JPS632324B2 - - Google Patents

Info

Publication number
JPS632324B2
JPS632324B2 JP13772780A JP13772780A JPS632324B2 JP S632324 B2 JPS632324 B2 JP S632324B2 JP 13772780 A JP13772780 A JP 13772780A JP 13772780 A JP13772780 A JP 13772780A JP S632324 B2 JPS632324 B2 JP S632324B2
Authority
JP
Japan
Prior art keywords
light
reflected
mirror
flatness
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13772780A
Other languages
Japanese (ja)
Other versions
JPS5763408A (en
Inventor
Yukio Kenbo
Nobuyuki Akyama
Yasuo Nakagawa
Kazushi Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13772780A priority Critical patent/JPS5763408A/en
Publication of JPS5763408A publication Critical patent/JPS5763408A/en
Publication of JPS632324B2 publication Critical patent/JPS632324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、シリコンウエハ、GGGウエハ、プ
リント基板、セラミツク基板などの基板表面の平
坦度を測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the flatness of a substrate surface such as a silicon wafer, a GGG wafer, a printed circuit board, or a ceramic substrate.

半導体集積回路製造では、マスクパターンをウ
エハ上に投影する投影式アライニングが主流とな
つてきている。投影式アライナではウエハチヤツ
ク上のウエハの平坦度が微細パターン焼付歩留り
に影響して問題となつている。
In semiconductor integrated circuit manufacturing, projection alignment, in which a mask pattern is projected onto a wafer, has become mainstream. In the projection aligner, the flatness of the wafer on the wafer chuck affects the yield of fine pattern printing and is a problem.

シリコンウエハ上にパターンを形成するには、
シリコンウエハ上にホトレジストを塗布し、この
上にホトマスクパターンを露光してホトレジスト
を感光させる。この作業をホトリソグラフイと呼
び、マスクとウエハを密着して露光する密着式、
マスクとウエハを数μm〜数10μm離して露光す
る近接式、マスク上のパターンをウエハ上に投影
する投影式等の各種の方式がある。
To form a pattern on a silicon wafer,
A photoresist is applied onto a silicon wafer, and a photomask pattern is exposed onto the photoresist to expose the photoresist to light. This process is called photolithography, and is a contact method in which the mask and wafer are exposed in close contact.
There are various methods, such as a close-up method in which the mask and wafer are exposed with a distance of several μm to several tens of μm, and a projection method in which the pattern on the mask is projected onto the wafer.

この際ウエハ面の平坦度が悪いと、ウエハ全面
にわたつて均一に微細パターンを露光することが
困難となるため、ウエハ面は平坦でなければなら
ない。このことは、前述の如く投影式アライナで
特に強く要求される。
At this time, if the flatness of the wafer surface is poor, it becomes difficult to uniformly expose a fine pattern over the entire surface of the wafer, so the wafer surface must be flat. This is particularly strongly required for projection type aligners as described above.

ウエハ等の基板の平坦化装置について、本発明
者等は既に優れた装置を発明し、特願昭55−
33882号として特許出願している。該発明による
装置又は他の平坦化装置により基板を平坦化する
に際して、平坦度を検出する装置が不可欠である
ことは言をまたない。
The present inventors have already invented an excellent device for flattening substrates such as wafers, and filed a patent application in 1983-
A patent application has been filed as No. 33882. It goes without saying that a device for detecting flatness is indispensable when planarizing a substrate using the device according to the invention or other planarization devices.

従来より、これら基板の平坦度を非接触で検出
する装置として、光干渉式、レーザスキヤン式、
光マイクロ式、容量検出式、過電流式、エアマイ
クロ式等の各種の装置が用いられているが、光干
渉式以外は、いずれも被検面全体の平坦度を全体
に検出するものでなく、スキヤニングされた部分
の平坦度しか判らない。従つて、被検面全体の高
精度で詳細な平坦度や、全面の中のピーク値を知
るに適していない。光干渉式平坦度検出器は、被
検面全体の平坦度を非接触で一度に観察できるの
で、全面の詳細な凹凸、真のピーク値、全体的傾
向等を知るのに最適である。
Conventionally, optical interference type, laser scan type,
Various types of devices are used, such as the optical micro type, capacitive detection type, overcurrent type, and air micro type, but none of them, except for the optical interference type, detect the flatness of the entire surface to be inspected. , only the flatness of the scanned part can be determined. Therefore, it is not suitable for knowing the highly accurate and detailed flatness of the entire surface to be inspected or the peak value within the entire surface. The optical interference type flatness detector can observe the flatness of the entire surface to be measured at once without contact, so it is ideal for determining detailed unevenness, true peak values, overall trends, etc. of the entire surface.

先ず、従来の光干渉式平坦度検出器を第1図に
基づいて説明する。
First, a conventional optical interference type flatness detector will be explained based on FIG.

