light guide. CONSTITUTION:When laser light with 0.8mum wavelength is made incident from a semiconductor laser upon a secondary higher harmonic generating light guide 2, the light are guided into the light guide 2, generates secondary higher harmonic with 0.4mum and radiates the higher harmonic into the substrate as substrate radiation light 6 at a fixed angle by Cherenkov radiation. The light 6 are made incident upon a blaze grating 4 formed in a single mode three-dimensional light guide 3, coupled with a proton replacement single mode three-dimensional light guide 3 and transmitted as wave-guided light 7. The light 7 are radiated to the external at the end face of the light guide 3 as radiation light 8. Since the space distribution shape of light intensity at the end face of the light guide 3 is similar to a circle, astigmatism at the time of concentrating light by means of the lens system can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光を異なった波長の光に変換する波長変換機能
を有する光集積回路に関するものであり、特に光ディス
ク等への情報の書き込み消去等に用いる光ピツクアップ
用の短波長レーザ光源に利用できる光集積回路に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical integrated circuit having a wavelength conversion function of converting light into light of a different wavelength, and is particularly used for writing and erasing information on optical discs, etc. The present invention relates to an optical integrated circuit that can be used as a short wavelength laser light source for optical pickup.

従来の技術 近年、光情報処理等の重要性が高まってきており、波長
変換機能を有する光集積回路等の開発が期待されている
。特に光ディスク等用いられる光ピツクアップ等には、
記録密度の向上の期待される短波長レーザ光源が要求さ
れており、特に高性能な第二次高調波発生素子の開発が
期待されている。(輻射科学研究会資料R886−21
)既に光導波路を用いた高効率な第二次高調波発生素子
等の開発が行われているが、第二次高調波がチェレンコ
フ放射により発生するので、第二次高調波の光の波面が
歪んでおり、そのために通常の光学レンズ系で光デイス
ク上に集光する事は困難であり光ピツクアップに応用す
る事は困難である。
2. Description of the Related Art In recent years, the importance of optical information processing and the like has been increasing, and there are expectations for the development of optical integrated circuits and the like having a wavelength conversion function. Especially for optical pickups used for optical discs, etc.
There is a demand for a short wavelength laser light source that is expected to improve recording density, and the development of particularly high-performance second harmonic generation elements is expected. (Radiation Science Research Group Material R886-21
) Highly efficient second harmonic generation elements using optical waveguides have already been developed, but since the second harmonic is generated by Cerenkov radiation, the wavefront of the second harmonic light is Because of the distortion, it is difficult to focus the light onto an optical disk using a normal optical lens system, making it difficult to apply it to optical pickup.

第5図に、従来の光導波路を用いた第二次高調波発生素
子の構造を示す。51はニオブ酸リチウム基板であり、
52はプロトン交換光導波路である。光導波路52へ入
射する第一次のレーザ光53は、光導波路52の非線形
光学効果により半波長の第2次高調波に変換されチェレ
ンコフ放射により基板内へ一定の角度で放射される。
FIG. 5 shows the structure of a second harmonic generation element using a conventional optical waveguide. 51 is a lithium niobate substrate;
52 is a proton exchange optical waveguide. The first laser beam 53 incident on the optical waveguide 52 is converted into a half-wavelength second harmonic by the nonlinear optical effect of the optical waveguide 52, and is emitted into the substrate at a constant angle by Cerenkov radiation.

