JPS63261179A - Method and device for detecting state of lead-acid battery for on-vehicle sli - Google Patents

Method and device for detecting state of lead-acid battery for on-vehicle sli

Info

Publication number
JPS63261179A
JPS63261179A JP62096005A JP9600587A JPS63261179A JP S63261179 A JPS63261179 A JP S63261179A JP 62096005 A JP62096005 A JP 62096005A JP 9600587 A JP9600587 A JP 9600587A JP S63261179 A JPS63261179 A JP S63261179A
Authority
JP
Japan
Prior art keywords
battery
voltage
current
internal resistance
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62096005A
Other languages
Japanese (ja)
Inventor
Yutaka Oya
豊 大矢
Katsuji Abe
阿部 勝司
Tomo Morimoto
友 森本
Aogu Yoshida
吉田 仰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP62096005A priority Critical patent/JPS63261179A/en
Publication of JPS63261179A publication Critical patent/JPS63261179A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PURPOSE:To accurately detect the degree of deterioration and charging state of a battery in a short time without reference to the kind of the battery by contrasting the relation between the differential internal resistance at the start and the means charging current within a constant time after the start with a previously found value. CONSTITUTION:When an engine is started, a power relay 4 is turned on and a large current flows to a motor 3. The current discharging current and terminal voltage are measured by an ammeter 5 and a voltmeter 6. At the same time, the battery temperature is measured by a temperature sensor 7, an arithmetic part 8 finds a reference voltage, and an arithmetic part 9 calculates the differential internal resistance of the battery from those values. The power relay 4 is turned off and a power relay 10 is turned on after the start of the engine, thereby connecting the battery to the load-charging system of a vehicle. The load-charging system detects whether or not a voltage regulator 13 reaches a set charging voltage by a set voltage attainment detector 14 and a calculation part 17 calculates a mean charging current from the time and the quantity of electricity measured by a time integrator 15 and a charging electricity quantity integrator 16. A battery state decision part 18 decides the battery state from the obtained differential internal resistance and mean charging current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は車載SLI用鉛用船電池の充電状態および劣化
度合を使用状態のまま検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the state of charge and degree of deterioration of a lead-acid marine battery for onboard SLI while in use.

〔従来技術および発明が解決しようとする問題点〕鉛−
酸電池の放電能力の低下は電池の劣化(電極の劣化)あ
るいは充電不足のとちらかの原因で生じる。前者の場合
には新しい電池との交換によって、後者の場合には充電
することによって放電能力を回復させることができる。
[Problems to be solved by the prior art and the invention] Lead-
A decrease in the discharge capacity of an acid battery is caused by either battery deterioration (deterioration of the electrodes) or insufficient charging. In the former case, the discharge capacity can be restored by replacing the battery with a new one, and in the latter case, by charging it.

このように電池の劣化度合と充電状態の両者を把握して
初めて電池の状態を検出したことになり、エンジン始動
不能トラブルを未然に防止するための適切な対応が可能
となる。
In this way, the state of the battery is detected only after both the degree of deterioration and the state of charge of the battery are known, and appropriate measures can be taken to prevent troubles in which the engine cannot be started.

従来、車載鉛−酸電池の診断方法として電池の直流内部
抵抗から劣化度合、電解液比重から充電状態をそれぞれ
検知し2両者の関係から電池の交換あるいは充電の必要
性があるか否かを判定する方法が示されている(特開昭
56−117176)。
Conventionally, as a diagnostic method for automotive lead-acid batteries, the degree of deterioration is detected from the internal direct current resistance of the battery, and the state of charge is detected from the specific gravity of the electrolyte. Based on the relationship between the two, it is determined whether the battery needs to be replaced or charged. A method to do this is shown (Japanese Patent Application Laid-Open No. 56-117176).

しかしながら、ここでいう直流内部抵抗測定法でば鉛−
酸電池の電流−電圧の関係が一次の関係でないため、放
電電流の大きさによって測定される内部抵抗が異なって
しまう。したがって、内部抵抗測定時の放電電流を特定
の値に限定しなければならない難点がある。また、電解
液比重による充電状態の検知においても比重センサーと
なる浮子あるいは比重を電気信号でとらえる電極を電池
内に8、Hみ込むなど電池自体の改造が必要である上。
However, in the DC internal resistance measurement method mentioned here, lead-
Since the current-voltage relationship of acid batteries is not a linear relationship, the measured internal resistance differs depending on the magnitude of the discharge current. Therefore, there is a drawback that the discharge current when measuring the internal resistance must be limited to a specific value. Furthermore, in order to detect the state of charge using the specific gravity of the electrolyte, it is necessary to modify the battery itself, such as by inserting a float that serves as a specific gravity sensor or an electrode that captures the specific gravity using an electrical signal into the battery.

保守(補水、補液)状況に影響されやすい欠点がある。It has the disadvantage of being easily affected by maintenance (water replenishment, fluid replacement) conditions.