被検体のウエハ6はウエハチヤツク11に係止
されている。ウエハ6の被検面と僅少な間隔を保
ちプリズム5が配置されている。レーザ発振器1
からのレーザ光は、短焦点レンズ2、ピンホール
3、長焦点大口径レンズ4からなるビームエキス
パンダにより拡大平行光線とされ、プリズム5に
入射される。この入射レーザ光により、ウエハ6
表面の反射光と、プリズム5の基準平面7の反射
光が干渉し、干渉縞を生ずる。干渉縞はスリガラ
ス8に投影され、TVカメラ9により検出され、
TV画像10として観察される。
A wafer 6 to be inspected is secured to a wafer chuck 11. A prism 5 is placed with a small distance from the surface of the wafer 6 to be inspected. Laser oscillator 1
The laser beam is expanded into a parallel beam by a beam expander consisting of a short focus lens 2, a pinhole 3, and a long focus large aperture lens 4, and is incident on a prism 5. This incident laser beam causes the wafer 6 to
The light reflected from the surface and the light reflected from the reference plane 7 of the prism 5 interfere, producing interference fringes. The interference fringes are projected onto ground glass 8 and detected by TV camera 9.
It is observed as a TV image 10.

この干渉縞はウエハ6の平坦度の等高線となつ
ている。従つて、ウエハ6の平坦度は、TV画像
10を画像処理することにより、任意の位置の平
坦度を知ることができる。この画像処理には種々
の方法が既に発表されており、例えば、
「Development in Semiconductor
Microlithography、、SPIE vol.135、P.105〜
110(1978)」に発表されており、ここでは特に説
明しない。
These interference fringes serve as contour lines of the flatness of the wafer 6. Therefore, the flatness of the wafer 6 can be determined at any position by processing the TV image 10. Various methods have already been announced for this image processing, for example,
“Development in Semiconductor
Microlithography, SPIE vol.135, P.105~
110 (1978), and will not be specifically explained here.

本発明の平坦度測定器も光干渉式の原理を応用
するものであるので、光干渉式平坦度検出の原理
を第2図に基づいて説明する。A光線12とB光
線13はコヒーレント光であり、a1、b1までは同
位相である。A光線12の一部は基準面7により
a2点で反射する。B光線13の一部は基準面7の
b1点で透過し、ウエハ6上のb2点で反射し、a2
に入射する。このとき、A光線12とB光線13
とは1 21 2 2の光路長の差があるので、両光
はa2点で干渉を起す。干渉の条件は(1)式のように
簡単に求められる。
Since the flatness measuring device of the present invention also applies the principle of optical interference type flatness detection, the principle of optical interference type flatness detection will be explained based on FIG. The A ray 12 and the B ray 13 are coherent lights, and have the same phase up to a 1 and b 1 . A part of the A ray 12 is caused by the reference plane 7.
a It is reflected at two points. A part of the B ray 13 is on the reference plane 7.
It is transmitted through one point b, reflected at two points b on the wafer 6, and incident on two points a. At this time, A ray 12 and B ray 13
Since there is a difference in optical path length between 1 2 and 1 2 2 , the two lights cause interference at two points a. The interference condition can be easily determined as shown in equation (1).

d=Mλ/2・1/sinθ′ (1) 但し、 d:干渉縞のピツチ M:正の整数 λ:単色光の波長 θ′:反射角 第(1)式より基準平面7からMdのところに存在
する被検面は暗く観察される。このようにして暗
い線による等高線がウエハ6上に光の進行方向か
ら観察される。又ウエハ6面での反射角θ′14に
より等高線ピツチが変る。反射角θ′14はプリズ
ム5の材質と基準平面への入射角15で決まる。
第1図のプリズム5の2辺16は光の損失を避け
て、入射光に直角にする。
d=Mλ/2・1/sinθ' (1) However, d: Pitch of interference fringes M: Positive integer λ: Wavelength of monochromatic light θ': Reflection angle From equation (1), from the reference plane 7 to Md The surface to be inspected that exists in the area is observed darkly. In this way, contour lines formed by dark lines are observed on the wafer 6 from the direction in which the light travels. Also, the contour line pitch changes depending on the reflection angle θ'14 on the wafer 6 surface. The reflection angle θ'14 is determined by the material of the prism 5 and the angle of incidence 15 on the reference plane.
The two sides 16 of the prism 5 in FIG. 1 are at right angles to the incident light to avoid loss of light.

光干渉式は以上のように他方式にない利点があ
るが、被検面が大きくなると、基準平面、水口径
レンズ、スリガラス8等がすべて大きくなる。ビ
ームエキスパンダの長さも、精度の良いコヒーレ
ント平行光を得るには、光路長が長くなる。又、
TV入力も像の歪を生じないためには、光路長が
長くならざるを得ない。このため、アライナ等の
装置に組込むことは困難であり、詳細に平坦度が
検出できなくても、他の小型化可能なスキヤニン
グ方式の平坦度検出器を組み込まざるを得ない。
As described above, the optical interference method has advantages that other methods do not have, but as the surface to be inspected becomes larger, the reference plane, water aperture lens, ground glass 8, etc. all become larger. The length of the beam expander also requires a long optical path length in order to obtain highly accurate coherent parallel light. or,
In order to avoid image distortion from TV input, the optical path length must be long. For this reason, it is difficult to incorporate it into a device such as an aligner, and even if flatness cannot be detected in detail, it is necessary to incorporate another scanning type flatness detector that can be made smaller.

