JPS63240918A - Gas separating membrane - Google Patents

Gas separating membrane

Info

Publication number
JPS63240918A
JPS63240918A JP7177687A JP7177687A JPS63240918A JP S63240918 A JPS63240918 A JP S63240918A JP 7177687 A JP7177687 A JP 7177687A JP 7177687 A JP7177687 A JP 7177687A JP S63240918 A JPS63240918 A JP S63240918A
Authority
JP
Japan
Prior art keywords
siloxane
copolymer
tetrafluoroethylene
oxygen
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7177687A
Other languages
Japanese (ja)
Inventor
Hidemasa Ko
英昌 高
Tomoya Takigawa
滝川 具也
Tokuhide Sugiyama
徳英 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7177687A priority Critical patent/JPS63240918A/en
Publication of JPS63240918A publication Critical patent/JPS63240918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain gas separating membrane having a separation factor balancing with a permeation velocity of O2 having also stable durability of performance by using a copolymer consisting of tetrafluoroethylene with vinylether contg. siloxane. CONSTITUTION:Thin film is formed from a copolymer consisting of tetrafluoroethylene and a vinylether contg. siloxane comprising vinyloxypropyl trimethyl siloxane such as 7,7,9,9-tetramethyl-3,8-dioxa-7,9-disiladecene-1, etc. Gas separating membrane is obtd. by superposing the thin film on porous film of polysulfone. Suitable proportion of each comonomer contained in the copolymer is generally 5-70mol.% tetrafluoroethylene and ca. 60-5mol.% vinylether contg. the siloxane. By copolymerizing if necessary, a specified third component such as alpha-olefin, etc. or further component, properties such as crosslinking property, adhesivity to a base material, etc. may be added to the copolymer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は気体分離膜、特に膜分離法により空気から酸、
に富化空気を得る際、富化空気の透過量が大きく、且、
酸素の選択透過性の優れた分離膜に係わるものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas separation membrane, in particular, a membrane separation method for separating acid from air.
When obtaining enriched air, the permeation amount of enriched air is large, and
This relates to a separation membrane with excellent oxygen permselectivity.

[従来の技術] 酸素濃度が25〜50%の酸素富化空気は、例えば高炉
送風用、燃焼補助用、石油蛋白プロセス用、廃液処理用
、医療における呼気用等に必要とされる。酸素富化空気
を得る方法としては、従来高純度酸素を深冷液化蒸留法
にて製造し。
[Prior Art] Oxygen-enriched air with an oxygen concentration of 25 to 50% is required, for example, for blast furnace ventilation, combustion assistance, petroleum protein processing, waste liquid treatment, exhalation in medical care, and the like. The conventional method for obtaining oxygen-enriched air is to produce high-purity oxygen using cryogenic liquefaction distillation.

ついで空気を混合して目的の酸素濃度を得てきた。しか
し、かかる方法では、高純度酸〕kは一般に圧力容器に
入っているので、圧力容器の取扱いの危険性、成るいは
、混合ガス濃度を一定にする為の圧力調節器の必要性、
その操作の煩雑性等種々の問題があった。
Then, air was mixed to obtain the desired oxygen concentration. However, in such a method, since the high purity acid [k] is generally contained in a pressure vessel, there are risks in handling the pressure vessel, or the necessity of a pressure regulator to keep the mixed gas concentration constant.
There were various problems such as the complexity of the operation.

他方、25〜50%の酸素富化空気を得る方法として、
膜分離法がある。
On the other hand, as a method for obtaining 25-50% oxygen enriched air,
There is a membrane separation method.

この方法は、直接酸素富化空気が得られ、操作的に簡単
であり、且、経済的にも有利である。このような分離膜
としては、従来アミノ、Lζ含有シロキサンを多孔性支
持体上に被覆したものが知られている(特開昭59−1
20207号公報参照)。
This method directly provides oxygen-enriched air, is operationally simple, and is economically advantageous. As such a separation membrane, one in which a porous support is coated with amino- and Lζ-containing siloxane is known (Japanese Patent Laid-Open No. 59-1
(See Publication No. 20207).