発明が解決しようとする問題点 しかしながら光導波路を伝搬する一次光は伝搬と共に徐
々に第二次高調波のレーザ光に変換されてい(ために、
光強度が減衰してゆき、その結果第二次高調波の光強度
も徐々に減衰する。また第二次高調波が光導波路全体か
ら一定角度で放射されるために出射端面に於いては第二
次高調波出射光強度分布が55に示すごとく縦方向に非
対称となる。従ってまた出射端面におけるニアフィール
ドパターンは円形から大きくかけはなれた三日月型に近
い形状となり、レンズ系で絞る時には大きな非点収差を
持つ事になる。したがって、この素子を光ピツクアップ
等に応用する場合レーザ光をディスク上に絞る場合には
通常のレンズ系では1μm以下のスポット径に絞ること
は不可能であり複雑な光学系が必要となり、技術的に困
難であるのみならず、非球面レンズ等の高価な光学系と
精密な光軸合わせの技術が必要となる。
Problems to be Solved by the Invention However, the primary light propagating through the optical waveguide is gradually converted into second harmonic laser light as it propagates (because of this,
The light intensity is gradually attenuated, and as a result, the light intensity of the second harmonic is also gradually attenuated. Further, since the second harmonic is radiated from the entire optical waveguide at a constant angle, the intensity distribution of the second harmonic output light becomes asymmetrical in the vertical direction at the output end face, as shown at 55. Therefore, the near-field pattern at the exit end face has a shape close to a crescent moon shape, which is far from a circle, and has a large astigmatism when stopped by a lens system. Therefore, when applying this element to optical pickup, etc., it is impossible to focus the laser beam onto a disk with a spot diameter of 1 μm or less using a normal lens system, and a complicated optical system is required. Not only is this difficult, but it also requires an expensive optical system such as an aspherical lens and precise optical axis alignment technology.

本発明は、このような問題を解決し、第二次高調波発生
等の波長変換機能を有する高い性能な光集積回路を実現
するものであり、放射光の波面の一様な非点収差の小さ
い短波長レーザ光源用の光集積回路を提供するものであ
る。
The present invention solves these problems and realizes a high-performance optical integrated circuit having wavelength conversion functions such as second harmonic generation. The present invention provides an optical integrated circuit for a small short wavelength laser light source.

問題点を解決するための手段 本発明は ■基板に複数の光導波路を含んで形成される光集積回路
で、前記複数の光導波路のうち少な(とも一つの光導波
路は伝搬する第一次の光の波長を変換しかつ波長変換さ
れた第二次の該光を該光導波路の外部に放射し得る非線
形効果を有する第一の光導波路であり、かつ複数の光導
波路のうち少なくとも一つ以上が前記波長変換された第
二次の光と結合し、該光を導波光として伝搬する第二の
に光導波路である事を特徴とする光集積回路である。
Means for Solving the Problems The present invention is an optical integrated circuit formed by including a plurality of optical waveguides on a substrate. A first optical waveguide having a nonlinear effect capable of converting the wavelength of light and radiating the wavelength-converted secondary light to the outside of the optical waveguide, and at least one of the plurality of optical waveguides. The optical integrated circuit is characterized in that the optical integrated circuit is an optical waveguide which couples the wavelength-converted second light and propagates the light as guided light.

さらに、本発明は次に示す態様をもつことを可能とする
Furthermore, the present invention can have the following aspects.

■前記第一の非線形光導波路と前記第二次の波長変換さ
れた光が伝搬する第二の光導波路が互いに対をなして近
接して配置されている。
(2) The first nonlinear optical waveguide and the second optical waveguide through which the second wavelength-converted light propagates are arranged in close proximity to each other in a pair.

■前記第一の非線形光導波路が前記基板の第一の面の近
傍に形成され、また第一の非線形光導波路において波長
変換された光が前記基板内に放射され、かつ第二の光導
波路が前記基板の第二の面の近傍に形成されている。
(2) The first nonlinear optical waveguide is formed near the first surface of the substrate, and the light wavelength-converted in the first nonlinear optical waveguide is radiated into the substrate, and the second optical waveguide is formed near the first surface of the substrate. It is formed near the second surface of the substrate.

■前記の第一もしくは第二の光導波路が基板の表面近傍
に形成され、かつ第一もしくは第二の光導波路上にバッ
ファ層を介して第二のもしくは第一の光導波路が形成さ
れている。
■The first or second optical waveguide is formed near the surface of the substrate, and the second or first optical waveguide is formed on the first or second optical waveguide with a buffer layer interposed therebetween. .

■前記第二の光導波路の一部に光の伝搬方向に対して実
効的に周期的な屈折率分布が存在するグレーティングが
形成され、グレーティグの回折効果により前記波長変換
され放射される第二次の光が第二の光導波路の導波光が
結合されている。
■ A grating that has an effective periodic refractive index distribution with respect to the propagation direction of light is formed in a part of the second optical waveguide, and the second wavelength is converted and radiated due to the diffraction effect of the grating. The next light is coupled to the guided light of the second optical waveguide.