本発明の目的は、上記した光干渉式の平坦度検
出器の欠点をなくし、アライナ等の装置に組込み
可能な小型の光干渉式平坦度検出器を提供するに
ある。
An object of the present invention is to eliminate the drawbacks of the above-described optical interference type flatness detector and to provide a small optical interference type flatness detector that can be incorporated into a device such as an aligner.

本発明による光干渉式平坦度検出器は、 (a) 被検面と僅小な間隙を保ち固定配置された平
板透明体、 (b) 該平板透明体の上側より、被検面の縦横を、
限られた横幅で縦幅全長に亘り単色光を照射す
る手段、 (c) 前記の照射域を被検面の横幅全長に移動せし
める走査手段、 (d) 前記照射光の反射及び干渉光を受光する検出
手段、 (e) 前記検出手段よりの検出信号を入力し、該信
号に基く画像を表示する手段、及び (f) 前記画像表示手段の画像表示位置を前記走査
手段と同期して移動せしめ、前記画像表示手段
の画像表示を被検面全体に対応するものとする
同期手段、 とを有することを特徴とする平坦度検出器であ
る。
The optical interference type flatness detector according to the present invention includes: (a) a flat transparent body fixedly arranged with a small gap from the surface to be measured; ,
means for irradiating monochromatic light over the entire vertical width with a limited width; (c) scanning means for moving the irradiation area to the entire horizontal length of the surface to be inspected; (d) receiving reflected and interference light of the irradiated light. (e) means for inputting a detection signal from the detection means and displaying an image based on the signal; and (f) moving the image display position of the image display means in synchronization with the scanning means. , synchronization means for making the image display of the image display means correspond to the entire surface to be inspected.

本発明の平坦度検出器の好ましい一態様におい
ては、前記照明手段、又は該照明手段が単色光発
生手段と反射ミラよりなるときは反射ミラのみ、
及び検出手段が同一テーブルに載置され、前記走
査手段により移動される。
In a preferred embodiment of the flatness detector of the present invention, the illumination means, or when the illumination means includes a monochromatic light generation means and a reflection mirror, only the reflection mirror;
and a detection means are placed on the same table and moved by the scanning means.

本発明の平坦度検出器の他の好ましい一態様に
おいては、前記検出手段が固定され、照射光の走
査に応じて光進路が移動する前記反射及び干渉光
を前記検出手段に入射せしめる光屈折手段が平板
透明体と検出手段の間に設けられてある。この態
様において、光屈折手段が反射及び干渉光の光進
路の移動と共に移動するようにされる場合もあ
る。
In another preferred aspect of the flatness detector of the present invention, the detection means is fixed, and light refraction means causes the reflected and interference light whose light path moves in accordance with the scanning of the irradiation light to enter the detection means. is provided between the flat transparent body and the detection means. In this embodiment, the light refraction means may be made to move with the movement of the light path of the reflected and interference light.

本発明の平坦度検出器の更に他の好ましい一態
様においては、前記照射手段が固定された単色光
発生手段と、回転円盤に取付けられた前記平板透
明体と平行平面断面において互に平行且つ対向す
る内側ミラと外側ミラよりなり、単色光発生手段
よりの単色光が内側ミラ、外側ミラの順に反射
し、被検面の限られた横幅で縦幅全長に亘り照射
するようにされ、前記走査手段が回転円盤の回転
手段であり、反射及び干渉光が別に設けた反射ミ
ラ並びに前記外側ミラ及び内側ミラの順に反射
し、前記検出手段に入射せしめるようにしてあ
る。
In yet another preferred embodiment of the flatness detector of the present invention, the monochromatic light generating means to which the irradiation means is fixed and the flat transparent body attached to the rotating disk are parallel to and opposite each other in a parallel plane cross section. The monochromatic light from the monochromatic light generating means is reflected from the inner mirror and the outer mirror in this order, and is irradiated over the entire vertical width of the surface to be inspected with a limited width. The means is a rotating means of a rotating disk, and the reflected and interference light is reflected in the order of a separately provided reflecting mirror, the outer mirror and the inner mirror, and is made to enter the detecting means.

要するに本発明の装置は入射光の幅を小さく
し、かつ被検面全体を走査することにより、単色
平行光発生装置、反射及び干渉光入力光学系を小
さくし、又、三角プリズムにかわり高さの低い平
ガラスを用いて、全体として必要最小限まで検出
装置を小形とし、アライナ等の装置に組込み可能
とした装置である。
In short, the device of the present invention reduces the width of the incident light and scans the entire surface to be inspected, thereby reducing the size of the monochromatic parallel light generator and the reflected and interference light input optical system. This device uses flat glass with a low temperature to reduce the overall size of the detection device to the necessary minimum size, making it possible to incorporate it into devices such as aligners.

以下、本発明の装置を実施例の図面に基づいて
説明する。先ず第1実施例を示す第3図a及びb
に基いて説明する。a図がb図におけるA−A矢
視横断平面図、b図がa図におけるB−B矢視縦
断正面図である。単色光を得る手段としては様々
あり、何を使用してもよい。以下では最も一般で
かつ強力な単色光を得やすいレーザ発振器を用い
た例で説明する。レーザはHe−Ne等があるが単
色光が得られれば何でもよい。
Hereinafter, the apparatus of the present invention will be explained based on drawings of embodiments. First, Fig. 3 a and b showing the first embodiment
I will explain based on. Figure a is a cross-sectional plan view taken along line A-A in figure b, and figure b is a longitudinal front view taken along line B-B in figure a. There are various means for obtaining monochromatic light, and any method may be used. In the following, an example using a laser oscillator, which is the most common type and can easily obtain powerful monochromatic light, will be explained. Lasers include He-Ne, but any laser can be used as long as it produces monochromatic light.

