JPS63267155A - Polishing device - Google Patents

Polishing device

Info

Publication number
JPS63267155A
JPS63267155A JP62101542A JP10154287A JPS63267155A JP S63267155 A JPS63267155 A JP S63267155A JP 62101542 A JP62101542 A JP 62101542A JP 10154287 A JP10154287 A JP 10154287A JP S63267155 A JPS63267155 A JP S63267155A
Authority
JP
Japan
Prior art keywords
polishing
polished
belt
polishing liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62101542A
Other languages
Japanese (ja)
Inventor
Naomi Yoshida
直美 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62101542A priority Critical patent/JPS63267155A/en
Publication of JPS63267155A publication Critical patent/JPS63267155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To finish a face to be polished to a prescribed shape and accuracy in a polishing device for a wafer, etc., by colliding fine particles against the face to be polished by the movement of a belt which is rotated while crossing at a right angle to the face being polishing in a polishing liquid. CONSTITUTION:A polishing device is filled with a polishing liquid 13, in which pulleys 8a, 8b, 8c which are connected by a belt 10 of polyurethane, etc. are immersed to cause the flowing movement of the liquid. Then, the form and set position of the pulley 8a is adjusted so as to obtain the desired shape of the face to be polished of a polished object 2. And, the belt 10 is moved on the pulley 8 causing the polishing liquid 13 to flow, and a rotary shaft 5 on which the polished object 2 is mounted is rotated at a very low speed by a motor 4. Thus, the fine particles in the polishing liquid 13 are continuously brought into contact with the whole area of the face to be polished of the polished object 2, to polish and finish the polished object 2 into a desired shape. In this case, as an up-down mechanism 6 installed on the rotary shaft 5 is adjusted by means of an up-down knob 7, the contact of the fine particles with the polished object 2 can be adjusted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は研磨装置に係り、特にウェハ等の半導体部品お
よびレーザミラー、放射光反射ミラー等の光学部品を精
密研磨するに好適な研磨装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polishing apparatus, and more particularly to a polishing apparatus suitable for precision polishing semiconductor components such as wafers and optical components such as laser mirrors and emitted light reflecting mirrors. .

〔従来の技術〕[Conventional technology]

本発明は研磨液を用い、主な構成はベルトで結んだ1個
あるいは複数個のプーリーおよび被研磨物が着脱可能な
保持具を接続した上下あるいは前進後進に移動可能な回
転軸から成る。従来ベルト研磨機に関しては(特開昭4
7−22591)第13図のような構成の装置が公知で
あり、この方法は駆動用に連結されたプーリ8a、8b
、8cによって回動される研磨ベルト10を被研磨物2
の研磨面40に接触摩擦することによって、金属材料等
の試験片研磨に用いられていた。
The present invention uses a polishing liquid and mainly consists of one or more pulleys connected by a belt and a rotary shaft that can move up and down or forward and backward to which a holder to which the object to be polished can be attached and detached is connected. Regarding conventional belt polishing machines (Japanese Patent Application Laid-open No. 4
7-22591) A device having a configuration as shown in FIG. 13 is known, and this method uses pulleys 8a and 8b connected for driving.
, 8c, the polishing belt 10 is rotated by the object 2 to be polished.
It was used for polishing specimens of metal materials etc. by contact friction with the polishing surface 40 of.

半導体ウェハの研磨においては、(特開昭6l−617
64) 、第8図のように、研磨材を懸濁させた研磨液
13を用い、多孔性ポリウレタン研磨台等16の固体接
触によって研磨を行ってきたが、この方法では被研磨面
に砥粒の引っかきや研磨台との摩擦などによる加工変質
層を発生する恐れがある。また、研磨液を用いて被加工
物と工具が全く接触しない状態で研磨を行う方法は幾つ
か提案されているが、たとえばE E M (Elas
ticEmission Machining)  (
精密機械、46−6)、は第11図に示されるように無
段変速モータ20によってポリウレタン球21に回転運
動を与え被研磨物2に研磨液13を流動接触させ、NC
テーブル22の送り速度または停止時間によって任意の
位置の加工量を制御するものである。しかし。
In the polishing of semiconductor wafers,
64) As shown in Fig. 8, polishing has been carried out by using a polishing liquid 13 in which an abrasive is suspended and in solid contact with a porous polyurethane polishing table 16, but in this method, abrasive particles are not deposited on the surface to be polished. There is a risk of forming a damaged layer due to scratches or friction with the polishing table. In addition, several methods have been proposed for polishing using a polishing liquid without any contact between the workpiece and the tool; for example, E E M (Elas
ticEmission Machining) (
Precision Machinery, 46-6), uses a continuously variable speed motor 20 to rotate a polyurethane ball 21 to bring the polishing liquid 13 into fluid contact with the object 2 to be polished, as shown in FIG.
The amount of machining at an arbitrary position is controlled by the feed rate or stop time of the table 22. but.

