JPS63263412A - Noncontact displacement meter - Google Patents

Noncontact displacement meter

Info

Publication number
JPS63263412A
JPS63263412A JP9822587A JP9822587A JPS63263412A JP S63263412 A JPS63263412 A JP S63263412A JP 9822587 A JP9822587 A JP 9822587A JP 9822587 A JP9822587 A JP 9822587A JP S63263412 A JPS63263412 A JP S63263412A
Authority
JP
Japan
Prior art keywords
light
displacement
optical
optical fiber
spot light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9822587A
Other languages
Japanese (ja)
Inventor
Kihachiro Nishikawa
西川 喜八郎
Yoshiharu Kuwabara
義治 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP9822587A priority Critical patent/JPS63263412A/en
Publication of JPS63263412A publication Critical patent/JPS63263412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To measure displacement by a simple constitution by transmitting a light signal by plural optical fiber bundles which are arranged and bundled concentrically so that incidence end surfaces shift from the focusing image formation surface of spot light. CONSTITUTION:An optical cable 26 consists of two optical fiber bundles 27A and 27B which are bundled concentrically so as to transmit the light signal corresponding to the radial light quantity distribution gravity center position having its center on an optical axis as to an out-of-focus image formed with fine spot light 20. When an object 8 of measurement is displaced from a focusing plane in a Z direction, the fine spot light forms the out-of-focus image which is controlled by a ring-shaped mask on the incidence surface 26A of the cable 26. The cable 26, therefore, transmits the light signal corresponding to the radial light quantity distribution gravity center position having its center on the optical axis as to the out-of-focus image, thereby detecting the displacement plane where the displacement signal (d) outputted by a differential amplifier 30 is zero being a focusing plane.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、非接触変位計に係り、特に、非接触粗さ計や
顕微鏡用オートフォーカス装置などに用いるに好適な、
測定対象物に微少スポット光を照射する照明系と、該微
少スポット光の像を形成する結像レンズとを含んで構成
され、測定対象物の合焦面からの偏位に応じた変位信号
を出力する非接触変位計に関する。
The present invention relates to a non-contact displacement meter, and is particularly suitable for use in a non-contact roughness meter, an autofocus device for a microscope, etc.
It is composed of an illumination system that irradiates a minute spot light onto the measurement object, and an imaging lens that forms an image of the minute spot light, and outputs a displacement signal according to the deviation of the measurement object from the focal plane. Regarding a non-contact displacement meter that outputs.

【従来の技術】[Conventional technology]

従来、加工面の粗さ測定は、触針式で行なわれていた。 しかしながら、測定対象物が軟質材である場合は傷がつ
く恐れがあるため、非接触式の粗さ計が開発されている
。これまで開発されてきた非接触式の粗さ計用の変位検
出器は、ビデオディスク等の焦点検出装置に使用されて
いる光学式センサを応用したものが多く、臨界角法及び
非点収差法などに分類される。 このうち臨界角法による変位検出器は、例えば実開昭6
1−6707に開示されているが、測定対象物に微少ス
ポット光を照射する照明系と、測定対象物からの反射光
を平行光線化するコリメータレンズと、その平行光線を
全反射で伝える臨界角プリズムと、2個の受光素子とを
含んで構成されており、測定対象物が合焦面から偏位す
ると前記平行光線が発散又は収束傾向を示して反射率が
急変することを利用して変位信号を生成するものである
。 又、非点収差法は、測定対象物が合焦面から偏位すると
非点収差特性が楕円状になることを利用している。
Conventionally, roughness measurements of machined surfaces have been carried out using a stylus method. However, if the object to be measured is a soft material, there is a risk of scratches, so non-contact roughness meters have been developed. Most of the displacement detectors for non-contact roughness meters that have been developed so far are based on optical sensors used in focus detection devices such as video discs, and they are based on the critical angle method and astigmatism method. It is classified as such. Among these, displacement detectors based on the critical angle method are, for example,
1-6707, an illumination system that irradiates a minute spot light onto an object to be measured, a collimator lens that converts the reflected light from the object to parallel rays, and a critical angle that transmits the parallel rays by total internal reflection. It is composed of a prism and two light-receiving elements, and uses the fact that when the object to be measured deviates from the focal plane, the parallel light rays tend to diverge or converge, causing a sudden change in reflectance. It generates a signal. Further, the astigmatism method utilizes the fact that astigmatism characteristics become elliptical when the object to be measured deviates from the focal plane.