ウエハチヤツク11上のウエハ6と僅小な間隙
を保ち平板透明体の平ガラス21が固定配置され
てある。平ガラス21の上側にはウエハ6の縦方
向に伸び、横方向に移動可能なテーブル24が設
けられ、両端に反射ミラ20及び検出手段のリニ
アセンサ22が取付けてある。レーザ発振器1か
らのレーザ光はレンズにより平行光とされ、反射
ミラ20により平ガラス21に入射される。入射
光は平ガラス21の基準平面7とウエハ6面の間
で干渉を起し、干渉縞はリニアセンサ22で検出
され、リニアセンサ22の検出信号は画像表示装
置に入力され、ブラウン管の枠23内に1ライン
の干渉縞が表示される。テーブル24はモータ2
5によりウエハ6上をその横幅方向に移動され、
モータ25の回転角に同期した信号26により枠
23が移動され、ブラウン管における画像表示が
ウエハ6全面に対応するものとして得られる。勿
論ブラウン管面の画像は再走査される迄残像せし
める処置がとられ、常にウエハ6全面に対応する
画像を観察し得るようにしてある。スキヤニング
は実施例の如くテーブル24及びモータ25でな
くとも反射ミラ20とリニアセンサ22を同時に
動かすものであればどのようなものでもよい。ま
た、駆動はモータ以外に、エアシリンダ、磁力
式、リンク式等でもよい。又、検出もリニアセン
サでなくとも1ラインの検出ができればよい。
A transparent flat glass 21 is fixedly arranged with a small gap from the wafer 6 on the wafer chuck 11. A table 24 extending in the vertical direction of the wafer 6 and movable in the horizontal direction is provided above the flat glass 21, and a reflecting mirror 20 and a linear sensor 22 as a detection means are attached to both ends. A laser beam from the laser oscillator 1 is made into parallel light by a lens, and is incident on a flat glass 21 by a reflection mirror 20. The incident light causes interference between the reference plane 7 of the flat glass 21 and the wafer 6 surface, interference fringes are detected by the linear sensor 22, the detection signal of the linear sensor 22 is input to the image display device, and the frame 23 of the cathode ray tube is detected. One line of interference fringes is displayed within. The table 24 is the motor 2
5 in the width direction of the wafer 6,
The frame 23 is moved by a signal 26 synchronized with the rotation angle of the motor 25, and an image displayed on the cathode ray tube corresponding to the entire surface of the wafer 6 is obtained. Of course, measures are taken to prevent the image on the cathode ray tube from remaining until it is rescanned, so that an image corresponding to the entire surface of the wafer 6 can always be observed. Scanning does not need to be performed using the table 24 and motor 25 as in the embodiment, but any method that simultaneously moves the reflecting mirror 20 and linear sensor 22 may be used. In addition to the motor, it may be driven by an air cylinder, a magnetic force type, a link type, or the like. Furthermore, the detection does not need to be a linear sensor as long as it can detect one line.

次に、本発明の装置と従来の装置との大きな差
異点を第4図a及びbに基づいて説明する。
Next, the major differences between the apparatus of the present invention and the conventional apparatus will be explained based on FIGS. 4a and 4b.

従来の装置を示すa図では、被検物の大きさ
L、等高線のピツチから(1)式によつて決まる入射
角θによりビームエキスパンダの大口径レンズの
径D1は(2)式で求まる。
In Figure a showing the conventional device, the diameter D 1 of the large diameter lens of the beam expander is determined by the formula (2) using the incident angle θ determined from the size L of the specimen and the pitch of the contour lines by formula (1). Seek.

D1=Lsinθ (2) プリズム高さH1は(3)式で求まる。 D 1 =Lsinθ (2) The prism height H 1 is determined by equation (3).

H1=Ltanθ (3) エキスパンダの長さf1は平坦度検出精度による
が、±0.5μm以上の精度ならD1の数倍は必要であ
る。
H 1 = Ltan θ (3) The length f 1 of the expander depends on the flatness detection accuracy, but if the accuracy is ±0.5 μm or more, several times D 1 is required.

一方b図の本発明の装置ではプリズム5ではな
く、平ガラス21であり、レンズ径D2、高さH2
はそれぞれ(4)式、(5)式により決る。
On the other hand, in the device of the present invention shown in Fig. b, the prism 5 is not used but a flat glass 21, and the lens diameter is D 2 and the height H 2
are determined by equations (4) and (5), respectively.