上記のように鉛−酸電池の劣化度合および充電状態の両
方を車載状態のままで、電池の改造を行うことなく、精
度よく簡単に検出する方法はまだ=3− 確立されていない。本発明は、上記従来技術の問題点を
解決した車載S L I用船−酸電池の劣化度合および
充電状態を検出する方法を提供することを目的とする。
As mentioned above, a method for accurately and easily detecting both the degree of deterioration and the state of charge of a lead-acid battery while it is mounted on a vehicle without modifying the battery has not yet been established. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for detecting the degree of deterioration and state of charge of an in-vehicle SLI boat-acid battery that solves the problems of the prior art described above.

〔発明の説明〕[Description of the invention]

本発明は、任意の車載S L r用船−酸電池の始動時
にお6フる大電流放電時の微分内部抵抗と始動後一定時
間内において電池電圧がボルテージレギュレータ設定電
圧到達時の平均充電電流を求め。
The present invention is based on the differential internal resistance at the time of large current discharge at the time of startup of any vehicle-mounted SLR ship-acid battery, and the average charging current when the battery voltage reaches the voltage regulator set voltage within a certain period of time after startup. Search for.

予め求めた微分内部抵抗と平均充電電流との関係とを対
比させることにより充電状態および劣化度合を検出する
ことを特徴とする車as+−r用船−酸電池の電池状態
を検出する方法に関するものである。
A method for detecting the battery condition of a car AS+-R chartered ship-acid battery, characterized in that the state of charge and the degree of deterioration are detected by comparing the relationship between a predetermined differential internal resistance and an average charging current. It is.

ただし、微分内部抵抗は始動時の電池電圧■と電池電流
Iから(Vo−V)/Iの値として求める。
However, the differential internal resistance is determined as the value (Vo-V)/I from the battery voltage (2) and the battery current (I) at the time of starting.

ここでVoば鉛−酸電池を電池の単セル電極単位面積当
たり100〜400mA/c+fの電流密度で短時間放
電したときの■・■の関係を直線外挿してI−〇で得ら
れる電圧値である。
Here, Vo is the voltage value obtained by linearly extrapolating the relationship between ■ and ■ when a lead-acid battery is discharged for a short time at a current density of 100 to 400 mA/c+f per unit area of a single cell electrode of the battery. It is.

4一 本発明の重要な点は鉛−酸電池の定電圧充電時に充電電
流が充電状態の上界とともに減少する事実を見出したこ
とにある。本発明者等は、この車載電池の電圧がボルテ
ージレギュレータの設定電圧に到達しているときの平均
充電電流と電池の充電状態との相関性を詳細に調べた。
41 The important point of the present invention lies in the discovery that during constant voltage charging of a lead-acid battery, the charging current decreases with the upper limit of the state of charge. The present inventors investigated in detail the correlation between the average charging current and the state of charge of the battery when the voltage of the vehicle-mounted battery reaches the set voltage of the voltage regulator.

この関係を求めるために使用した電池は55D23電池
の新品とS L I用として数年間使用した2つの中古
品である。各電池の25°Cでの満充電容量(5時間率
放電)はそれぞれ44Ah、  15Ah、  6Ah
である。
The batteries used to find this relationship were a new 55D23 battery and two used batteries that had been used for SLI for several years. The full charge capacity (5 hour rate discharge) of each battery at 25°C is 44Ah, 15Ah, and 6Ah, respectively.
It is.

これらの電池を種々の充電状態に調整した後、車載し、
5分間走行(アイドリング状態を含む)の間、電池電圧
がボルテージ(/ギュレータ設定電圧に到達している時
の平均充電電流を計測し、各電池の充電状態と上記平均
充電電流との関係を整理した。電池電圧がボルテージレ
ギュレータの設定電圧に到達している時の平均充電電流
は自動車使用中の一定時間内において電池電圧がボルテ
ージレギュレータの設定電圧に達している時間と2その
ときに流れた充電電気量とをそれぞれ積分し。
After adjusting these batteries to various charging states, they are installed in the vehicle,
During 5 minutes of running (including idling), measure the average charging current when the battery voltage reaches the voltage (/regulator setting voltage), and organize the relationship between the charging status of each battery and the above average charging current. The average charging current when the battery voltage reaches the set voltage of the voltage regulator is the time during which the battery voltage reaches the set voltage of the voltage regulator within a certain period of time while the car is in use, and 2 the charge flowing at that time. Integrate the quantity of electricity and each.

その積分電気量を積分時間で除して得られる値である。This is the value obtained by dividing the integrated electrical quantity by the integration time.