コノ膜の酸素透過速度はQO2=1.9X 10−:I
cm:’/ cm2sec cmHg (5,2m3/
m2.hr atm)と犬であるが、酸素/窒素分離係
数(QO2/ QN2 )はα=2.0と小さく、得ら
れる酸素富化空気の酸素濃度に限界がある。一方、ポリ
エチレンテレフタレート、ポリエチレン、ポリカーボネ
ート及びテトラフルオロエチレン−ヘキサフルオロプロ
ピレン共重合体等の含フツ素樹脂等は、酸素分離係数は
3〜5と大であるが、酸素の透過係数は1O−1° 〜
loi1cm3cm/ cm2sec c+aHg と
小さく[・分な流量の酸素富化空気が得られることは期
待できない。
The oxygen permeation rate of the Kono membrane is QO2 = 1.9X 10-:I
cm:'/ cm2sec cmHg (5,2m3/
m2. However, the oxygen/nitrogen separation coefficient (QO2/QN2) is as small as α=2.0, and there is a limit to the oxygen concentration of the oxygen-enriched air that can be obtained. On the other hand, fluorine-containing resins such as polyethylene terephthalate, polyethylene, polycarbonate, and tetrafluoroethylene-hexafluoropropylene copolymer have a large oxygen separation coefficient of 3 to 5, but an oxygen permeability coefficient of 1O-1°. ~
It cannot be expected to obtain oxygen-enriched air with a flow rate as small as loi1cm3cm/cm2sec c+aHg.

[発明の解決しようとする問題点] 本発明はかかる点に鑑み、分離係数と酸素の透過速度が
バランスし、しかもその性能が安定して持続し得る気体
分離膜を得ることを目的とし種々研究、検討した結果、
従来知られていなかったテトラフルオロエチレンとシロ
キサン含有ビニルエーテルとからなる共重合体を薄膜に
してポリスルホン多孔質膜上にのせることにより、前記
目的を達成し得ることを見出した。
[Problems to be Solved by the Invention] In view of these points, the present invention has carried out various studies with the aim of obtaining a gas separation membrane that has a balance between the separation coefficient and the oxygen permeation rate, and whose performance can be maintained stably. , As a result of consideration,
It has been discovered that the above object can be achieved by forming a thin film of a previously unknown copolymer of tetrafluoroethylene and siloxane-containing vinyl ether and placing it on a polysulfone porous membrane.

[問題点を解決するための手段] かくして本発明は、テトラフルオロエチレンとシロキサ
ン含有ビニルエーテルとからなる共重合体を薄膜にして
ポリスルホン多孔質膜上にのせた気体分離膜を新規に提
供するものである。
[Means for Solving the Problems] Thus, the present invention provides a novel gas separation membrane in which a copolymer consisting of tetrafluoroethylene and siloxane-containing vinyl ether is made into a thin film and placed on a polysulfone porous membrane. be.

本発明に用いられるシロキサン含有ビニルエーテルとし
ては、例えば、 ?、7,9.9−テトラメチルー3,
8−ジオキサ−7,9−ジシラデセン−1,7,7−ビ
ス(トリメチルシリルオキシ)−8,9−ジメチル−3
,8−ジオキサ−7,9−ジシラデセンー1等のビニロ
キシプロピルトリメチルシロキシシラン化合物などが挙
げられる。
Examples of the siloxane-containing vinyl ether used in the present invention include: ? , 7,9.9-tetramethyl-3,
8-Dioxa-7,9-disiladecene-1,7,7-bis(trimethylsilyloxy)-8,9-dimethyl-3
, 8-dioxa-7,9-disiladecene-1 and other vinyloxypropyltrimethylsiloxysilane compounds.