D2=Lsinθ′ (4) H2=Lsinθ′ (5) f2とD2の関係は、レンズ径D2が小さいと高精
度なレンズが作り易いので、(6)式のようになる。
D 2 = Lsin θ′ (4) H 2 = Lsin θ′ (5) The relationship between f 2 and D 2 is as shown in equation (6) since it is easier to manufacture a highly accurate lens when the lens diameter D 2 is small.

f2/D2<f1/D2 (6) レンズ径、高さの従来品と本発明品の比Mを求
めると、(2)、(4)式及び(3)、(5)式より次の如くな
る。
f 2 /D 2 <f 1 /D 2 (6) When calculating the ratio M of the lens diameter and height between the conventional product and the product of the present invention, formulas (2), (4), and (3), (5) are obtained. It becomes more like this:

M=sinθ/sinθ′ (7) θ′がθより小さいことは屈折の法則より明らか
である。すなわち、 n/n′=sinθ′/sinθ で、n′はガラスの屈折率約1.6、nは大気の屈折
率1、であるので代入して変形すれば、sinθ′=
sinθ/1.6となる。0゜<θ、θ<90゜とすればθ′<
θ
である。
M=sinθ/sinθ' (7) It is clear from the law of refraction that θ' is smaller than θ. In other words, n/n'=sinθ'/sinθ where n' is the refractive index of glass, approximately 1.6, and n is the refractive index of the atmosphere, 1, so by substituting and transforming it, we get sinθ'=
It becomes sinθ/1.6. If 0゜<θ, θ<90゜ then θ′<
θ
It is.

今、ピツチ3μm、L100mmとして(7)式を計算す
るとθ=49゜、θ′=6.054゜であるのでM=7とな
る。又、(6)式より光学系としては1/7以下の大き
さにできることが判る。
Now, when formula (7) is calculated with a pitch of 3 μm and a length of 100 mm, θ=49° and θ′=6.054°, so M=7. Furthermore, from equation (6), it can be seen that the optical system can be reduced in size to 1/7 or less.

本発明の場合、平ガラス21の面精度はプリズ
ム5の面精度よりも厳しくなるが、平ガラス21
の方が安価に高精度の面が得られるので問題とな
らない。
In the case of the present invention, the surface accuracy of the flat glass 21 is stricter than that of the prism 5, but the flat glass 21
Since a high-precision surface can be obtained at a lower cost, this is not a problem.

次に、第2の実施例を第5図及び第6図に基づ
いて説明する。この実施例においては、照射手段
の反射ミラ20のみが走査手段により移動せしめ
られ、照明手段による限られた横幅で縦幅全長に
亘る照射域が被検面全長に移動される。平ガラス
21の基準平面及びウエハよりの反射及び干渉光
は、該光路に傾斜せしめて配置された光屈折手段
の回折格子32で屈折され、検出手段の平面像入
力素子30の拡像面31に入力される。回折格子
32のピツチPは、屈折したい光の角度から容易
に計算される。又、第5図では透過型の回折格子
32を示してあるが、反射型でもよい。大きな回
折格子32は高価であるので、第6図に示すよう
に、第5図の回折格子32の位置に沿つて、小さ
な回折格子33を反射ミラ20と共に移動するよ
うにしてもよい。この場合、平面像入力素子30
は蓄積型を用いてよい。
Next, a second embodiment will be described based on FIGS. 5 and 6. In this embodiment, only the reflection mirror 20 of the irradiation means is moved by the scanning means, and the irradiation area of the illumination means, which spans the entire vertical width with a limited width, is moved to the entire length of the surface to be inspected. The reflected and interference light from the reference plane of the flat glass 21 and the wafer is refracted by the diffraction grating 32 of the light refracting means arranged obliquely to the optical path, and is reflected onto the magnifying surface 31 of the flat image input element 30 of the detecting means. is input. The pitch P of the diffraction grating 32 is easily calculated from the angle of the light to be refracted. Further, although FIG. 5 shows a transmission type diffraction grating 32, a reflection type diffraction grating may also be used. Since a large diffraction grating 32 is expensive, a small diffraction grating 33 may be moved along with the reflection mirror 20 along the position of the diffraction grating 32 in FIG. 5, as shown in FIG. In this case, the plane image input element 30
may use storage type.

次に、第3の実施例を第7図及び第8図に基づ
いて説明する。一般に往復走査型は振動を発生
し、走査速度が遅い。これに対し本実施例は振動
が少なく高速度走査可能な回転走査型の装置であ
る。
Next, a third embodiment will be described based on FIGS. 7 and 8. Generally, the reciprocating scanning type generates vibration and has a slow scanning speed. On the other hand, this embodiment is a rotary scanning type device with little vibration and capable of high-speed scanning.

この実施例においては、照射手段が固定された
レーザ発振器1等の単色光発生手段と、回転円盤
40に取付けられ互に平行且つ対向する内側ミラ
MCと外側ミラMの複数の対よりなる。図示の実
施例ではMC1−M1,MC−M2,MC3−M
3,MC4−M4の4組の内外ミラの対を示して
ある。レーザ発振器1、内側ミラMC、外側ミラ
M、平ガラス21の配置関係は、レーザ発振器1
よりのレーザ光が内側ミラMC、外側ミラMの順
に反射し、ウエハ6面の限られた横幅で縦幅全長
に亘り照射するようにされてある。内側ミラMC
と外側ミラMは第7図のように見て平行であるの
で、内側ミラMCへの入射光と平ガラス21への
走査レーザ光41とは第7図において平行にな
る。
In this embodiment, monochromatic light generating means such as a laser oscillator 1 to which an irradiation means is fixed, and inner mirrors attached to a rotating disk 40 and facing each other in parallel with each other.
It consists of multiple pairs of MC and outer mira M. In the illustrated embodiment, MC1-M1, MC-M2, MC3-M
3. Four pairs of inner and outer mirrors, MC4-M4, are shown. The arrangement relationship of the laser oscillator 1, inner mirror MC, outer mirror M, and flat glass 21 is as follows:
The laser beam is reflected from the inner mirror MC and the outer mirror M in this order, and irradiates the entire vertical width of the wafer 6 with a limited width. Inside Mira MC
Since the outer mirror MC and the outer mirror M are parallel as seen in FIG. 7, the incident light on the inner mirror MC and the scanning laser beam 41 on the flat glass 21 are parallel in FIG.