結果を第1図に示すように、設定電圧到達時の平均充電
電流と電池の充電状態との間には良好な負の相関性が存
在する。設定電圧到達時平均充電電流が良い相関性を示
す充電状態領域は電池温度により若干の差はあるが、第
1図に示したように50〜60%以上の充電状態であれ
ば良い。しかしながら、その相関関係は電池の劣化度合
によって一様ではなく、満充電容量の小さい電池はど充
電状態の低下に対する平均充電電流の上昇の割合が小さ
い。つまり設定電圧到達時の平均充電電流は電池の満充
電容量と充電状態(%)−((残存容量/満充電容量)
×100)の双方によって決定されるものである。そこ
で、上記平均充電電流に残存容量と相関性のある微分内
部抵抗の情報を加えれば判定時の満充電容量がわかり、
充電状態もわかる。さらに劣化度合(%)−(新品時の
満充電容量−判定時の満充電容量/新品時の満充電容量
X100Iも上記満充電容量と車載前に求めておいた新
品時の満充電容量とから求めることができる。
As the results are shown in FIG. 1, there is a good negative correlation between the average charging current when the set voltage is reached and the state of charge of the battery. The charging state region in which the average charging current shows a good correlation when the set voltage is reached varies slightly depending on the battery temperature, but as shown in FIG. 1, the charging state may be 50 to 60% or more. However, the correlation is not uniform depending on the degree of deterioration of the battery, and the ratio of increase in the average charging current to the decrease in the state of charge is small for batteries with a small full charge capacity. In other words, the average charging current when the set voltage is reached is the battery's full charge capacity and state of charge (%) - ((remaining capacity/full charge capacity)
×100). Therefore, by adding information on the differential internal resistance, which is correlated with the remaining capacity, to the above average charging current, the full charge capacity at the time of judgment can be determined.
You can also see the charging status. Furthermore, the degree of deterioration (%) - (full charge capacity when new - full charge capacity at the time of judgment / full charge capacity when new You can ask for it.

ここで、微分内部抵抗は木発明者等がなした特願昭61
−315634で述べた始動時の電池電圧Vと電池電流
■から(Vo−V)/Tの値として求める。
Here, the differential internal resistance is calculated by the patent application filed by the inventors of Wood in 1983.
The value of (Vo-V)/T is determined from the battery voltage V and battery current (2) at the time of startup described in -315634.

ここでVoは、鉛−酸電池を電池の単セル電極単位面積
当たり100〜400mA/aflの電流密度で短時間
放電したときの■・■の関係を直線外挿してI−0で得
られる電圧値である。この基準電圧Voの値は電池温度
にのみ影響され、電池の充電状態および劣化度合に影響
されないので、各温度でのVoの値を別の同種電池で前
もって測定しておく。
Here, Vo is the voltage obtained by linearly extrapolating the relationship between ■ and ■ when a lead-acid battery is discharged for a short time at a current density of 100 to 400 mA/afl per unit area of a single cell electrode of the battery. It is a value. Since the value of this reference voltage Vo is affected only by the battery temperature and not by the state of charge and degree of deterioration of the battery, the value of Vo at each temperature is measured in advance with another battery of the same type.

そこで、第1表の温度、満充電容量および充電状態の各
電池を用いてエンジン始動のための大電流放電時に測定
した微分内部抵抗とその後の5分間走行中に計測したボ
ルテージレギュレータ設定電圧到達時の平均充電電流と
の関係を第2図に整理した。第2図に見られるように電
池の温度に係わりなく、電池の劣化度合が小さい、すな
わち。
Therefore, using each battery at the temperature, full charge capacity, and state of charge shown in Table 1, we measured the differential internal resistance during large current discharge to start the engine, and the time when the voltage regulator set voltage was reached, measured during the subsequent 5 minutes of running. The relationship between the average charging current and the average charging current is summarized in Figure 2. As seen in FIG. 2, the degree of battery deterioration is small regardless of the battery temperature.

満充電時の容量が大きい電池はど微分内部抵抗はIl+
  − 小さく、また充電状態が良い電池はど設定電圧到達時の
平均充電電流は小さい傾向が認められる。
A battery with a large capacity when fully charged has a differential internal resistance of Il+
- It is observed that for batteries that are small and in a good state of charge, the average charging current when reaching the set voltage tends to be small.

図から明らかなように微分内部抵抗と設定電圧到達時の
平均充電電流がわかれば、電池の満充電容量と充電状態
の両者の検知が可能なことがわかる。
As is clear from the figure, if the differential internal resistance and the average charging current when the set voltage is reached are known, it is possible to detect both the full charge capacity and charging state of the battery.

また、満充電容量がわかれば劣化度合も求められる。Furthermore, if the full charge capacity is known, the degree of deterioration can also be determined.

つまり、第2図の関係より1本発明の車載S L■用船
−酸電池のエンジン始動の大電流放電時に計測した微分
内部抵抗と走行時およびアイドリング停車時を通して一
定時間計測したボルテージレギュレータ設定電圧到達時
の平均充電電流とから電池の状態(劣化度合、充電状態
)を検出することが可能である。
In other words, from the relationship shown in Figure 2, the differential internal resistance measured at the time of large current discharge when starting the engine of the in-vehicle S L ■ charter acid battery of the present invention and the voltage regulator setting voltage measured for a certain period of time during running and idling stop. It is possible to detect the state of the battery (degree of deterioration, state of charge) from the average charging current at the time of arrival.