これら共重合体における各含有割合は、厳密には用いら
れるそれぞれの化合物の種類等により決められるが、一
般にテトラフルオロエチレン5〜フ0 ル60〜5モル%程度を採用するのが適当である。また
必要に応じて、特定の第3ないしそれ以上の成分を共重
合することも可能であり、これにより、例えば架橋性、
基材密着性等を付与することができる。かかる目的で導
入する他のg 単.Hl>体としては、α−オレフィン
、アルキルビニルエーテルあるいはビニルエステルなど
が例示され得る。
Although the content ratio of each of these copolymers is strictly determined by the type of each compound used, it is generally appropriate to employ about 5 to 60 to 5 mol% of tetrafluoroethylene. Furthermore, if necessary, it is also possible to copolymerize a specific third or more component, which improves, for example, crosslinking properties,
Adhesion to the base material etc. can be imparted. Any other g introduced for such purpose. Examples of Hl> bodies include α-olefins, alkyl vinyl ethers, and vinyl esters.

これら含有割合がL記範囲を逸脱する場合には、分離係
数や酸素の透過速度が不十分となるので好ましくない。
If these content ratios deviate from the ranges listed in L, the separation coefficient and oxygen permeation rate will become insufficient, which is not preferable.

実際本発明による共重合体を製造する手段としては、特
に限定されないが、例えば有機溶媒中でラジカル開始剤
を用いて行う溶液重合あるり・は1重合媒体を用いない
塊状重合がある。水を媒体とする懸濁重合や乳化重合も
採用可能である。また、′,ニ離性放射線あるいはプラ
ズマによる重合も:If能である。
In fact, the means for producing the copolymer according to the present invention is not particularly limited, but includes, for example, solution polymerization carried out in an organic solvent using a radical initiator, and/or bulk polymerization without using a polymerization medium. Suspension polymerization and emulsion polymerization using water as a medium can also be employed. In addition, polymerization by radiation or plasma is also possible.

また、本発明による共重合体のモ均分子11には固有粘
度[η]で表わすと0.1以上、好ましくは0.2以上
を採用するのが適当である。
Further, it is appropriate that the homogeneous molecule 11 of the copolymer according to the present invention has an intrinsic viscosity [η] of 0.1 or more, preferably 0.2 or more.

かくして得られた共重合体は、例えばトリクロロトリフ
ルオロエタン等のフ・ン素系溶媒、n−ヘキサン、シク
ロヘキサン、テトラヒドロフラン等の炭化水素系溶媒な
どに常温で可溶である。これにより本共重合体は支持体
トに数ル以下の薄膜に成形することができる。かかる薄
膜の形成手段に特に制限はなく、適宜公知の手段を採用
し得る。溶媒に該共重合体を溶かし、多孔質++5! 
11−、にコートし、溶媒を蒸発させる方法や、水玉キ
ャスティングして薄膜となし,これを多孔質膜上に設け
る方法等の手段をとることができる。
The copolymer thus obtained is soluble at room temperature in, for example, fluorine-based solvents such as trichlorotrifluoroethane, and hydrocarbon-based solvents such as n-hexane, cyclohexane, and tetrahydrofuran. As a result, the present copolymer can be formed into a thin film of several liters or less on a support. There are no particular limitations on the means for forming such a thin film, and any known means may be employed as appropriate. The copolymer is dissolved in a solvent and porous ++5!
11-, and then evaporating the solvent, or by casting a thin film into a thin film and disposing it on a porous membrane.

[実施例] 以下、実施例により本発明を更に具体的に説明するが,
かかる説明によって本発明がなんら限定されないもので
あることは勿論である。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples.
It goes without saying that the present invention is not limited in any way by this explanation.