先ず第7図に外側ミラM1が実線に示す位置に
あるとすると、走査レーザ光41は平ガラス21
の1位置42を照射する。回転円盤40が矢印方
向にモータ25により回転するにつれ、外側ミラ
M1が点鎖線で示すM1′の位置に来ると、走査
レーザ光42は2位置43を走査し、つづいて外
側ミラM2が2点鎖線で示すM2″の位置となり、
3位置44が走査され、外側ミラM2がM2の
位置となり、4位置45が走査される。このよう
にして、回転円盤40の1回転で内外ミラの組数
だけ、この実施例では4回走査される。
First, assuming that the outer mirror M1 is in the position shown by the solid line in FIG.
1 position 42 is irradiated. As the rotary disk 40 is rotated by the motor 25 in the direction of the arrow, when the outer mirror M1 comes to the position M1' shown by the dotted chain line, the scanning laser beam 42 scans two positions 43, and then the outer mirror M2 scans two points. This is the M2″ position shown by the chain line,
3 positions 44 are scanned, outer mirror M2 becomes position M2, and 4 positions 45 are scanned. In this way, one rotation of the rotary disk 40 scans the mirrors four times in this embodiment, corresponding to the number of pairs of inner and outer mirrors.

平ガラス21への照射光は基準面7とウエハ6
面の間隔により干渉縞光を発生する。干渉縞光4
8は反射ミラ46により反射して、直接外側ミラ
M1又はM2,M3,M4に入り、これに反射さ
れ、更に内側ミラMC1又はMC2,MC3,MC
4に反射されてリニアセンサ22に入力される。
レーザ光の走査、即ち回転円盤40の回転に同期
せしめる同期信号47により、リニアセンサ22
からの信号に基づく画像位置を移動せしめること
により、ウエハ6全面の干渉縞像が得られる。こ
の態様の方法によるときは、走査が回転型である
こと、入出力系が固定されていること、同一光路
をレーザ光入射と干渉縞検出に用いるので走査ず
れが生ぜず、走査精度を向上すること、から非常
に安定して精度高く検出することが可能である。
The light irradiated onto the flat glass 21 is from the reference surface 7 and the wafer 6.
Interference fringe light is generated depending on the distance between the surfaces. Interference fringe light 4
8 is reflected by the reflection mirror 46, directly enters the outer mirror M1 or M2, M3, M4, is reflected by this, and is further reflected by the inner mirror MC1 or MC2, MC3, MC.
4 and is input to the linear sensor 22.
The linear sensor 22 is synchronized with the scanning of the laser beam, that is, the synchronization signal 47 synchronized with the rotation of the rotating disk 40.
By moving the image position based on the signal from the wafer 6, an interference fringe image of the entire surface of the wafer 6 can be obtained. When using this method, scanning is of a rotating type, the input/output system is fixed, and the same optical path is used for laser beam incidence and interference fringe detection, so scanning deviation does not occur and scanning accuracy is improved. Therefore, it is possible to detect it very stably and with high accuracy.

第3図a,b及び第5図、第6図の実施例にお
いて、単色光発生手段として半導体レーザのよう
に充分小さなものを使用すれば、反射ミラ20を
用いることなく、直接テーブル等の走査手段に単
色光発生装置を載置できる。
In the embodiments shown in FIGS. 3a and 3b and 5 and 6, if a sufficiently small device such as a semiconductor laser is used as the monochromatic light generating means, the table etc. can be directly scanned without using the reflecting mirror 20. A monochromatic light generating device can be mounted on the means.

本発明の装置は光干渉式であるが、スキヤニン
グ方式が基本である。スキヤニング方式は他の平
坦度検出器で用いられているが、他の検出器では
検出器自体をスキヤンするもので、その振動が直
接精度に影響を与えるので精度が低い。これに対
して本発明では基準となる平板透明体を固定して
いるので、振動の影響が少ない。又、他のスキヤ
ニング方式は全面の平坦度は検出できないが、本
発明では全面の平坦度が検出される。特に、本発
明の装置において回転スキヤン方式を用いるとき
は、本質的にリニアセンサ又は回転に同期する平
面入力素子の入力スピードで検出可能であり、十
分高速で検出することができる。
Although the apparatus of the present invention is an optical interference type, it is basically a scanning type. The scanning method is used in other flatness detectors, but other flatness detectors scan the detector itself, and its vibrations directly affect accuracy, resulting in low accuracy. On the other hand, in the present invention, since the flat transparent body serving as the reference is fixed, the influence of vibration is small. Further, while other scanning methods cannot detect the flatness of the entire surface, the present invention detects the flatness of the entire surface. In particular, when a rotation scan method is used in the apparatus of the present invention, detection can be performed essentially at the input speed of a linear sensor or a planar input element synchronized with rotation, and detection can be performed at a sufficiently high speed.