■前記グレーティングがブレーズグレーティングである
事を特徴とする。
■The grating is characterized by being a blaze grating.

■前記波長変換された光が伝搬する第二の光導波路が単
一モード三次元光導波路である。
(2) The second optical waveguide through which the wavelength-converted light propagates is a single mode three-dimensional optical waveguide.

■前記波長変換された光が伝搬する第二の光導波路が二
次元光導波路である。
(2) The second optical waveguide through which the wavelength-converted light propagates is a two-dimensional optical waveguide.

■前記波長変換された第二次の光を伝搬する第二の二次
元光導波路の一部に、伝搬する該第二次の光を該第二の
光導波路の外部に放射せしめるグレーティングが形成さ
れている。
■A grating that radiates the propagating secondary light to the outside of the second optical waveguide is formed in a part of the second two-dimensional optical waveguide through which the wavelength-converted secondary light propagates. ing.

[相]前記第一の非線形光導波路が第二次高調波を発生
する光導波路である。
[Phase] The first nonlinear optical waveguide is an optical waveguide that generates a second harmonic.

■前記第一の非線形光導波路がニオブ酸リチウムを主成
分とする光導波路である。
(2) The first nonlinear optical waveguide is an optical waveguide containing lithium niobate as a main component.

作用 本発明は非線形光導波路を導波して、非線形光学効果に
より波長変換され、チェレンコフ放射により基板内へ一
定の角度で放射する光が他の光導波路と結合する時光導
波路内に於いてその電界分布がガウス分布となって伝搬
するために端面もしくはグレーティングカプラにより出
射される光の波面が揃っており、通常のレンズ系等を用
いる事により容易に集光できる事を利用するものである
Effect of the present invention The present invention guides light through a nonlinear optical waveguide, converts the wavelength due to the nonlinear optical effect, and radiates light into the substrate at a certain angle due to Cerenkov radiation. This method takes advantage of the fact that the electric field distribution propagates in a Gaussian distribution, so the wavefronts of the light emitted by the end face or grating coupler are aligned, and the light can be easily focused using a normal lens system or the like.

実施例 以下、本発明を実施例をもとに説明する。Example The present invention will be explained below based on examples.

第1図は本発明の第一の実施例の波長変種能を具備した
光集積回路の概略構成を示すものである。第1図におい
て、1はニオブ酸リチウム基板、2はプロトン交換によ
り形成された第二次高調波発生光導波路、3は同じくプ
ロトン交換法により形成され 第二次高調波に対して単
一モードを伝搬する三次元光導波路、4はブレーズグレ
ーティングである。
FIG. 1 shows a schematic configuration of an optical integrated circuit having wavelength variation capability according to a first embodiment of the present invention. In Fig. 1, 1 is a lithium niobate substrate, 2 is a second harmonic generation optical waveguide formed by proton exchange, and 3 is a second harmonic generation optical waveguide formed by the proton exchange method, which generates a single mode for the second harmonic. In the three-dimensional optical waveguide through which the light propagates, 4 is a blaze grating.