実施例1 テトラフルオロエチレン/シロキサン含有=ニルエーテ
ル共重合体[テトラフルオロエチレン/7,7,9.9
−テトラメチル−3,8−ジオキサ−7,9−ジシラデ
センーl/ヒドロキシブチルビニルエーテル組成比(モ
ル比) 50/ 48.5/ 1.5、固有粘度[η]
=0.75]のn−ヘキサン溶液(30g/fL)を調
整し、この中を511/IIINI(7)速さでポリス
ルホン多孔質中空糸(外径450μ:内ff320μ;
空気透過速度30m3 / rs2 hr atm)を
通し、その上にコーティングした。溶媒を蒸発後これを
20本束ね、片端をエポキシ樹脂で固め、他端も封じ有
効長さ30cmとした簡易モジュールを作り、ガス透過
性を酸素、窒素について測定した。酸素透過速度はQO
2J、28m3 / m2hr atm、酸素/窒素分
離係数はα=2.46であった。
Example 1 Tetrafluoroethylene/siloxane-containing = nyl ether copolymer [tetrafluoroethylene/7,7,9.9
-tetramethyl-3,8-dioxa-7,9-disiladecene-l/hydroxybutyl vinyl ether composition ratio (molar ratio) 50/48.5/1.5, intrinsic viscosity [η]
= 0.75] in n-hexane (30 g/fL), and a polysulfone porous hollow fiber (outer diameter 450μ: inner ff 320μ;
An air permeation rate of 30 m3/rs2 hr atm) was passed through and coated on top. After the solvent was evaporated, 20 of them were bundled, one end was hardened with epoxy resin, and the other end was sealed to make a simple module with an effective length of 30 cm, and the gas permeability was measured for oxygen and nitrogen. Oxygen permeation rate is QO
2J, 28 m3/m2hr atm, oxygen/nitrogen separation factor was α=2.46.

実施例2 テトラフルオロエチレン/シロキサン含有ビニルエーテ
ル共重合体[テトラフルオロエチレン/7,7−ビス(
トリメチルシリルオキシ)−9,S−ジメチル−3,8
−ジオキサ−7,9−ジシラデセンー1/ヒドロキシブ
チルビニルエーテル組成比(モル比)50/48.5/
1.5 、固有粘度[η〕= 0.231のドルクロロ
トリフルオロエタン溶液(40g/jlを調整し、この
中を3m/winの速さでポリスルホン多孔質中空糸(
外径450μ;内径320μ:空気透過速度30m3 
/ m2 hr atm)を通し、その上にコーティン
グした。溶媒を蒸発後これを20本束ね、片端をエポキ
シ樹脂で固め、他端も封じ有効長さ30crrrとした
簡易モジュールを作り、ガス透過性を酸素、窒素につい
て4111定した。酸素透過速度はQO2J、50m3
/ m2hr atm、酸素/窒素分離係数はα=1.
88であった。
Example 2 Tetrafluoroethylene/siloxane-containing vinyl ether copolymer [tetrafluoroethylene/7,7-bis(
trimethylsilyloxy)-9,S-dimethyl-3,8
-Dioxa-7,9-disiladecene-1/hydroxybutyl vinyl ether composition ratio (mole ratio) 50/48.5/
1.5, a solution of dolchlorotrifluoroethane (40 g/jl) with an intrinsic viscosity [η] = 0.231 was prepared, and a polysulfone porous hollow fiber (
Outer diameter 450μ; Inner diameter 320μ: Air permeation rate 30m3
/ m2 hr atm) and coated on top. After the solvent was evaporated, 20 of them were bundled, one end was hardened with epoxy resin, and the other end was sealed to make a simple module with an effective length of 30 crrr, and the gas permeability was determined as 4111 for oxygen and nitrogen. Oxygen permeation rate is QO2J, 50m3
/ m2hr atm, oxygen/nitrogen separation coefficient α=1.
It was 88.