上記した電池の微分内部抵抗と残存容量ならびに平均充
電電流と充電状態等とが関連性を有する理由については
明確でないが次のように考えられる。まず、残存容量と
良い相関性を示した始動時の微分内部抵抗には放電反応
の抵抗、活物質同士の接触抵抗、格子の抵抗など電極の
劣化および充第1表 電状態に関係し、なおかつ純抵抗として扱える因子が寄
与している。この純抵抗成分は劣化の進んだ電池および
/または充電状態の悪い電池はど寄与が大きくなること
から残存容量と良い相関性をもつものと考える。
The reason why the differential internal resistance of the battery, the remaining capacity, the average charging current, the state of charge, etc. are related is not clear, but it is thought to be as follows. First, the differential internal resistance at startup, which has a good correlation with the residual capacity, is related to electrode deterioration and the first charging state, such as the resistance of the discharge reaction, the contact resistance between active materials, and the resistance of the lattice. Factors that can be treated as pure resistance contribute. This pure resistance component is considered to have a good correlation with the remaining capacity, since the contribution of this pure resistance component is greater for batteries that have progressed in deterioration and/or batteries that are in a poor state of charge.

一方、試験電池が完全放電状態あるいはそれに近い状態
の場合、オルタネータから電池への充電電流はオルタネ
ータ回転数に応じて最大限の定電流出力が得られる。し
かしながら、オルタネータ出力とオルタネータ回転数と
は一次の関係にはなく、いくら電池が充電不足状態であ
っても充電電流には限界値が存在する。
On the other hand, when the test battery is in a fully discharged state or a state close to it, the charging current from the alternator to the battery obtains the maximum constant current output according to the alternator rotational speed. However, the alternator output and the alternator rotational speed do not have a linear relationship, and no matter how much the battery is undercharged, there is a limit value to the charging current.

また、放電電流は負荷量によって大きく異なり。Also, the discharge current varies greatly depending on the amount of load.

負荷が大きければ消費される電流も多くなる。このよう
な場合、電池電圧はボルテージレギュレータ設定電圧に
到達し得ない場合が多い。したがって、電池への充電電
流そのものは充電状態の指標にはなり難い。これに対し
、電池電圧がボルテージレギュレータ設定電圧に到達し
ている時、すなわち、定電圧充電時にはその充電電流は
前記した純抵抗として扱える因子の寄与のみに依存する
と考えることができる。このため負荷量の大きさに左右
されることなく充電状態と良い相関性を示すものと思わ
れる。
The larger the load, the more current is consumed. In such cases, the battery voltage often cannot reach the voltage regulator set voltage. Therefore, the charging current to the battery itself is difficult to be used as an indicator of the state of charge. On the other hand, when the battery voltage reaches the voltage regulator set voltage, that is, when charging at constant voltage, the charging current can be considered to depend only on the contribution of the factors that can be treated as pure resistances. Therefore, it seems to show a good correlation with the state of charge without being influenced by the magnitude of the load.

本発明に係る車載S L I用船−酸電池の状態検出法
は、被検電池を車載状態のまま電池に何ら改造を加える
ことなく、車両使用中に電池に出入りする電流と電池の
電圧および電池の温度から被検電池が充電を必要として
いる状態なのかまた。劣化度合が大きく、交換時期が近
い状態なのか、あるいは充電状態、劣化度合のいずれに
も問題はなく、そのままm続使用が可能な状態なのかを
知ることができる。
The method for detecting the condition of an in-vehicle SLI charter acid battery according to the present invention is to detect the current flowing in and out of the battery, the voltage of the battery, and Also, based on the battery temperature, does the test battery require charging? It is possible to know whether the degree of deterioration is large and the time for replacement is near, or whether there is no problem with either the state of charge or the degree of deterioration and the battery can be used continuously for m continuous use.

次に1本発明の車載S L I用船−酸電池の電池状態
(充電状態、劣化度合)検出装置は、センサーによって
測定した電池温度から電池の基準電圧Voを求める演算
部と該基準電圧vOと放電電圧■および放電電流■から
微分内部抵抗Rを算出する演N部ならびにボルテージレ
ギュレータ設定電圧に到達している時間りとその間に流
れた電気量Ahとから平均充電電流へを算出する算出部
とを有し。
Next, the device for detecting the battery status (state of charge, degree of deterioration) of an in-vehicle SLI chartered acid battery according to the present invention includes a calculation unit that calculates the reference voltage Vo of the battery from the battery temperature measured by the sensor, and the reference voltage vO. a calculation section that calculates the differential internal resistance R from the discharge voltage ■ and the discharge current ■, and a calculation section that calculates the average charging current from the time taken to reach the voltage regulator setting voltage and the amount of electricity Ah flowing during that time. and has.