本発明により、従来問題となつてきた光干渉式
平坦度検出器の大きさを、100mmφのウエハの平
坦度検出器において光学系を7分の1とし、アラ
イナ等の装置への組込み可能の大きさとすること
ができた。
With the present invention, the size of the optical interference type flatness detector, which has been a problem in the past, has been reduced to one-seventh of the optical system in a flatness detector for a 100 mmφ wafer, making it possible to incorporate it into devices such as aligners. I was able to do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光干渉式平坦度検出器の概略
図、第2図は光干渉式平坦度検出器の原理図、第
3図は本発明の検出器の一実施例を示すもので、
そのa図はb図におけるA−A矢視横断平面図、
b図はa図におけるB−B矢視縦断正面図、第4
図a,bは本発明と従来の装置の差異説明図、第
5図は本発明の検出器の他の実施例の概略平面
図、第6図は第5図の検出器における光屈折手段
の他の実施例の説明図、第7図及び第8図は更に
他の実施例の概略平面図及び正面図である。 1……レーザ発振器、4……長焦点大口径レン
ズ、5……プリズム、6……ウエハ、7……基準
平面、8……スリガラス、11……ウエハチヤツ
ク、20……反射ミラ、21……平ガラス、22
……リニアセンサ、23……1ラインを示す枠、
24……テーブル、25……モータ、26,48
……同期信号、30……検出素子、32,33…
…回折格子、40……回転円盤、46……反射ミ
ラ、47……同期信号。
Fig. 1 is a schematic diagram of a conventional optical interference type flatness detector, Fig. 2 is a principle diagram of an optical interference type flatness detector, and Fig. 3 shows an embodiment of the detector of the present invention.
Figure a is a cross-sectional plan view taken along arrow A-A in figure b.
Figure b is a longitudinal sectional front view taken along arrow B-B in figure a.
Figures a and b are diagrams explaining the differences between the present invention and a conventional device, Figure 5 is a schematic plan view of another embodiment of the detector of the present invention, and Figure 6 is a diagram of the light refraction means in the detector of Figure 5. Explanatory drawings of other embodiments, FIGS. 7 and 8 are schematic plan views and front views of still other embodiments. DESCRIPTION OF SYMBOLS 1... Laser oscillator, 4... Long focus large diameter lens, 5... Prism, 6... Wafer, 7... Reference plane, 8... Ground glass, 11... Wafer chuck, 20... Reflection mirror, 21... flat glass, 22
... Linear sensor, 23 ... Frame indicating one line,
24...Table, 25...Motor, 26,48
...Synchronization signal, 30...Detection element, 32, 33...
... Diffraction grating, 40 ... Rotating disk, 46 ... Reflection mirror, 47 ... Synchronization signal.

Claims (1)