この方法ではあるポイントごとに研磨を行うため。This method involves polishing at each point.

任意点での加工量を制御しかつ高精度で研磨面金域を走
査する装置が必要となる。この種の装置としては、例え
ば第12図(実用新案公告昭59−24448)が挙げ
られる。また、EEMを利用した技術である非固体接触
研磨方法(精密機械。
A device is required that can control the amount of processing at any point and scan the area of the polished surface with high precision. An example of this type of device is shown in FIG. 12 (Utility Model Publication No. 59-24448). In addition, a non-solid contact polishing method (precision machinery), which is a technology using EEM, is also available.

49−5)では、第9図に示されるように上面に放射状
に傾斜面を形成した円板工具17を研磨液中13で回転
させ、該研磨液13が放射状の溝の上面に沿って流れ、
被研磨物2を浮上させ、研磨液中2の研磨材が該被研磨
物2の下面に衝突し研磨を行うものである。フロートポ
リジングと称される方法(光学、13−6)では、第1
0図に示すように溝を切削した錫ラップ18および被研
磨物2を高速回転させることによって、両者の間にある
研磨液13が浮上し、該研磨液13に含まれる研磨材に
よって該被研磨物2の研磨が進行するものである0以上
は主として、平面の精密研磨技術に関する従来技術を紹
介した。
49-5), as shown in FIG. 9, a disk tool 17 having a radially inclined surface formed on the upper surface is rotated in a polishing liquid 13, and the polishing liquid 13 flows along the upper surface of the radial grooves. ,
The object 2 to be polished is floated, and the abrasive material in the polishing liquid collides with the lower surface of the object 2 to perform polishing. In the method called float polishing (optics, 13-6), the first
As shown in Figure 0, by rotating the tin wrap 18 with grooves cut and the object 2 to be polished at high speed, the polishing liquid 13 between them floats up, and the abrasive material contained in the polishing liquid 13 causes the object 2 to be polished. 0 and above, where the polishing of object 2 progresses, mainly introduces conventional techniques related to precision polishing techniques for flat surfaces.