以下、本実施例の動作原理について第2図の断面図をも
とに説明する。第二次高調波発生光導波路2に半導体レ
ーザの波長0.8μmの光5が入射すると、このレーザ
光は光導波路2を導波すると共に波長0.4μmの第二
次高調波を発生し、チェレンコフ放射により基板内へ一
定の角度に基板放射光6として放射する。この基板放射
光6は単一モード三次元光導波路3に形成されたブレー
ズグレーティング4へ入射し回折効果によりプロトン交
換単一モード三次元光導波路3と結合し、導波光7とし
て伝搬する。この導波光7はさらに該三次元光導波路3
の端面で外部へ放射光8として放射される。この導波路
は既に記した様に単一モード三次元光導波路であるから
その端面での光強度の空間分布形状は円に近い形状にな
っているのでレンズ系で集光する際の非点収差は小さく
なっている。その結果レンズで絞った時の集光スポット
径は約0.5μmでありほぼ回折限界であった。以上の
ようにして非点収差の小さく、短波長光源としての特長
を発揮することのできる高性能の波長変換装置を構成す
ることができた。
Hereinafter, the principle of operation of this embodiment will be explained based on the sectional view of FIG. 2. When light 5 of a semiconductor laser with a wavelength of 0.8 μm is incident on the second harmonic generation optical waveguide 2, this laser light is guided through the optical waveguide 2 and generates a second harmonic with a wavelength of 0.4 μm, Cherenkov radiation is used to radiate light into the substrate at a constant angle as substrate radiation 6. This substrate emitted light 6 enters the blaze grating 4 formed in the single mode three-dimensional optical waveguide 3, is coupled with the proton exchange single mode three-dimensional optical waveguide 3 due to the diffraction effect, and propagates as guided light 7. This guided light 7 is further transferred to the three-dimensional optical waveguide 3.
It is emitted to the outside as radiation light 8 at the end face of the . As mentioned above, this waveguide is a single mode three-dimensional optical waveguide, so the spatial distribution shape of the light intensity at its end face is close to a circle, so there is no astigmatism when condensing light with a lens system. is getting smaller. As a result, the condensed spot diameter when stopped by a lens was about 0.5 μm, which was almost at the diffraction limit. As described above, it was possible to construct a high-performance wavelength conversion device that has small astigmatism and can exhibit the characteristics of a short wavelength light source.

以上の実施例では第二次高調波を伝搬する光導波路が三
次元のシングルモード導波路である場合を示したが、二
次元のスラブ導波路を用いることにより新たな効果をも
たらすことができる。
In the above embodiments, the optical waveguide that propagates the second harmonic is a three-dimensional single mode waveguide, but new effects can be brought about by using a two-dimensional slab waveguide.

第3図に二次元のスラブ導波路を用いた場合の実施例を
示す。31は半導体レーザ、32はニオブ酸リチウム基
板、33は基板の片面にイオン交換にて形成された三次
元の非線形光導波路、34は非線形光導波路33から放
射される発散性の第二次高調波を下記の光導波路35に
結合させるためのフォー力ッシンググレーティングカブ
ラ。35は基板の裏面に形成されたスラブ導波路である
。また36は第二次高調波を空間中に放射して光ディス
ク等の表面に集光させるためのフォー力ッシンググレー
ティングカブラである。半導体レーザ31から出射され
た約0.8μmの光が33の光導波路を伝搬するととも
に約0.4μmのレーザ光に変換され、その光が35の
光導波路を伝搬し36のフォー力ッシンググレーティン
グカブラにより空間中に放射され光ディスク等の表面に
集光される。この構成により短波長の光集積化ピックア
ップを容易に実現すること°ができる。
FIG. 3 shows an embodiment using a two-dimensional slab waveguide. 31 is a semiconductor laser, 32 is a lithium niobate substrate, 33 is a three-dimensional nonlinear optical waveguide formed by ion exchange on one side of the substrate, and 34 is a divergent second harmonic wave emitted from the nonlinear optical waveguide 33. A four-force grating coupler for coupling the optical waveguide 35 to the optical waveguide 35 described below. 35 is a slab waveguide formed on the back surface of the substrate. Further, 36 is a force grating coupler for emitting the second harmonic into space and focusing it on the surface of an optical disk or the like. Approximately 0.8 μm light emitted from the semiconductor laser 31 propagates through the optical waveguide 33 and is converted into approximately 0.4 μm laser light, which propagates through the optical waveguide 35 and passes through the four force grating 36. The light is radiated into space by a fogger and focused on the surface of an optical disk or the like. With this configuration, a short wavelength optical integrated pickup can be easily realized.

第二の実施例ではグレーティングカブラとして集光機能
を有するフォー力ッシンググレーティングカブラを用い
ているが平行グレーティングを用いて平行ビームとして
空間に放出し、レンズレンズ系で集光させることも可能
である。
In the second embodiment, a force grating coupler having a light focusing function is used as the grating coupler, but it is also possible to use a parallel grating to emit the light into space as a parallel beam, and to collect the light with a lens system. .