【特許請求の範囲】 1 面の平坦度を検出する装置において、 (a) 被検面と僅小な間隙を保ち固定配置される平
板透明体、 (b) 該平板透明体の上側より、被検面の縦横を、
限られた横幅で縦幅全長に亘り単色光を照射す
る手段、 (c) 前記の照射域を被検面の横幅全長に移動せし
める走査手段、 (d) 前記照射光の反射及び干渉光を受光する検出
手段、 (e) 前記検出手段よりの検出信号を入力し、該信
号に基く画像を表示する手段、及び (f) 前記画像表示手段の画像表示位置を前記走査
手段と同期して移動せしめ、前記画像表示手段
の画像表示を被検面全面に対応するものとする
同期手段、 とを有することを特徴とする平坦度検出器。 2 前記照明手段、又は該照明手段が単色光発生
手段と反射ミラよりなるときは反射ミラのみ、及
び検出手段が同一テーブルに載置され、前記走査
手段により移動されることを特徴とする特許請求
の範囲第1項の平坦度検出器。 3 前記検出手段が固定され、照射光の走査に応
じて光進路が移動する前記反射及び干渉光を前記
検出手段に入射せしめる光屈折手段が平板透明体
と検出手段の間に設けられてあることを特徴とす
る特許請求の範囲第1項の平坦度検出器。 4 前記光屈折手段が反射及び干渉光の光進路の
移動と共に移動することを特徴とする特許請求の
範囲第3項の平坦度検出器。 5 前記照射手段が固定された単色光発生手段
と、回転円盤に取付けられ前記平板透明体と平行
平面断面において互に平行且つ対向する内側ミラ
と外側ミラよりなり、単色光発生手段よりの単色
光が内側ミラ、外側ミラの順に反射し、被検面の
限られた横幅で縦幅全長に亘り照射するようにさ
れ、前記走査手段が回転円盤の回転手段であり、
反射及び干渉光が別に設けた反射ミラ並びに前記
外側ミラ及び内側ミラの順に反射し、前記検出手
段に入射せしめられるようにしてあることを特徴
とする特許請求の範囲第1項の平坦度検出器。
[Scope of Claim] An apparatus for detecting the flatness of a surface, which includes: (a) a flat transparent body fixedly arranged with a small gap between the flat transparent body and the flat transparent body; The length and breadth of the inspection surface,
means for irradiating monochromatic light over the entire vertical width with a limited width; (c) scanning means for moving the irradiation area to the entire horizontal length of the surface to be inspected; (d) receiving reflected and interference light of the irradiated light. (e) means for inputting a detection signal from the detection means and displaying an image based on the signal; and (f) moving the image display position of the image display means in synchronization with the scanning means. A flatness detector comprising: synchronization means for making the image display of the image display means correspond to the entire surface to be inspected. 2. A patent claim characterized in that the illumination means, or when the illumination means consists of a monochromatic light generation means and a reflection mirror, only the reflection mirror and the detection means are placed on the same table and moved by the scanning means. The flatness detector in the first term of the range. 3. The detection means is fixed, and a light refraction means is provided between the flat plate transparent body and the detection means to make the reflected and interference light, whose light path moves according to the scanning of the irradiation light, enter the detection means. A flatness detector according to claim 1, characterized in that: 4. The flatness detector according to claim 3, wherein the light refraction means moves along with the movement of the optical path of the reflected and interference light. 5 Monochromatic light generating means to which the irradiation means is fixed, and an inner mirror and an outer mirror attached to a rotating disk and parallel and opposite to each other in a plane cross section parallel to the flat transparent body, and monochromatic light from the monochromatic light generating means. is reflected in the order of the inner mirror and the outer mirror, and is irradiated over the entire length of the test surface with a limited width, and the scanning means is a rotating means of a rotating disk,
The flatness detector according to claim 1, wherein the reflected and interference light is reflected in the order of a separately provided reflection mirror, the outer mirror and the inner mirror, and is made incident on the detection means. .
JP13772780A 1980-10-03 1980-10-03 Flatness detector Granted JPS5763408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13772780A JPS5763408A (en) 1980-10-03 1980-10-03 Flatness detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13772780A JPS5763408A (en) 1980-10-03 1980-10-03 Flatness detector

Publications (2)

Publication Number Publication Date
JPS5763408A JPS5763408A (en) 1982-04-16
JPS632324B2 true JPS632324B2 (en) 1988-01-18

Family

ID=15205409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13772780A Granted JPS5763408A (en) 1980-10-03 1980-10-03 Flatness detector

Country Status (1)

Country Link
JP (1) JPS5763408A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681451A (en) * 1986-02-28 1987-07-21 Polaroid Corporation Optical proximity imaging method and apparatus
CN104567748B (en) * 2013-10-14 2018-06-01 上海金艺检测技术有限公司 The measuring method of small gaps straightness and flatness
CN106605121A (en) * 2016-11-19 2017-04-26 弗埃斯工业技术(苏州)有限公司 Flatness measurement device used on upper cover of notebook computer host
CN107462185B (en) * 2017-08-23 2019-10-01 长春长光精密仪器集团有限公司 Realize the device of super large caliber plane mirror surface testing
CN109108096B (en) * 2018-08-20 2020-03-10 山西太钢不锈钢股份有限公司 Laser strip shape monitoring method and system for hot rolling leveling unit

Also Published As

Publication number Publication date
JPS5763408A (en) 1982-04-16

Similar Documents

Publication Publication Date Title
US7095508B2 (en) Catoptric and catadioptric imaging systems with pellicle and aperture-array beam-splitters and non-adaptive and adaptive catoptric surfaces
US6252667B1 (en) Interferometer having a dynamic beam steering assembly
US6878916B2 (en) Method for focus detection for optically detecting deviation of the image plane of a projection lens from the upper surface of a substrate, and an imaging system with a focus-detection system
JP3249154B2 (en) Lateral position measuring apparatus and method in proximity lithographic system
US6882430B2 (en) Spatial filtering in interferometry
KR20090113895A (en) Apparatus for Measuring Defects in a Glass Sheet
KR20100134609A (en) Apparatus and method for measuring surface topography of an object
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
US7310152B2 (en) Interferometer assemblies having reduced cyclic errors and system using the interferometer assemblies
JP2008083059A (en) Measuring system and measuring device for wafer
JP4469604B2 (en) Optical interferometry
CN1700101B (en) Focusing and leveling sensor for projection photo-etching machine
US4932781A (en) Gap measuring apparatus using interference fringes of reflected light
US4626103A (en) Focus tracking system
JPH043806B2 (en)
US20060066873A1 (en) Catoptric imaging systems comprising pellicle and/or aperture-array beam-splitters and non-adaptive and/or adaptive catoptric surfaces
JPS632324B2 (en)
US11927891B2 (en) Apparatus and methods for determining the position of a target structure on a substrate
US4429992A (en) Method and device for testing optical imaging systems
JPS5979104A (en) Optical device
JPH09153452A (en) Projection exposure device
JPH09171954A (en) Position measuring equipment
JPS6151241B2 (en)
JP3127718B2 (en) Positioning method and X-ray exposure mask
KR101844018B1 (en) Device to detect shape change values of wafer using a small size reference mirror