一方、従来レンズおよびミラー等の曲面研磨を行う方法
としては、第14.15図(特開昭59−169756
)に示す被研磨物と研磨機の構成が公知であり、予め研
磨によって得ようとする曲面と同一曲率を有する研磨面
38a、38bを用意し、被研磨物2a、2bの表面に
押し当て回転によって得られる研磨メカニズムによって
研磨を行っていたが、研磨圧力や砥粒介在量の不均一に
より、研磨材が曲面各部で異なり、高精度な研磨は困難
であった。さらに第16.17図(特開昭6l−826
9)の方法では予め形状がわかっている被研磨物2に対
して、先端が球状をなす工具47を取り付けた工具軸を
高速回転させ、加工物傾斜角検出装置45によって定め
られた角度位置での除去加工を行い、そして回転揺動機
能によって連続して別の角度位置での除去加工へと進む
ことが可能である。しかし、この方法においては、被加
工物と工具が接触する。EEMを曲面研磨に用いた場合
、あらかじめ前加工を施し、その前加工に対する形状測
定を行い、任意点での加工量を制御し、かつ高精度で研
磨面金域を走査する装置が必要となる。フロートポリミ
ング、非固体接触研磨法においては、前述のように、装
置の構成上の制限より曲面研磨が困難である。
On the other hand, as a conventional method for polishing curved surfaces of lenses, mirrors, etc., there is a method shown in Figs.
The structure of the object to be polished and the polishing machine shown in ) is well known, and polishing surfaces 38a and 38b having the same curvature as the curved surface to be obtained by polishing are prepared in advance, and the surfaces of the objects to be polished 2a and 2b are pressed and rotated. However, due to the unevenness of the polishing pressure and the amount of abrasive grains, the abrasive material differs for each part of the curved surface, making it difficult to perform high-precision polishing. Furthermore, Figures 16 and 17 (Unexamined Japanese Patent Publication No. 61-826
In method 9), a tool shaft to which a tool 47 with a spherical tip is attached is rotated at high speed with respect to the workpiece 2 whose shape is known in advance, and the workpiece is rotated at an angular position determined by the workpiece inclination angle detection device 45. It is possible to carry out a removal process at a different angular position, and then proceed to a removal process at another angular position in succession by means of the rotary oscillation function. However, in this method, the workpiece and the tool come into contact. When EEM is used for curved surface polishing, it is necessary to perform pre-processing in advance, measure the shape of the pre-process, control the amount of processing at any point, and scan the polished surface metal area with high precision. . As described above, in float polymerizing and non-solid contact polishing methods, it is difficult to polish curved surfaces due to limitations in the configuration of the equipment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上に述べたように研磨装置は種々提案されてはいるが
、被加工物と工具が接触する研磨では砥粒の引っかきや
ポリシングの摩擦等による加工変質層の発生が避けられ
ない。一方、被加工物と工具が全く接触しない状態で研
磨液の流動接触によって研磨する方法においては、欠陥
のない鏡面を得ることは可能ではあるが1曲面研磨に適
用した場合、形状測定装置の設置、被研磨物あるいは工
具を高精度にするためにはそれらの3次元移動が可能な
装置が必要となる。
As described above, various polishing devices have been proposed, but in polishing where the workpiece and the tool come into contact, the occurrence of a damaged layer due to scratching of abrasive grains, polishing friction, etc. is unavoidable. On the other hand, in the method of polishing by flowing contact of the polishing liquid without any contact between the workpiece and the tool, it is possible to obtain a mirror surface without defects, but when applied to polishing a single curved surface, it is difficult to install a shape measuring device. In order to improve the accuracy of polished objects or tools, a device that can move them three-dimensionally is required.

本発明の目的は、被研磨物を研磨工具が非接触あるいは
準接触すなわち部分的に被研磨物と研磨工具が接触する
状態で1両者の間に研磨液を流動させる研磨を行い、形
状測定装置、複雑な移動機構等を用いることなく、面研
磨を行う装置を提供するものである。
An object of the present invention is to polish an object to be polished in a non-contact or quasi-contact state, that is, in a state where the object to be polished and the polishing tool are in partial contact with each other, by flowing a polishing liquid between the two, and to provide a shape measuring device. The present invention provides an apparatus that performs surface polishing without using a complicated moving mechanism or the like.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は被研磨物の被研磨面を研磨液中に浸漬した
状態で保持し、該被研磨面にほぼ直交する回転軸を有す
る該被研磨物保持具と;該回転軸を回転する駆動装置と
;前記被研磨面から所定の間隔を保持して移動するベル
トと;該ベルトの移動駆動装置と;からなる研磨装置お
よび/または。
The above-mentioned problems are as follows: The workpiece holder holds the polished surface of the workpiece immersed in the polishing liquid and has a rotating shaft that is substantially orthogonal to the polished surface; and a drive that rotates the rotating shaft. A polishing device and/or comprising: a belt that moves while maintaining a predetermined distance from the surface to be polished; and a movement drive device for the belt.

被研磨物の被研磨面を研磨液中に浸漬した状態で保持し
、該被研磨面にほぼ直交する回転軸を有する該被研磨物
保持具と;該回転軸を回転する駆動装置と;前記被研磨
面から所定の間隔を保持して移動するベルトと;該所定
の相対位置を調整する調整装置と:該ベルトの移動駆動
装置と;からなる研磨装置によって解決される。
a polishing object holder that holds a polished surface of the polished object in a state immersed in a polishing liquid and has a rotating shaft substantially perpendicular to the polished surface; a drive device that rotates the rotating shaft; The problem is solved by a polishing device comprising: a belt that moves while maintaining a predetermined distance from the surface to be polished; an adjustment device that adjusts the predetermined relative position; and a movement drive device for the belt.