第−及び第二の実施例においてはニオブ酸リチウムの基
板を用いイオン拡散することにより導波路を形成してい
るが基板が第二次高調波に対して透明であればこれに限
定されるものではない。また非線形光導波路もニオブ酸
リチウムのイオン交換導波路に限られずタンタル酸リチ
ウム等の酸化物、■−V族化合物或はII−Vl化合物
等非線形効果を有する媒体により形成された光導波路を
用いることも可能である。更に第二次高調波を伝搬する
光導波路は、第二次高調波に対して透明であればいかな
る媒体で形成されていても差し支えない。
In the first and second embodiments, a lithium niobate substrate is used to form a waveguide by ion diffusion, but this is only possible if the substrate is transparent to the second harmonic. isn't it. Furthermore, the nonlinear optical waveguide is not limited to the ion-exchange waveguide of lithium niobate, but it is also possible to use an optical waveguide formed of a medium having a nonlinear effect such as an oxide such as lithium tantalate, a ■-V group compound, or a II-Vl compound. is also possible. Further, the optical waveguide for propagating the second harmonic may be formed of any medium as long as it is transparent to the second harmonic.

また、非線形光導波路と第二次高調波を伝搬する光導波
路は必ずしも基板の両面に形成されている必要はな(、
両者が近接されて配置されていてもよい。この場合の第
三の実施例を第4図を用いて説明する。41はGaAs
基板、42はZnS層、43はZ n S / Z n
 S eの超格子構造の非線形光導波路、44はZn5
eS固溶対層、45はSin”クラッド層、46はSi
N光導波層、47は周期的構造の形成された5in2ク
ラッド層である。また48はAlGaAsを活性層とす
る波長的0.8μm帯の半導体レーザであり上記の光導
波路とモノリシックに形成されている。半導体レーザか
ら出射される光は43の非線形光導波路を伝搬し、波長
変換された波長0.4μmの光がその上に形成された光
導波路に同様の原理で結合され46の光導波路を伝搬し
、端面49がら放射される。一方端面50からは波長変
換により多少減衰された光が放射される。この構成によ
れば、三波長のレーザ光源が容易に形成され、光ディス
クの情報の記録及び消去を同時に実現可能な光ピツクア
ップ用の光源として期待される。
Also, the nonlinear optical waveguide and the optical waveguide that propagates the second harmonic do not necessarily have to be formed on both sides of the substrate (
Both may be placed close to each other. A third embodiment in this case will be described using FIG. 4. 41 is GaAs
Substrate, 42 is ZnS layer, 43 is ZnS/Zn
Nonlinear optical waveguide with superlattice structure of S e, 44 is Zn5
eS solid solution pair layer, 45 is a Sin'' cladding layer, 46 is Si
The N optical waveguide layer 47 is a 5in2 cladding layer formed with a periodic structure. Further, 48 is a semiconductor laser having a wavelength band of 0.8 μm and having an active layer of AlGaAs, and is formed monolithically with the above-mentioned optical waveguide. The light emitted from the semiconductor laser propagates through 43 nonlinear optical waveguides, and the wavelength-converted light with a wavelength of 0.4 μm is coupled to the optical waveguide formed above it using the same principle and propagates through 46 optical waveguides. , is radiated from the end face 49. On the other hand, light that is somewhat attenuated due to wavelength conversion is emitted from the end face 50. According to this configuration, a three-wavelength laser light source can be easily formed and is expected to be used as a light source for optical pickup that can simultaneously record and erase information on an optical disc.

本実施例ではAlGaAsを活性層とする波長的0.8
μm帯の半導体レーザを用いているが、これに限られず
0.6μm帯のAlGa1nP系の半導体レーザであれ
ば、0.3μm帯の光源としても用いることができるの
で、更にその効果は大きい。また本実施例では半導体レ
ーザがモノリシック一体化されているが、前記実施例1
および2のようにハイブリッド構成でも何ら問題ない。
In this example, the wavelength is 0.8 with AlGaAs as the active layer.
Although a μm band semiconductor laser is used, the present invention is not limited to this, but an AlGa1nP semiconductor laser with a 0.6 μm band can also be used as a 0.3 μm band light source, so the effect is even greater. Furthermore, in this embodiment, the semiconductor laser is monolithically integrated;
There is no problem with a hybrid configuration like 2 and 2.