さらに該微分内部抵抗Rと平均充電電流へとから予め同
種電池で求めておいた両者の関係にしたがって充電状態
および劣化度合を判定する判定部とそれを表示する表示
部とからなることを特徴とずるものである。本検出装置
によれば電池を車載したまま、車両の使用中、電池から
得られる情報(電圧、電流、温度)のみで、電池の種類
などに影響されることなく、車載SLI用鉛用船電池の
電池状態(劣化度合および充電状態)を短時間にしかも
精度よく検出することを可能にしている。
Furthermore, the present invention is characterized by comprising a determining section that determines the state of charge and the degree of deterioration according to the relationship between the differential internal resistance R and the average charging current, which has been determined in advance for batteries of the same type, and a display section that displays the same. It's a cheat. According to this detection device, while the battery is installed in the vehicle and while the vehicle is in use, only information obtained from the battery (voltage, current, temperature) can be used to detect lead-acid marine batteries for in-vehicle SLI, without being affected by the type of battery. This makes it possible to detect the battery status (degree of deterioration and state of charge) of the battery in a short time and with high accuracy.

〔実施態様の説明] 本発明の車載SLI用鉛用船電池の状態検出法の特徴は
、被検電池を車載状態のまま、電池に何ら改造を加える
ことなく、車両使用中に電池に出入りする電流と電池の
電圧および電池の温度から被検電池が充電を必要として
いる状態なのか、また劣化度合が大きく交換時期が近い
状態なのか。
[Description of Embodiments] The feature of the method for detecting the state of a lead marine battery for vehicle-mounted SLI of the present invention is that the test battery can be moved in and out of the battery while the vehicle is being used, without making any modification to the battery while it is mounted on the vehicle. Does the battery under test require charging based on the current, battery voltage, and battery temperature, or is the battery under test in a state where the degree of deterioration is large and the time for replacement is near?

あるいは充電状態、劣化度合のいずれにも問題はなく、
そのまま継続使用が可能な状態なのかを知る方法である
。以下、第2図の関係を見出すのに用いた実際の装置の
説明図(第3図)を使って本発明の実施態様を説明する
Or, there is no problem with either the charging state or the degree of deterioration.
This is a way to find out whether it is possible to continue using it as is. Hereinafter, embodiments of the present invention will be described using an explanatory diagram (FIG. 3) of an actual apparatus used to find the relationship shown in FIG. 2.

エンジン始動に隙し、SLI用鉛用船電池1の正極端子
2とスタータモータ3の間に設けられたパワーリレー4
がオン状態となりスタータモータに大電流が流れる。こ
の時の放電電流■および端子電圧■を電流計5および電
圧計6で測定する。
A power relay 4 is installed between the positive terminal 2 of the lead-acid marine battery 1 for SLI and the starter motor 3 during the engine start.
turns on and a large current flows to the starter motor. At this time, the discharge current (■) and the terminal voltage (■) are measured using an ammeter 5 and a voltmeter 6.

また同時に電池温度を公知の温度測定法1例えば温度セ
ンサ7で測定し、その温度に対応する電池の基準電圧V
oを予め既出側(特願昭6l−302775)の方法で
求めた温度と基準電圧との関係(第4図)に従い演算部
8で算出する。演算部9では上記の1、  VおよびV
oO値より電池の微分内部抵抗RをR−(Vo−V)/
I弐に従って算出する。
At the same time, the battery temperature is measured using a known temperature measurement method 1, for example, a temperature sensor 7, and the battery reference voltage V corresponding to the temperature is measured.
o is calculated by the calculation unit 8 according to the relationship between the temperature and the reference voltage (FIG. 4), which was determined in advance by the method previously published (Japanese Patent Application No. 61-302775). In the calculation unit 9, the above 1, V and V
From the oO value, the differential internal resistance R of the battery is calculated as R-(Vo-V)/
Calculate according to I2.

一方、エンジン始動後パワーリレー4はオフ状態となり
2代わってパワーリレー10がオン状態となって電池は
車両の負荷−充電系に接続される。
On the other hand, after the engine is started, the power relay 4 is turned off, and the power relay 10 is turned on instead, so that the battery is connected to the load-charging system of the vehicle.

負荷−充電系ではオルタネータ11で発電された電力と
イグニッションコイル、ヘッドランプなどの電気負荷1
2で消費される電力との差が正であれば電池が充電され
、負であれば電池が放電し。
Load - In the charging system, the electric power generated by the alternator 11 and electrical loads 1 such as ignition coils and headlamps are
If the difference with the power consumed in step 2 is positive, the battery is charged, and if it is negative, the battery is discharged.

その電力を賄うようになっている。オルタネータの出力
電流および出力電圧はエンジン回転数に依存するが車両
の通常の使用条件では平均して電池+J充電されろよう
設旧されている。この場合充電は、ポルチー ジl/ギ
ュレーク13によっ゛こコントロールされた定電圧で行
われている。該電圧は電池が過電圧にならず、常に完全
充電に近い状態で使用が可能な電圧をいう。このような
負荷−充電系において車両使用中、ボルテージレギュレ
ータがその設定電圧に到達しているかどうかを設定電圧
到達検出器14て検出し、到達している時間t。
It is designed to cover the electricity. Although the output current and output voltage of the alternator depend on the engine speed, the alternator is designed to charge the battery +J on average under normal vehicle usage conditions. In this case, charging is carried out at a constant voltage controlled by the portage l/gule 13. This voltage is the voltage at which the battery does not become overvoltage and can be used in a nearly fully charged state at all times. While the vehicle is in use in such a load-charging system, the set voltage attainment detector 14 detects whether or not the voltage regulator has reached its set voltage, and determines the time t at which the voltage has been reached.