〔作用〕[Effect]

被研磨面をこれにほぼ直交する回転軸によって、研磨液
中で回転させることにより、該被研磨面に研磨液中の微
粉粒子を衝突させ、さらに、該被研磨面下に設けられた
ベルトを移動することにより。
The surface to be polished is rotated in the polishing liquid by a rotating shaft that is substantially orthogonal thereto, so that fine powder particles in the polishing liquid collide with the surface to be polished, and a belt provided under the surface to be polished is rotated. By moving.

該ベルトの移動により伴走流動する研磨液中の微粉粒子
を衝突させ、前記回転軸の回転速度、前記ベルトと前記
被研磨面との間隔および該ベルトの移動速度により、前
記微粉粒子と前記被研磨面との衝突速度、衝突角度、該
被研磨面に該微粉粒子が衝突する頻度の大きい位置等を
調整して被研磨面を所定の形状、精度に研磨する。
The movement of the belt causes the fine particles in the accompanying flowing polishing liquid to collide, and the rotational speed of the rotating shaft, the distance between the belt and the surface to be polished, and the moving speed of the belt cause the fine particles to collide with the polishing liquid. The surface to be polished is polished to a predetermined shape and accuracy by adjusting the speed of collision with the surface, the angle of collision, the position where the fine powder particles collide with the surface to be polished with high frequency, etc.

〔実施例〕〔Example〕

本発明の一実施例を第1図、第2図により説明する。第
1図の研磨装置Aは、容器1内に水等の適当な液体中に
該液体に対する分散性及び濃度。
An embodiment of the present invention will be described with reference to FIGS. 1 and 2. The polishing apparatus A shown in FIG. 1 has a container 1 in which a suitable liquid such as water is placed, and the dispersibility and concentration of the liquid is determined.

粒径、形状、被研磨物2との親和力等を考慮して選択し
た微粉粒子を懸濁させた研磨液13を満たし、該研磨液
中13には流動運動を行わせるために、たとえば第1図
のようにポリウレタン等のベルト10で結んだプーリー
8a、8b、8cを液中に浸漬設置し、該被研磨物2と
対向するプーリー8aは研磨によって得ようとする被研
磨面に合わせて紡錐形あるいは円筒形等に形状調整がで
き、またローラ8cは容器の外の駆動源11に連結させ
、該被研磨物2は、上下あるいは前後進移動可能な回転
軸5に取り付けた保持具3に着脱可能としたものから成
る。
A polishing liquid 13 in which fine particles selected in consideration of particle size, shape, affinity with the object 2 to be polished, etc. are suspended is filled, and in order to cause fluid movement in the polishing liquid 13, a first As shown in the figure, pulleys 8a, 8b, 8c tied together with a belt 10 made of polyurethane or the like are immersed in the solution, and the pulley 8a facing the object 2 is spun to match the surface to be polished that is to be obtained by polishing. The roller 8c can be adjusted to a conical or cylindrical shape, and the roller 8c is connected to a drive source 11 outside the container. It consists of something that can be attached and detached.

該被研磨物2の研磨面が目的とする形状となるように対
向する該プーリー8aの形状、設置位置を調節し、該ベ
ルト10が該プーリー8上を移動し研磨液13を流動さ
せ、かつ該ベルト10による流体運動を妨げない程度の
微速で該被研磨物2を取り付けている該回転軸5を回転
モータ4を用いて回転することにより、該被研磨物2の
研磨面金域に連続的に研磨液中の微粉粒子を接触させ、
該被研磨物2を目的の形状に研磨仕上げをする。
The shape and installation position of the opposing pulley 8a are adjusted so that the polishing surface of the object to be polished 2 has the desired shape, and the belt 10 moves on the pulley 8 to flow the polishing liquid 13, and By rotating the rotary shaft 5 to which the object to be polished 2 is attached using the rotary motor 4 at a slow speed that does not impede the fluid movement by the belt 10, the polished surface metal area of the object to be polished 2 is continuously rotated. The fine powder particles in the polishing liquid are brought into contact with each other,
The object to be polished 2 is polished into a desired shape.