[発明の効果] 本発明のテトラフルオロエチレンとシロキサン含有ビニ
ルエーテルとからなる共重合体を1t1711りにして
ポリスルホン多孔質膜上にのせた分離膜は、特に酸素/
窒素分離係数と酸素透過速度か高いレベルでバランスす
るという優れた効果を有する。しかも、本発明の分離膜
は、この優れた性能を安定して持続し得るという効果も
認められる。
[Effects of the Invention] The separation membrane in which the copolymer of tetrafluoroethylene and siloxane-containing vinyl ether of the present invention is made into 1t1711 and placed on a polysulfone porous membrane is particularly effective against oxygen/
It has an excellent effect of balancing nitrogen separation coefficient and oxygen permeation rate at a high level. Furthermore, the separation membrane of the present invention is also recognized to be effective in stably maintaining this excellent performance.

Claims (1)

【特許請求の範囲】 1、テトラフルオロエチレンとシロキサン含有ビニルエ
ーテルとからなる共重合体を薄膜にしてポリスルホン多
孔質膜上にのせた気体分離膜。 2、共重合体のテトラフルオロエチレンの含有割合が5
〜70モル%である特許請求の範囲第1項記載の気体分
離膜。 3、シロキサン含有ビニルエーテルがビニロキシプロピ
ルトリメチルシロキシシラン化合物である特許請求の範
囲第1項記載の気体分 離膜。
[Scope of Claims] 1. A gas separation membrane in which a copolymer of tetrafluoroethylene and siloxane-containing vinyl ether is made into a thin film and placed on a polysulfone porous membrane. 2. The content ratio of tetrafluoroethylene in the copolymer is 5
70 mol % of the gas separation membrane according to claim 1. 3. The gas separation membrane according to claim 1, wherein the siloxane-containing vinyl ether is a vinyloxypropyltrimethylsiloxysilane compound.
JP7177687A 1987-03-27 1987-03-27 Gas separating membrane Pending JPS63240918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7177687A JPS63240918A (en) 1987-03-27 1987-03-27 Gas separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7177687A JPS63240918A (en) 1987-03-27 1987-03-27 Gas separating membrane

Publications (1)

Publication Number Publication Date
JPS63240918A true JPS63240918A (en) 1988-10-06

Family

ID=13470303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7177687A Pending JPS63240918A (en) 1987-03-27 1987-03-27 Gas separating membrane

Country Status (1)

Country Link
JP (1) JPS63240918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919330A (en) * 1993-03-24 1999-07-06 Pall Corporation Method for bonding a porous medium to a substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919330A (en) * 1993-03-24 1999-07-06 Pall Corporation Method for bonding a porous medium to a substrate

Similar Documents

Publication Publication Date Title
EP0226141B1 (en) Fluorinated polymeric membranes for gas separation processes
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS61238319A (en) Selective gas permeable membrane
US5032279A (en) Separation of fluids using polyimidesiloxane membrane
JPS63240918A (en) Gas separating membrane
JPS63264101A (en) Permselective membrane
JPS63240919A (en) Gas separating membrane
JPS63240917A (en) Gas separation membrane
JPH01278507A (en) Oxygen permeable resin composition
JPH0155658B2 (en)
JPS61187904A (en) Permselective crosslinked film for separation of fluid
JPS5962303A (en) Oxygen separating and enriching membrane
JPS62116776A (en) Production of thin film
JPS59154105A (en) Gas permselective membrane
JPS63141626A (en) Permselective membrane for gas
Borisov et al. Synthesis and Formation of Gas Separation Membranes Based on Polyalkylenesiloxanes
JPH0356775B2 (en)
JPS5962310A (en) Production of selective separating membrane element for gas
JPS61146320A (en) Gas permeable membrane
JPS61234911A (en) Gas permselective membrane
JPS60227804A (en) Manufacture of separation membrane
JPS61174920A (en) Permselective membrane of gas
JPH03229624A (en) Permselective membrane
JPH0440223A (en) Gas separation composite membrane
JPH02131128A (en) Gas separating multilayer membrane