【発明が解決使用とする問題点】[Problems to be solved by the invention]

しかしながら、前記従来の非接触式変位検出器は、いず
れも複雑な光学系を用いると共に、高精度な光学部品が
必要である。従って調整が困難であり価格も高いという
問題点があり、より簡易な光学系を用いる変位検出器が
要求されていた。 このような要求を満足し、従来より簡易な光学系で変位
検出が可能なものとして、出願人は既に特願昭61−3
02230で、同窓円状に2分割した受光素子からなる
センサを用いた非接触変位計を提案している。
However, all of the conventional non-contact displacement detectors use complicated optical systems and require highly accurate optical components. Therefore, there are problems in that adjustment is difficult and the price is high, and there has been a demand for a displacement detector that uses a simpler optical system. The applicant has already filed a patent application filed in Japanese Patent Application No. 61-3 as a device that satisfies these requirements and enables displacement detection with a simpler optical system than the conventional one.
02230, we proposed a non-contact displacement meter using a sensor consisting of a light-receiving element divided into two in the same circle shape.

【発明の目的】[Purpose of the invention]

本発明は、特願昭61−302230の改良にかかわる
もので、技術の多様化を図ると共に、電気的ノイズの強
い環境下でも安定した変位測定が可能な非接触変位計を
提供することを目的とする。
The present invention relates to an improvement of Japanese Patent Application No. 61-302230, and aims to diversify technology and provide a non-contact displacement meter that can stably measure displacement even in environments with strong electrical noise. shall be.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、非接触変位計を、測定対象物に微少スポット
光を照射する照明系と、該微少スポット光の像を形成す
る結像レンズと、入射端面が合焦結像′面から偏位して
配設され、前記微少スポット光による焦点ずれ像の、光
軸を中心とした半径方向の光量分布重心位置に対応した
光信号を伝送するための、同窓円状に束ねられた複数の
光ファイバ束と、各光ファイバ束で伝送された光信号を
各々電気信号に変換する複数の受光素子とを用いて構成
し、測定対象物の合焦面からの変位に応じた変位信号を
出力するようにして、前記目的を達成したものである。 又、本発明の実施B様は、前記照明系が、照明光を伝送
するための照明用光ファイバを含むようにしたものであ
る。
The present invention provides a non-contact displacement meter including: an illumination system that irradiates a measurement target with a minute spot light; an imaging lens that forms an image of the minute spot light; a plurality of lights bundled in a circular aperture for transmitting an optical signal corresponding to the center position of the light intensity distribution in the radial direction centered on the optical axis of the defocused image caused by the minute spot light; It is constructed using a fiber bundle and multiple light-receiving elements that convert the optical signals transmitted by each optical fiber bundle into electrical signals, and outputs a displacement signal according to the displacement of the object to be measured from the focal plane. In this way, the above objective was achieved. Further, in embodiment B of the present invention, the illumination system includes an illumination optical fiber for transmitting illumination light.

【作用】[Effect]

本発明は、測定対象物に照射した微少スポット光による
焦点ずれ像の、光軸を中心とした半径方向の光量分布重
心位置に対応した光信号を、入射端面が該微少スポット
光の像の合焦結像面から偏位して配設された、同窓円状
に束ねられた複数の光ファイバ束で伝送した後、電気信
号に変換して、測定対象物の合焦面からの変位に応じた
変位信号を得るようにしている。従って、従来より簡易
な光学系で変位検出が可能となる。又、電気的ノイズの
強い環境下でも、安定した変位測定が可能となる。 更に、前記照明系にも、照明光を伝送するための照明用
光ファイバを使用した場合には、電気的ノイズの影響を
全く受けないようにすることができる。
The present invention is capable of transmitting an optical signal corresponding to the position of the center of gravity of the light intensity distribution in the radial direction centered on the optical axis of a defocused image caused by a minute spot light irradiated onto an object to be measured. After transmitting through a plurality of optical fiber bundles bundled in the same circle shape and arranged offset from the focal image plane, the signal is converted into an electrical signal, and the signal is transmitted according to the displacement of the object to be measured from the focal plane. The system is designed to obtain a displacement signal based on the Therefore, displacement detection can be performed using a simpler optical system than in the past. Furthermore, stable displacement measurement is possible even in an environment with strong electrical noise. Furthermore, when an illumination optical fiber for transmitting illumination light is used in the illumination system, the illumination system can be completely unaffected by electrical noise.