この際、該回転軸5に取り付けた上下移動機構6を上下
移動つまみ7で調整することにより、該被研磨物に対し
て該微粉粒子の接触角度、接触力が調節できる。要する
に1本装置は被研磨物を取り付けた回転軸とプーリーが
直交して成る研磨機であるが、直交することは必ずしも
必須条件ではなり為。
At this time, by adjusting the vertical movement mechanism 6 attached to the rotating shaft 5 with the vertical movement knob 7, the contact angle and contact force of the fine powder particles with respect to the object to be polished can be adjusted. In short, this device is a polishing machine in which the rotating shaft to which the object to be polished is attached and the pulley are orthogonal to each other, but orthogonality is not necessarily an essential condition.

本発明の他の実施例を第3〜7図に示す。第3図は駆動
源を被研磨物と対向するプーリーに直接連結し、プーリ
ーの回転によって研磨液を流動させて研磨を行うもので
ある。第4図は曲面に対して本発明を適用した場合で、
被研磨物と対向するプーリーの形状を調整することによ
って(第5図では被研磨物を凹面に仕上げる)連続的に
曲面研磨を行うことが可能である。第6図は本発明に左
右移動スライド機構を取り付けたもので、被研磨物を取
り付けた回転軸と共に用いて局所的な研磨を可能にする
。第7図はその際の被研磨物に対向するプーリー形状を
示している。
Other embodiments of the invention are shown in FIGS. 3-7. In FIG. 3, a drive source is directly connected to a pulley facing the object to be polished, and polishing is performed by causing the polishing liquid to flow as the pulley rotates. Figure 4 shows the case where the present invention is applied to a curved surface.
By adjusting the shape of the pulley facing the object to be polished (in FIG. 5, the object to be polished is finished into a concave surface), it is possible to continuously polish a curved surface. FIG. 6 shows the present invention with a left-right moving slide mechanism attached, which enables local polishing when used together with a rotating shaft to which an object to be polished is attached. FIG. 7 shows the shape of the pulley facing the object to be polished at that time.

本実施例によれば、 (イ)新しい機能の付加 被研磨物と対向するローラの形状、被研磨物を取り付け
た軸の回転、およびベルトの移動に伴う研磨液の流動に
よって、被研磨面を連続的に研磨し目的とする形状に仕
上げる6 (ロ)性能、効率の向上 本実施例では、プーリーをたとえば周速度3I八程度で
高速回転させ研磨を行うが、第1図のように駆動源11
.12を容器の外に設け、プーリー8bに動力を伝達す
ることにより、被研磨物と対向するプーリー8aにモー
タ11の振動が直接伝わらないため、被研磨物とプーリ
−8a間の研磨液の流動状態を安定させることが可能で
ある。
According to this embodiment, (a) Addition of new functions The surface to be polished is polished by the shape of the roller facing the object to be polished, the rotation of the shaft to which the object to be polished is attached, and the flow of the polishing liquid accompanying the movement of the belt. Continuous polishing to achieve the desired shape 6 (b) Improving performance and efficiency In this embodiment, polishing is performed by rotating the pulley at a high speed, for example, at a circumferential speed of about 3I8. 11
.. By providing motor 12 outside the container and transmitting power to pulley 8b, the vibration of motor 11 is not directly transmitted to pulley 8a facing the object to be polished, so the flow of polishing liquid between the object to be polished and pulley 8a is reduced. It is possible to stabilize the situation.