発明の詳細 な説明したように、本発明によれば非点収差の小さく、
簡単な光学系で集光可能な波長変換機能を持つ光集積回
路を提供することができ、例えば短波長の光ピツクアッ
プ用の素子としてその実6用的効果は大きい。
As described in detail, according to the present invention, astigmatism is small;
It is possible to provide an optical integrated circuit having a wavelength conversion function that allows light to be focused with a simple optical system, and its practical effects are great, for example, as an element for picking up short wavelength light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例の光集積回路の要部概略
斜視図、第2図は第1図の断面図、第3図は本発明の第
二の実施例の光集積回路の概略斜視図、第4図は本発明
の第三の実施例の同概略断釦図、第5図は従来の波長変
換素子の概略斜視図である。 1・・・ニオブ酸リチウム基板、2・・・プロトン交換
第二次高調波発生光導波路、3・・・プロトン交換単一
モード三次元光導波路、4・・・ブレーズグレーティン
グ、5・・・入力レーザ光、6・・・基板放射光、7・
・・導波光、8・・・放射光、31・・・半導体レーザ
、32・・・ニオブ酸リチウム基板、33・・・イオン
交換三次元非線形光導波路、34・・・フォー力ッシン
ググレーティングカブラ、35スラブ導波路、36・・
・フォー力ッシンググレーティングカプラ、41・・・
GaAS基板、42・−・ZnS層、43・・・Z n
 S / Z n S eの超格子構造非線形光導波路
、44・・・Zn5eS固溶対層、45・・・5in2
クラッド層、46@・・SiN光導波層、47・・・S
in”クラッド層、48・・・半導体レーザ。 代理人の氏名 弁理士 中尾敏男 ほか1名第2図 5光    6基扶農#光
FIG. 1 is a schematic perspective view of essential parts of an optical integrated circuit according to a first embodiment of the present invention, FIG. 2 is a sectional view of FIG. 1, and FIG. 3 is a schematic perspective view of an optical integrated circuit according to a second embodiment of the present invention. FIG. 4 is a schematic cutaway view of the third embodiment of the present invention, and FIG. 5 is a schematic perspective view of a conventional wavelength conversion element. DESCRIPTION OF SYMBOLS 1... Lithium niobate substrate, 2... Proton exchange second harmonic generation optical waveguide, 3... Proton exchange single mode three-dimensional optical waveguide, 4... Blaze grating, 5... Input Laser light, 6...Substrate radiation light, 7.
... Waveguide light, 8 ... Synchrotron radiation, 31 ... Semiconductor laser, 32 ... Lithium niobate substrate, 33 ... Ion exchange three-dimensional nonlinear optical waveguide, 34 ... Four force grating coupler , 35 slab waveguide, 36...
・Force grating coupler, 41...
GaAS substrate, 42...ZnS layer, 43...Z n
S/ZnS e superlattice structure nonlinear optical waveguide, 44...Zn5eS solid solution pair layer, 45...5in2
Cladding layer, 46@...SiN optical waveguide layer, 47...S
in” cladding layer, 48...semiconductor laser. Name of agent: Patent attorney Toshio Nakao and one other person Figure 2 5 light 6 base # light

Claims (11)