(11)とその間に充電方向に流れた電気量Δhとをそ
れぞれ時間積分器15と充電電気量積分器16にで測定
し、算出部]7で−1−記Ah七りとにより電池電圧が
ホルテージレギ上レーク設定電圧に到達している間に電
池に流れた平均充電電流へを算出する。さらに電池状態
判定部18では」二記演算部17で算出された平均充電
電流と前記演算部9で算出された微分内部抵抗(vo−
■)/Iとから予め同種電池で求めておいた第2IAの
関係に従って電池状態(充電状態および劣化度合)を判
定する。
(11) and the amount of electricity Δh flowing in the charging direction during that time are measured by the time integrator 15 and the charging amount of electricity integrator 16, respectively, and the battery voltage is Calculate the average charging current flowing through the battery while reaching the set voltage on the halterage leg. Furthermore, the battery condition determination unit 18 uses the average charging current calculated by the calculation unit 17 and the differential internal resistance (vo-
(2) The battery state (state of charge and degree of deterioration) is determined according to the relationship of the second IA previously determined for the same type of battery from /I.

第2Vの関係は発明の説明において述べたように。The relationship of the second V is as described in the description of the invention.

通常残存容量と充電状態既知の多数の電池を用いて求め
るがシー14ミレージヨンによって求めてもよい。19
ばその表示部である。
Usually, it is determined using a large number of batteries whose remaining capacity and state of charge are known, but it may also be determined by sea 14 mileage. 19
This is the display section.

電池の充電状態は車両使用中の負荷の使用状態および走
行条件(エンジン回転数)によって変化する。従って平
均充電電流への測定は数分〜10分程度の間隔で行うの
が良く2その間に測定されたボルテージレギュレータの
設定電圧到達時間および充電電気量を用いて算出するの
が望ましい。
The state of charge of the battery changes depending on the usage state of the load and driving conditions (engine speed) while the vehicle is in use. Therefore, it is preferable to measure the average charging current at intervals of several minutes to about 10 minutes, and it is desirable to calculate the average charging current using the time taken to reach the set voltage of the voltage regulator and the amount of charging electricity measured during that period.

この時間間隔が短い場合には負荷電気量の影響を受け、
平均充電電流の値が大きくハラつき、電池の正確な充電
状態が検出できない弊害を生じる。
If this time interval is short, it will be affected by the load electricity,
The value of the average charging current is large and unstable, causing the problem that the accurate state of charge of the battery cannot be detected.

また、この時間間隔が長ずぎる場合には、−回の車両使
用時間中に電池の状態が検出てきないことが起こり得る
ため好ましくない。また、負荷電気量の使用量が多く、
始動後最初の数分間の間、電池電圧がボルテージレギュ
レータ設定電圧に到達しない場合も起こり得るがこの場
合は2回目以降の積分データで設定電圧に到達か認めら
れた時の値を用いれば良い。
Moreover, if this time interval is too long, it is not preferable because the battery state may not be detected during - times of vehicle use. In addition, the amount of load electricity used is large,
There may be cases where the battery voltage does not reach the voltage regulator setting voltage during the first few minutes after starting, but in this case, it is sufficient to use the value when it is recognized that the setting voltage has been reached in the second and subsequent integral data.

一方、電池電圧がボルテージレギフ−1/−夕の設−1
6一 定電圧に到達しているかどうかを検出する方法にはいく
つかあるが例えばオルタネータのフィールドコイルの界
磁電流を測定する方法によってもよい。
On the other hand, the battery voltage is voltage legif -1/- evening setting -1
6. There are several methods of detecting whether a constant voltage has been reached, and for example, a method of measuring the field current of the field coil of the alternator may be used.

(実施例) 本発明の車載S L l用船−酸電池の電池状態検出力
法の有効性を実証するため、容量低下度合および充電状
態未知の試験電池(55D23型〜N540ZΔ型)を
複数個用意し、第3図のシステムを搭載した自動車を用
い、各電池で5分間の走行実験を行った。測定した始動
時の微分内部抵抗および始動後5分間のボルテージレギ
ュレータ設定電圧到達時平均充電電流を第2表に示した
。各実験により得られた微分内部抵抗値と設定電圧到達
時平均充電電流値をもとに第2図から試験電池の充電状
態および満充電時容量を推測して第2表中に示した。ま
た、実験後、試験電池を5時間率定電流で放充電を行い
、残存容量ならびに満充電時容量を測定し、その値も第
2表中に示した。
(Example) In order to demonstrate the effectiveness of the battery state detection method for in-vehicle S L l chartered acid batteries of the present invention, a plurality of test batteries (55D23 type to N540ZΔ type) with unknown capacity reduction degree and unknown state of charge were used. Using a car equipped with the system shown in Figure 3, a 5-minute running experiment was conducted using each battery. Table 2 shows the measured differential internal resistance at startup and the average charging current when the voltage regulator set voltage was reached for 5 minutes after startup. Based on the differential internal resistance value obtained in each experiment and the average charging current value when the set voltage was reached, the state of charge and fully charged capacity of the test battery were estimated from FIG. 2 and are shown in Table 2. Further, after the experiment, the test batteries were discharged and charged at a constant current rate for 5 hours, and the remaining capacity and capacity at full charge were measured, and the values are also shown in Table 2.