(ハ)経済性、m酪化 被研磨物あるいは工具について、複雑な移動機構を必要
としない。
(c) Economic efficiency: No complicated movement mechanism is required for the polished object or tool.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被研磨面をこれとほぼ直交する回転軸
によって研磨液中で回転し、さらに該被研磨面下に設け
られたベルトの移動によって、研磨液の微粉粒子を該被
研磨面の所定位置に所定の速度、所定の角度で衝突させ
て、該被研磨面を所望の形状、精度に仕上げることがで
きるという優れた効果がある。
According to the present invention, the surface to be polished is rotated in a polishing liquid by a rotating shaft that is substantially orthogonal thereto, and the fine particles of the polishing liquid are transferred to the surface by rotating a belt provided under the surface to be polished. By colliding with a predetermined position at a predetermined speed and at a predetermined angle, there is an excellent effect that the surface to be polished can be finished into a desired shape and precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる研磨装置を示す側面図であり、第
2図はプーリーの概略図であり、第3図はプーリーの回
転による研磨装置側面図であり、第4図は曲面研磨装置
側面図であり、第5図はプーリーの概略図、第6図は左
右移動スライドを取り付けた研磨装置側面図、第7図は
プーリーの概略図であり、第8図は被研磨物と工具が接
触した状態のボリシング断面図であり、第9図は非固体
接触研磨の断面図であり、第10図はフロートポリジン
グの断面図であり、第11図はEEM概略図であり、第
12図は液中研磨装置の研磨部概略図であり、第13図
はベルト研磨機概略図であり。 第14図は研磨皿を用いた凹面研磨概略図であり、第1
5図は研磨皿を用いた凸面研磨概略図であり、第16図
は加工物傾斜角検出装置が付いた凸型曲面研磨機概略図
であり、第17図は加工物傾斜角検出装置が付いた凹型
曲面研磨機概略図である。 2・・・被研磨物、     3・・・保持具、4・・
・回転モータ、    5・・・回転軸、6・・・上下
移動機構、   8・・・プーリー、9・・・プーリー
軸、    10・・・ベルト、11・・・駆動モータ
、   13・・・研磨液。 第1図 第3 図 第5図 b−−−−−hrl)1M1$     14−−−−
−8JIJ11スラ(1−”第8図 第10図 第11図 第12図 ど4−−−−−@^■ト 第13図 第14図 第16図
FIG. 1 is a side view showing a polishing device according to the present invention, FIG. 2 is a schematic diagram of a pulley, FIG. 3 is a side view of a polishing device using rotation of a pulley, and FIG. 4 is a curved surface polishing device. Fig. 5 is a schematic diagram of the pulley, Fig. 6 is a side view of the polishing device with a left-right moving slide attached, Fig. 7 is a schematic diagram of the pulley, and Fig. 8 is a schematic diagram of the polishing object and the tool. FIG. 9 is a cross-sectional view of non-solid contact polishing; FIG. 10 is a cross-sectional view of float polishing; FIG. 11 is a schematic EEM diagram; FIG. 13 is a schematic diagram of the polishing section of the submerged polishing device, and FIG. 13 is a schematic diagram of the belt polishing machine. FIG. 14 is a schematic diagram of concave polishing using a polishing plate, and the first
Fig. 5 is a schematic diagram of convex surface polishing using a polishing plate, Fig. 16 is a schematic diagram of a convex curved surface polishing machine equipped with a workpiece inclination angle detection device, and Fig. 17 is a schematic diagram of a convex curved surface polishing machine equipped with a workpiece inclination angle detection device. FIG. 2 is a schematic diagram of a concave curved surface polishing machine. 2... Object to be polished, 3... Holder, 4...
・Rotating motor, 5... Rotating shaft, 6... Vertical movement mechanism, 8... Pulley, 9... Pulley shaft, 10... Belt, 11... Drive motor, 13... Polishing liquid. Figure 1 Figure 3 Figure 5 b-----hrl) 1M1$ 14-----
-8JIJ11 Sura (1-"Figure 8Figure 10Figure 11Figure 12Figure 4--

Claims (5)