【特許請求の範囲】[Claims] (1)基板に複数の光導波路を含んで形成され、前記複
数の光導波路のうち少なくとも一つの光導波路は伝搬す
る第一次の光の波長を変換しかつ波長変換された第二次
の光を前記光導波路の外部に放射し得る非線形効果を有
する第一の光導波路であり、かつ複数の光導波路のうち
少なくとも一つ以上が前記波長変換された第二次の光と
結合し、前記光を導波光として伝搬する第二の光導波路
である事を特徴とする光集積回路。
(1) A substrate is formed including a plurality of optical waveguides, and at least one optical waveguide among the plurality of optical waveguides converts the wavelength of the propagating primary light and converts the wavelength-converted secondary light. a first optical waveguide having a nonlinear effect capable of radiating the wavelength-converted second-order light to the outside of the optical waveguide; What is claimed is: 1. An optical integrated circuit characterized in that the optical integrated circuit is a second optical waveguide that propagates as guided light.
(2)第一の非線形光導波路と前記第二次の波長変換さ
れた光が伝搬する第二の光導波路が互いに対をなして近
接して配置されている事を特徴とする特許請求の範囲第
1項記載の光集積回路。
(2) Claims characterized in that the first nonlinear optical waveguide and the second optical waveguide through which the second-order wavelength-converted light propagates are arranged in close proximity to each other in a pair. The optical integrated circuit according to item 1.
(3)第一の非線形光導波路が前記基板の第一の面の近
傍に形成され、また第一の非線形光導波路において波長
変換された光が前記基板内に放射され、かつ第二の光導
波路が前記基板の第二の面の近傍に形成されている事を
特徴とする特許請求の範囲第2項記載の光集積回路。
(3) A first nonlinear optical waveguide is formed near the first surface of the substrate, and the light wavelength-converted in the first nonlinear optical waveguide is radiated into the substrate, and a second optical waveguide is formed in the vicinity of the first surface of the substrate. 3. The optical integrated circuit according to claim 2, wherein the optical integrated circuit is formed near the second surface of the substrate.
(4)第一もしくは第二の光導波路が基板の表面近傍に
形成され、かつ第一もしくは第二の光導波路上にバッフ
ァ層を介して第二のもしくは第一の光導波路が形成され
ている事を特徴とする特許請求の範囲第2項記載の光集
積回路
(4) A first or second optical waveguide is formed near the surface of the substrate, and the second or first optical waveguide is formed on the first or second optical waveguide with a buffer layer interposed therebetween. The optical integrated circuit according to claim 2, characterized in that:
(5)第二の光導波路の一部に光の伝搬方向に対して実
効的に周期的な屈折率分布が存在するグレーティングが
形成され、グレーティグの回折効果により前記波長変換
され放射される第二次の光が第二の光導波路の導波光が
結合されている事を特徴とする特許請求の範囲第1項か
ら第4項のいずれかに記載の光集積回路。
(5) A grating having an effective periodic refractive index distribution in the light propagation direction is formed in a part of the second optical waveguide, and the wavelength of the wavelength-converted and radiated grating is formed by the diffraction effect of the grating. 5. The optical integrated circuit according to claim 1, wherein the secondary light is coupled with the guided light of the second optical waveguide.
(6)グレーティングがブレーズグレーティングである
事を特徴とする特許請求の範囲第5項記載の光集積回路
(6) The optical integrated circuit according to claim 5, wherein the grating is a blazed grating.
(7)波長変換された光が伝搬する第二の光導波路が単
一モード三次元光導波路である事を特徴とする特許請求
の範囲第1項から第6項のいずれかに記載の光集積回路
(7) The optical integration according to any one of claims 1 to 6, wherein the second optical waveguide through which the wavelength-converted light propagates is a single mode three-dimensional optical waveguide. circuit.
(8)波長変換された光が伝搬する第二の光導波路が二
次元光導波路である事を特徴とする特許請求の範囲第1
項から第6項のいずれかに記載の光集積回路。
(8) Claim 1, characterized in that the second optical waveguide through which the wavelength-converted light propagates is a two-dimensional optical waveguide.
6. The optical integrated circuit according to any one of items 6 to 6.
(9)波長変換された第二次の光を伝搬する第二の二次
元光導波路の一部に、伝搬する該第二次の光を該第二の
光導波路の外部に放射せしめるグレーティングが形成さ
れている事を特徴とするに特許請求の範囲第8項記載の
光集積回路。
(9) A grating that radiates the propagating second-order light to the outside of the second optical waveguide is formed in a part of the second two-dimensional optical waveguide that propagates the wavelength-converted second-order light. The optical integrated circuit according to claim 8, characterized in that:
(10)第一の非線形光導波路が第二次高調波を発生す
る光導波路である事を特徴とする特許請求の範囲第1項
記載の光集積回路。
(10) The optical integrated circuit according to claim 1, wherein the first nonlinear optical waveguide is an optical waveguide that generates a second harmonic.
(11)第一の非線形光導波路がニオブ酸リチウムを主
成分とする光導波路である事を特徴とする特許請求の範
囲第1項記載の光集積回路。
(11) The optical integrated circuit according to claim 1, wherein the first nonlinear optical waveguide is an optical waveguide containing lithium niobate as a main component.
JP62105111A 1987-04-28 1987-04-28 Optical integrated circuit Pending JPS63269132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62105111A JPS63269132A (en) 1987-04-28 1987-04-28 Optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105111A JPS63269132A (en) 1987-04-28 1987-04-28 Optical integrated circuit