【実施例】【Example】

以下図面を参照して、本発明の実施例を詳細に説明する
。 本実施例では、第1図に示す如く、レーザダイオード1
0、光フアイバ入射用の集光レンズ11、照明用光ファ
イバ12、コリメータレンズ14、ビームスプリッタ1
6、対物レンズ18よりなる照明系で測定対象物8に微
少スポット光20を照射し、前記対物レンズ18及び集
光レンズ22よりなる結像レンズで前記微少スポット光
20の像を形成する。 前記集光レンズ22の手前にはSN比を向上させるため
のリング状マスク24が設けられているが、このマスク
は省略することも可能である。 第1rI!Uは、測定対象物8に微少スポット光20が
集光している状態、即ち、測定対象物8が合焦面にある
状態を示している。このときの微少スポット光20の像
が形成される面を合焦結像面と定義する。 この合焦結像面から図の下方向に偏位させて光ケーブル
26の受光端面26Aが配設されている。 該光ケーブル26は、第2図に詳細に示す如く、前記微
少スポット光20による焦点ずれ像の、光軸を中心とし
た半径方向の光量分布重心位置に対応した光信号を伝送
するための、向応円状に束ねられた2ffiの光ファイ
バ東27A、27Bから椹成されている。 各光ファイバ東27A、27Bの出射端面には、各々、
受光素子28A、28Bが配設されており、各光ファイ
バ東27A、27Bによって伝送された光信号が各々電
気信号a、bに変換される。これらは差動増幅器30に
入力されて変位信号dが生成される。 なお、前記レーザダイオード10、集光レンズ11、受
光素子28A、28B、差動増幅器30は、いずれも測
定ヘッドから離隔した位置に配置される検出回路32に
含まれている。 以下第3図と第4図を参照して実施例の作用を説明する
。 測定対象物8が合焦面から2方向に変位して、Pl又は
P2の変位面に合致すると、微少スポット光20の像の
集光点はQl又はQ2となる。このとき光ケーブル26
の入射端面26Aには、微少スポット光の焦点ずれした
像のリング状マスク24で制限された像が第4図(A)
 (変位面がPlで集光点がQlの場合)又は第4図(
B) (変位面がP2で集光点がQ2の場合)のように
形成される。従って光ケーブル26は、この焦点ずれし
た像の光軸を中心とした半径方向の光量分布重心位置に
対応した光信号を伝送することになり、測定対象物8の
変位2と差動増幅器30から出力される変位信号dの関
係は、例えば第5図に示す如くとなる。従って、この変
位信号dが零であることから変位面が合焦面であること
を検出することができる。 本実施例においては、照明系にも光ファイバ12を使用
しているので、測定ヘッドに発光・受光素子が含まれて
おらず、電気的ノイズの影響を全く受けることがない、
又、測定部分に取付けてからの測定ヘッドの保守が不要
となる。更に、検出回路32が外部にあるので、その保
守も容易にできる。 なお、照明用光ファイバ12及び集光レンズ11を省略
して、測定ヘッドにレーザダイオード10を直接取付け
ることも可能である。 又、本実施例では、リング状マスク24が設けられてい
るので、SN比を向上することができる。 なおリング状マスク24を省略することも可能である。
Embodiments of the present invention will be described in detail below with reference to the drawings. In this embodiment, as shown in FIG.
0, condensing lens 11 for optical fiber input, optical fiber 12 for illumination, collimator lens 14, beam splitter 1
6. An illumination system consisting of an objective lens 18 irradiates the measurement object 8 with a minute spot light 20, and an image forming lens consisting of the objective lens 18 and a condenser lens 22 forms an image of the minute spot light 20. A ring-shaped mask 24 is provided in front of the condenser lens 22 to improve the SN ratio, but this mask can be omitted. 1st rI! U indicates a state in which the minute spot light 20 is focused on the measurement object 8, that is, a state in which the measurement object 8 is in the focal plane. The plane on which the image of the minute spot light 20 is formed at this time is defined as a focused image plane. A light-receiving end surface 26A of the optical cable 26 is disposed so as to be offset downward in the figure from this focused image plane. As shown in detail in FIG. 2, the optical cable 26 has a direction for transmitting an optical signal corresponding to the center of gravity of the light intensity distribution in the radial direction centered on the optical axis of the defocused image by the minute spot light 20. It is made up of 2FFI optical fibers 27A and 27B that are bundled into a circular shape. At the output end face of each optical fiber east 27A, 27B,
Light receiving elements 28A and 28B are provided, and the optical signals transmitted by the respective optical fibers 27A and 27B are converted into electric signals a and b, respectively. These are input to a differential amplifier 30 to generate a displacement signal d. Note that the laser diode 10, the condensing lens 11, the light receiving elements 28A, 28B, and the differential amplifier 30 are all included in a detection circuit 32 arranged at a position separated from the measurement head. The operation of the embodiment will be explained below with reference to FIGS. 3 and 4. When the measurement object 8 is displaced in two directions from the focal plane and matches the displacement plane Pl or P2, the focal point of the image of the minute spot light 20 becomes Ql or Q2. At this time, the optical cable 26