【特許請求の範囲】[Claims] (1)被研磨物の被研磨面を研磨液中に浸漬した状態で
保持し、該被研磨面にほぼ直交する回転軸を有する該被
研磨物保持具と;該回転軸を回転する駆動装置と;前記
被研磨面から所定の間隔を保持して移動するベルトと;
該ベルトの移動駆動装置と;からなることを特徴とする
研磨装置。
(1) A polishing object holder that holds the polishing surface of the polishing object immersed in a polishing liquid and having a rotating shaft substantially perpendicular to the polishing surface; a drive device that rotates the rotating shaft; and; a belt that moves while maintaining a predetermined distance from the surface to be polished;
A polishing device comprising: a moving drive device for the belt;
(2)被研磨物の被研磨面を研磨液中に浸漬した状態で
保持し、該被研磨面にほぼ直交する回転軸を有する該被
研磨物保持具と;該回転軸を回転する駆動装置と;前記
被研磨面から所定の間隔を保持して移動するベルトと;
該所定の間隔を調整する調整装置と;該ベルトの移動駆
動装置と;からなることを特徴とする研磨装置。
(2) a polishing object holder that holds the polishing surface of the polishing object immersed in a polishing liquid and having a rotating shaft substantially perpendicular to the polishing surface; a drive device that rotates the rotating shaft; and; a belt that moves while maintaining a predetermined distance from the surface to be polished;
A polishing device comprising: an adjustment device for adjusting the predetermined interval; and a movement drive device for the belt.
(3)円筒の表面が前記ベルトを形成し、前記移動駆動
装置が該円筒の回転装置であることを特徴とする特許請
求の範囲第1項または第2項記載の装置。
(3) The device according to claim 1 or 2, characterized in that the surface of a cylinder forms the belt, and the moving drive device is a rotation device for the cylinder.
(4)前記ベルトが、前記被研磨面下に設けられた太鼓
の胴状プーリに掛けられたものであることを特徴とする
特許請求の範囲第1項または第2項記載の装置。
(4) The apparatus according to claim 1 or 2, wherein the belt is hung around a drum-shaped pulley provided below the surface to be polished.
(5)前記ベルトが、前記被研磨面下に設けられた円筒
状プーリに掛けられたものであることを特徴とする特許
請求の範囲第1項または第2項記載の装置。
(5) The apparatus according to claim 1 or 2, wherein the belt is hung around a cylindrical pulley provided below the surface to be polished.
JP62101542A 1987-04-24 1987-04-24 Polishing device Pending JPS63267155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101542A JPS63267155A (en) 1987-04-24 1987-04-24 Polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101542A JPS63267155A (en) 1987-04-24 1987-04-24 Polishing device

Publications (1)

Publication Number Publication Date
JPS63267155A true JPS63267155A (en) 1988-11-04

Family

ID=14303323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101542A Pending JPS63267155A (en) 1987-04-24 1987-04-24 Polishing device

Country Status (1)