Publications (1)

Publication Number Publication Date
JPS63269132A true JPS63269132A (en) 1988-11-07

Family

ID=14398731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105111A Pending JPS63269132A (en) 1987-04-28 1987-04-28 Optical integrated circuit

Country Status (1)

Country Link
JP (1) JPS63269132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038134A (en) * 1989-06-05 1991-01-16 Hitachi Ltd Optical integrated circuit and optical device
JPH03261925A (en) * 1990-03-13 1991-11-21 Sharp Corp Light wavelength converter
EP0463886A2 (en) * 1990-06-28 1992-01-02 Sharp Kabushiki Kaisha A light wavelength converter
US5082340A (en) * 1989-04-28 1992-01-21 Hamamatsu Photonics K. K. Wavelength converting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082340A (en) * 1989-04-28 1992-01-21 Hamamatsu Photonics K. K. Wavelength converting device
JPH038134A (en) * 1989-06-05 1991-01-16 Hitachi Ltd Optical integrated circuit and optical device
JP2728502B2 (en) * 1989-06-05 1998-03-18 株式会社日立製作所 Optical integrated circuit and optical device
JPH03261925A (en) * 1990-03-13 1991-11-21 Sharp Corp Light wavelength converter
JP2688102B2 (en) * 1990-03-13 1997-12-08 シャープ株式会社 Optical wavelength converter
EP0463886A2 (en) * 1990-06-28 1992-01-02 Sharp Kabushiki Kaisha A light wavelength converter
JPH0460524A (en) * 1990-06-28 1992-02-26 Sharp Corp Light wavelength converter
US5224195A (en) * 1990-06-28 1993-06-29 Sharp Kabushiki Kaisha Light wavelength converter for a wavelength of laser beams into a short wavelength

Similar Documents

Publication Publication Date Title
US4951293A (en) Frequency doubled laser apparatus
EP1001413A2 (en) Optical pickup and optical device
JPH02153328A (en) Light source device
EP0360122B1 (en) Second harmonic generator and information processing system using the same
US6785457B2 (en) Optical waveguide device and coherent light source and optical apparatus using the same
TW442673B (en) Optical waveguide device, and light source device and optical apparatus including the optical waveguide device
US5224193A (en) First order mode frequency doubler system and method
JPS63269132A (en) Optical integrated circuit
US6501868B1 (en) Optical waveguide device, coherent light source, integrated unit, and optical pickup
CA2057545C (en) Light source device
JP2716000B2 (en) Light head
JPS63164034A (en) Optical waveguide type optical pickup
JPS63269129A (en) Optical integrated circuit
JP2003227953A (en) Photonic crystal condensing element, photonic crystal condensing light source and optical disk unit
JPH02116809A (en) Optical coupler
JP2000171653A (en) Waveguide type optical device and light source and optical device using it
JPH0481726A (en) Wavelength conversion device and optical information processor
JPS61140927A (en) Acoustooptic modulator
JP2605933B2 (en) Beam shaping lens and short wavelength laser light source
JPS6398848A (en) Optical waveguide type optical pickup
JPS63318504A (en) Optical integrated circuit
JP2005352129A (en) Higher harmonics laser device, method for manufacturing the same, and picture display device using the same
US7899292B2 (en) Thermal nonlinearity cell for guiding electromagnetic energy through a nonlinear medium
JPS63164035A (en) Optical guide type optical pickup
JPH01283527A (en) Light wavelength converting device