On the incident end surface 26A, there is an image limited by the ring-shaped mask 24, which is a defocused image of the minute spot light, as shown in FIG. 4(A).
(When the displacement surface is Pl and the focal point is Ql) or Fig. 4 (
B) (When the displacement surface is P2 and the focal point is Q2). Therefore, the optical cable 26 transmits an optical signal corresponding to the center position of the light intensity distribution in the radial direction centered on the optical axis of this defocused image, and outputs the displacement 2 of the measurement object 8 and the output from the differential amplifier 30. The relationship between the displacement signals d is as shown in FIG. 5, for example. Therefore, since this displacement signal d is zero, it can be detected that the displacement plane is the in-focus plane. In this example, since the optical fiber 12 is also used in the illumination system, the measurement head does not include a light emitting/light receiving element and is not affected by electrical noise at all.
Furthermore, maintenance of the measuring head after it is attached to the measuring part becomes unnecessary. Furthermore, since the detection circuit 32 is located outside, its maintenance can be facilitated. Note that it is also possible to omit the illumination optical fiber 12 and the condensing lens 11 and attach the laser diode 10 directly to the measurement head. Further, in this embodiment, since the ring-shaped mask 24 is provided, the SN ratio can be improved. Note that it is also possible to omit the ring-shaped mask 24.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、簡単な光学系で変
位測定が可能となり、非接触式変位測定の分野における
技術の多様化に寄与する。又、電気的ノイズの強い環境
下でも安定した変位測定が可能となる等の優れた効果を
有する。
As described above, according to the present invention, displacement can be measured with a simple optical system, contributing to the diversification of technology in the field of non-contact displacement measurement. Further, it has excellent effects such as being able to perform stable displacement measurement even in an environment with strong electrical noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る非接触変位計の実施例の構成を
示す正面図、第2図は、前記実施例で用いられている光
ケーブルを示す横断面図、第3図は、前記実施例の作用
を説明するための光学系の正面図、第4図は、同じく光
ケーブルの入射端面に形成される像を示す平面図、第5
図は、前記実施例の変位信号の一例を示す線図である。 8・・・測定対象物、 10・・・レーザダイオード、 12・・・照明用光ファイバ、 14・・・コリメータレンズ、 16・・・ビームスプリッタ、 18・・・対物レンズ、  20・・・微少スポット光
、22・・・集光レンズ、 26・・・光ケーブル、  26A・・・入射端面、2
7A、27B・・・光ファイバ束、 28A、28B・・・受光素子、 30・・・差動増幅器、 d・・・変位信号。
FIG. 1 is a front view showing the configuration of an embodiment of a non-contact displacement meter according to the present invention, FIG. 2 is a cross-sectional view showing an optical cable used in the embodiment, and FIG. FIG. 4 is a front view of the optical system for explaining the operation of the example, and FIG.
The figure is a diagram showing an example of the displacement signal of the embodiment. 8... Measurement object, 10... Laser diode, 12... Optical fiber for illumination, 14... Collimator lens, 16... Beam splitter, 18... Objective lens, 20... Minute Spot light, 22... Condenser lens, 26... Optical cable, 26A... Incident end surface, 2
7A, 27B... Optical fiber bundle, 28A, 28B... Light receiving element, 30... Differential amplifier, d... Displacement signal.