Country Link
JP (1) JPS63267155A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269552A (en) * 1989-04-06 1990-11-02 Rodeele Nitta Kk Polishing method and device thereof
EP0696495A1 (en) * 1994-08-09 1996-02-14 Ontrak Systems, Inc. Linear polisher and method for semiconductor wafer planarization
US5558568A (en) * 1994-10-11 1996-09-24 Ontrak Systems, Inc. Wafer polishing machine with fluid bearings
EP0868258A1 (en) * 1995-12-05 1998-10-07 Applied Materials, Inc. Substrate belt polisher
WO1999006182A1 (en) * 1997-07-30 1999-02-11 Scapa Group Plc Polishing semiconductor wafers
WO2001015867A1 (en) * 1999-08-31 2001-03-08 Lam Research Corporation Unsupported polishing belt for chemical mechanical polishing
US6336845B1 (en) 1997-11-12 2002-01-08 Lam Research Corporation Method and apparatus for polishing semiconductor wafers
US6495464B1 (en) 2000-06-30 2002-12-17 Lam Research Corporation Method and apparatus for fixed abrasive substrate preparation and use in a cluster CMP tool
US6616801B1 (en) 2000-03-31 2003-09-09 Lam Research Corporation Method and apparatus for fixed-abrasive substrate manufacturing and wafer polishing in a single process path
US7025660B2 (en) 2003-08-15 2006-04-11 Lam Research Corporation Assembly and method for generating a hydrodynamic air bearing
CN113798971A (en) * 2021-08-19 2021-12-17 马鞍山市申马机械制造有限公司 Mirror surface roller burnishing machine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269552A (en) * 1989-04-06 1990-11-02 Rodeele Nitta Kk Polishing method and device thereof
EP0696495A1 (en) * 1994-08-09 1996-02-14 Ontrak Systems, Inc. Linear polisher and method for semiconductor wafer planarization
US5692947A (en) * 1994-08-09 1997-12-02 Ontrak Systems, Inc. Linear polisher and method for semiconductor wafer planarization
US6231427B1 (en) 1994-08-09 2001-05-15 Lam Research Corporation Linear polisher and method for semiconductor wafer planarization
US5558568A (en) * 1994-10-11 1996-09-24 Ontrak Systems, Inc. Wafer polishing machine with fluid bearings
US5593344A (en) * 1994-10-11 1997-01-14 Ontrak Systems, Inc. Wafer polishing machine with fluid bearings and drive systems
EP0868258A1 (en) * 1995-12-05 1998-10-07 Applied Materials, Inc. Substrate belt polisher
EP0868258A4 (en) * 1995-12-05 2000-11-15 Applied Materials Inc Substrate belt polisher
US6336851B1 (en) 1995-12-05 2002-01-08 Applied Materials, Inc. Substrate belt polisher
US6736714B2 (en) 1997-07-30 2004-05-18 Praxair S.T. Technology, Inc. Polishing silicon wafers
WO1999006182A1 (en) * 1997-07-30 1999-02-11 Scapa Group Plc Polishing semiconductor wafers
US6971950B2 (en) 1997-07-30 2005-12-06 Praxair Technology, Inc. Polishing silicon wafers
US6336845B1 (en) 1997-11-12 2002-01-08 Lam Research Corporation Method and apparatus for polishing semiconductor wafers
US6416385B2 (en) 1997-11-12 2002-07-09 Lam Research Corporation Method and apparatus for polishing semiconductor wafers
US6406363B1 (en) 1999-08-31 2002-06-18 Lam Research Corporation Unsupported chemical mechanical polishing belt
WO2001015867A1 (en) * 1999-08-31 2001-03-08 Lam Research Corporation Unsupported polishing belt for chemical mechanical polishing
US6616801B1 (en) 2000-03-31 2003-09-09 Lam Research Corporation Method and apparatus for fixed-abrasive substrate manufacturing and wafer polishing in a single process path
US6495464B1 (en) 2000-06-30 2002-12-17 Lam Research Corporation Method and apparatus for fixed abrasive substrate preparation and use in a cluster CMP tool
US6936133B2 (en) 2000-06-30 2005-08-30 Lam Research Corporation Method and apparatus for fixed abrasive substrate preparation and use in a cluster CMP tool
US7025660B2 (en) 2003-08-15 2006-04-11 Lam Research Corporation Assembly and method for generating a hydrodynamic air bearing
CN113798971A (en) * 2021-08-19 2021-12-17 马鞍山市申马机械制造有限公司 Mirror surface roller burnishing machine
CN113798971B (en) * 2021-08-19 2022-10-21 马鞍山市申马机械制造有限公司 Mirror surface roller burnishing machine

Similar Documents

Publication Publication Date Title
US5449313A (en) Magnetorheological polishing devices and methods
CA2497731C (en) Magnetorheological polishing devices and methods
US6503414B1 (en) Magnetorheological polishing devices and methods
EP0858381B1 (en) Deterministic magnetorheological finishing
JPS63267155A (en) Polishing device
JP4702765B2 (en) Vibration polishing method and apparatus
KR102068538B1 (en) Polishing system using magnetorheological fluid and polishing method using the same
Wills-Moren et al. Ductile regime grinding of glass and other brittle materials by the use of ultrastiff machine tools
SU1206067A1 (en) Tool for hydrodynamic working of flat articles
JPH0596468A (en) Superprecision mirror surface work method
JP2875344B2 (en) Processing apparatus and processing method for toric and aspheric lenses
JP2005111629A (en) Polishing tool, polishing device using the same, and polishing method
SU1759563A1 (en) Device for sharpening treatment of non-spheric surfaces
JPH0966445A (en) Polishing device and polishing method
SU1759564A1 (en) Device for sharpening treatment of non-spheric surfaces
SU881015A1 (en) Method of treatment of optical surface
JPS61125759A (en) Grinding method for non-spherical surface
JPS6328552A (en) Nonspherical face machining method
JPH0623663A (en) Super smoothing non-contact polishing method and device
JPS63232930A (en) Polishing method
SU935255A1 (en) Tapering work finishing device
JPH05171B2 (en)
JPS6253312B2 (en)
JPH08300254A (en) Fine working method and device
JPH0430960A (en) Work device for toric shape and non-spherical shape body