本発明の検出法によって求めた値は実験後の実測容量に
基つく充電状態の値に比べて大差なく。
The value determined by the detection method of the present invention is not significantly different from the state of charge value based on the measured capacity after the experiment.

本発明の車載SLI用船−酸電池の電池状態検出法の有
効性が実証されている。
The effectiveness of the method for detecting the battery status of an on-vehicle SLI ship-acid battery according to the present invention has been demonstrated.

以下余白−−−一−−−−−−−−−−−−□−−−−
−−−−−−−−−−−−−一−−7/′
Margin below----1-----------□----
−−−−−−−−−−−−−1−−7/′

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電池充電状態とホルテージI/ギュレータ設定
電圧到達時平均充電電流との関係図、第2図はボルテー
ジレギュレータ設定電圧到達時平均充電電流とエンジン
始動にあたる大電流放電時の微分内部抵抗((Vo −
V)/IIとの関係図、第3図は試験回路の一例、第4
図は微分内部抵抗を求めるための基準電圧Voの温度依
存性を示す図である。 ■・・・鉛−酸電池、・ 7・・・温度センサー8・・
・演算部、    90.・演算部13・・・ボルテー
ジレギュレータ 17・・・算出部、   18・・・判定部19・・・
表示部
Figure 1 shows the relationship between the battery charging state and the average charging current when reaching the Hortage I/regulator set voltage, and Figure 2 shows the relationship between the average charging current when reaching the voltage regulator set voltage and the differential internal resistance ( (Vo-
V)/II, Figure 3 is an example of the test circuit, Figure 4
The figure shows the temperature dependence of the reference voltage Vo for determining the differential internal resistance. ■...Lead-acid battery, 7...Temperature sensor 8...
- Arithmetic unit, 90. - Arithmetic unit 13... Voltage regulator 17... Calculation unit, 18... Judgment unit 19...
Display section

Claims (3)

【特許請求の範囲】[Claims] (1)任意の車載SLI用鉛−酸電池のエンジン始動時
における大電流放電時の微分内部抵抗と始動後一定時間
内において電池電圧がボルテージレギュレータ設定電圧
到達時の平均充電電流を求め、予め定めた微分内部抵抗
と平均充電電流との関係とを対比させることにより充電
状態および劣化度合を検出することを特徴とする車載S
LI用鉛−酸電池の電池状態を検出する方法。 (ただし、微分内部抵抗は始動時の電池電圧Vと電池電
流Iから(Vo−V)/Iの値として求める。ここでV
oは鉛−酸電池を電池の単セル電極単位面積当たり10
0〜400mA/cm^2電流密度で短時間放電したと
きのV・Iの関係を直線外挿してI=0で得られる基準
電圧値である)
(1) Determine the differential internal resistance of any vehicle-mounted lead-acid battery for SLI when discharging a large current when the engine is started, and the average charging current when the battery voltage reaches the voltage regulator setting voltage within a certain period of time after startup, and determine the predetermined value. An in-vehicle S is characterized in that the state of charge and the degree of deterioration are detected by comparing the relationship between the differential internal resistance and the average charging current.
A method for detecting the battery condition of a lead-acid battery for LI. (However, the differential internal resistance is determined from the battery voltage V and battery current I at startup as the value (Vo-V)/I. Here, V
o is 10 per unit area of a single cell electrode of a lead-acid battery.
This is the reference voltage value obtained when I = 0 by linearly extrapolating the relationship between V and I when discharging for a short time at a current density of 0 to 400 mA/cm^2)
(2)上記微分内部抵抗と平均充電電流との予め定めた
関係は充電状態、劣化度合既知の多種類の車載SLI用
鉛−酸電池を車両に搭載し、始動時における大電流放電
時の微分内部抵抗と始動後一定時間内において電池電圧
がボルテージレギュレータ設定電圧到達時の平均充電電
流を計測することによって求めることを特徴とする特許
請求の範囲第(1)項記載の車載SLI用鉛−酸電池の
電池状態(充電状態・劣化度合)を検出する方法。
(2) The predetermined relationship between the differential internal resistance and the average charging current is calculated by using a variety of in-vehicle SLI lead-acid batteries whose state of charge and degree of deterioration are known, and which is determined by the differential during large current discharge at startup. The lead-acid for in-vehicle SLI according to claim (1), wherein the battery voltage is determined by measuring the internal resistance and the average charging current when the voltage regulator reaches the set voltage within a certain period of time after starting. A method to detect the battery status (state of charge and degree of deterioration) of a battery.
(3)センサーによって測定した電池温度から電池の基
準電圧Voを求める演算部と該基準電圧Voと放電電圧
Vおよび放電電流Iから微分内部抵抗Rを算出する演算
部ならびにボルテージレギュレータ設定電圧に到達して
いる時間hとその間に流れた電気量Ahとから平均充電
電流@A@を算出する算出部とを有し、さらに該微分内
部抵抗Rと平均充電電流@A@とから予め同種電池で求
めておいた両者の関係に従って充電状態および劣化度合
を判定する判定部とそれを表示する表示部からなること
を特徴とする車載SLI用鉛−酸電池の電池状態(充電
状態・劣化度合)検出装置。
(3) A calculation unit that calculates the battery reference voltage Vo from the battery temperature measured by the sensor, a calculation unit that calculates the differential internal resistance R from the reference voltage Vo, discharge voltage V, and discharge current I, and a calculation unit that calculates the differential internal resistance R from the reference voltage Vo, the discharge voltage V, and the discharge current I, and the calculation unit that calculates the battery reference voltage Vo from the battery temperature measured by the sensor. It has a calculation unit that calculates the average charging current @A@ from the time h during which the battery is running and the amount of electricity Ah that has flowed during that time, and further calculates the average charging current @A@ from the differential internal resistance R and the average charging current @A@ for the same type of battery in advance. A battery state (state of charge and degree of deterioration) detection device for a lead-acid battery for automotive SLI, comprising a determination section that determines the state of charge and degree of deterioration according to the established relationship between the two, and a display section that displays the same. .
JP62096005A 1987-04-17 1987-04-17 Method and device for detecting state of lead-acid battery for on-vehicle sli Pending JPS63261179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62096005A JPS63261179A (en) 1987-04-17 1987-04-17 Method and device for detecting state of lead-acid battery for on-vehicle sli