Claims (2)

【特許請求の範囲】[Claims] (1)測定対象物に微少スポット光を照射する照明系と
、 該微少スポット光の像を形成する結像レンズと、入射端
面が合焦結像面から偏位して配設され、前記微少スポッ
ト光による焦点ずれ像の、光軸を中心とした半径方向の
光量分布重心位置に対応した光信号を伝送するための、
同芯円状に束ねられた複数の光ファイバ束と、 各光ファイバ束で伝送された光信号を各々電気信号に変
換する複数の受光素子とを含み、 測定対象物の合焦面からの変位に応じた変位信号を出力
することを特徴とする非接触変位計。
(1) An illumination system that irradiates a minute spot light onto an object to be measured; an imaging lens that forms an image of the minute spot light; To transmit an optical signal corresponding to the position of the center of gravity of the light intensity distribution in the radial direction centered on the optical axis of the defocused image caused by the spot light.
It includes a plurality of optical fiber bundles concentrically bundled and a plurality of light-receiving elements that convert optical signals transmitted by each optical fiber bundle into electrical signals, and measures the displacement of the object to be measured from the focal plane. A non-contact displacement meter characterized by outputting a displacement signal according to.
(2)前記照明系が、照明光を伝送するための照明用光
ファイバを含む特許請求の範囲第1項記載の非接触変位
計。
(2) The non-contact displacement meter according to claim 1, wherein the illumination system includes an illumination optical fiber for transmitting illumination light.
JP9822587A 1987-04-21 1987-04-21 Noncontact displacement meter Pending JPS63263412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9822587A JPS63263412A (en) 1987-04-21 1987-04-21 Noncontact displacement meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9822587A JPS63263412A (en) 1987-04-21 1987-04-21 Noncontact displacement meter

Publications (1)

Publication Number Publication Date
JPS63263412A true JPS63263412A (en) 1988-10-31

Family

ID=14214019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9822587A Pending JPS63263412A (en) 1987-04-21 1987-04-21 Noncontact displacement meter

Country Status (1)

Country Link
JP (1) JPS63263412A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395262A (en) * 2002-11-11 2004-05-19 Qinetiq Ltd Optical proximity sensor with array of spot lights and a mask
US7589825B2 (en) 2002-11-11 2009-09-15 Qinetiq Limited Ranging apparatus
JP2010044254A (en) * 2008-08-14 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Optical indoor cable and method of laying optical indoor cable
JP2012526977A (en) * 2009-05-15 2012-11-01 デグデント・ゲーエムベーハー Method and measuring apparatus for measuring an object three-dimensionally

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395262A (en) * 2002-11-11 2004-05-19 Qinetiq Ltd Optical proximity sensor with array of spot lights and a mask
US7589825B2 (en) 2002-11-11 2009-09-15 Qinetiq Limited Ranging apparatus
JP2010044254A (en) * 2008-08-14 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Optical indoor cable and method of laying optical indoor cable
JP2012526977A (en) * 2009-05-15 2012-11-01 デグデント・ゲーエムベーハー Method and measuring apparatus for measuring an object three-dimensionally

Similar Documents

Publication Publication Date Title
US4930896A (en) Surface structure measuring apparatus
JPS6048949B2 (en) A device that reads information using a light beam
US4728196A (en) Arrangement for determining a surface structure, especially for roughness
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
CN110836642A (en) Color triangular displacement sensor based on triangulation method and measuring method thereof
JPS63263412A (en) Noncontact displacement meter
JPS63149513A (en) Optical displacement measuring method
JPH0786407B2 (en) Optical fiber movement amount measuring device
JPS63153419A (en) Non-contact displacement gauge
JP2020071414A (en) Measuring device for collimation adjustment and method for adjusting collimation optical system
JPS6370110A (en) Distance measuring apparatus
CN210833435U (en) Color triangle displacement sensor based on triangulation method
JPS61242779A (en) Method of detecting inclination and focus of laser beam in laser beam machining device
JP3494148B2 (en) Focus detection device and laser inspection processing device
JPH1164719A (en) Microscope equipped with focus detection means and displacement measuring device
JPH0471453B2 (en)
JPH0418252B2 (en)
JPH07169071A (en) Optical pickup system for detection of focusing error
SU1472760A1 (en) Device for non-contact measurements of part dimensions
JPS6236502A (en) Microcsope for measuring minute displacement
JPS63153442A (en) Measuring instrument for optical characteristic of beam splitter
KR880004297Y1 (en) Optical sensor for focusing control
JP3204726B2 (en) Edge sensor
JPS58213221A (en) Measuring device of optical spot
JPH0315710A (en) Displacement detector