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62096005A JPS63261179A (en) 1987-04-17 1987-04-17 Method and device for detecting state of lead-acid battery for on-vehicle sli

Publications (1)

Publication Number Publication Date
JPS63261179A true JPS63261179A (en) 1988-10-27

Family

ID=14153022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62096005A Pending JPS63261179A (en) 1987-04-17 1987-04-17 Method and device for detecting state of lead-acid battery for on-vehicle sli

Country Status (1)

Country Link
JP (1) JPS63261179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539318A (en) * 1992-07-16 1996-07-23 Toyota Jidosha Kabushiki Kaisha Residual capacity meter for electric car battery
CN107290669A (en) * 2016-04-01 2017-10-24 中国电力科学研究院 A kind of diagnostic method of retired power battery box of electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539318A (en) * 1992-07-16 1996-07-23 Toyota Jidosha Kabushiki Kaisha Residual capacity meter for electric car battery
CN107290669A (en) * 2016-04-01 2017-10-24 中国电力科学研究院 A kind of diagnostic method of retired power battery box of electric vehicle

Similar Documents

Publication Publication Date Title
US10656210B2 (en) Secondary battery state detection device and secondary battery state detection method
US10712393B2 (en) Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method
JP5656415B2 (en) Secondary battery state determination device and control device
US7898263B2 (en) Onboard battery management device
EP0438477B1 (en) Automotive battery status monitor
JP2003519900A (en) Battery health state determining apparatus and method
EP3767317A1 (en) Method and apparatus for calculating soh of battery power pack, and electric vehicle
JPH0650340B2 (en) Life Diagnostic Device for Automotive Battery
EP0407522A1 (en) State-of-charge indications
WO1990010242A2 (en) Aircraft battery status monitor
KR20000053145A (en) Vehicular power management system and method
JPH08138759A (en) Deterioration detection method and deterioration detection device for battery set
JP2007166789A (en) Method of determining fully charged capacity of secondary battery and determining device thereof
WO2007006121A1 (en) Detecting the state-of-charge of a lithium ion battery in a hybrid electric vehicle
JP6603888B2 (en) Battery type determination device and battery type determination method
CN111108403A (en) Short-circuit prediction device and short-circuit prediction method for rechargeable battery
US6674266B2 (en) Method for determining the operating state of an energy-storage battery
JP2007103351A (en) Method of judging degradation of storage battery and apparatus therefor
JPH0933620A (en) Degradation judgment method for lead storage-battery
JPH0634727A (en) Battery residual capacity meter
JP2003035176A (en) Battery-mounted vehicle, vehicle having idling stop function, and device for and method of determining condition of battery mounted on the vehicle having idling stop function
JPS63261179A (en) Method and device for detecting state of lead-acid battery for on-vehicle sli
JP2002310044A (en) Residual capacity inspection method of storage battery and residual capacity inspection device of storage battery
JP2002031671A (en) Method of idling stop process for vehicle, method for measuring residual capacity of storage battery loaded to vehicle, and, apparatus for these
JPH09329654A (en) Life judgement method for lead battery and life judgement equipment