JPS63231272A - Power-factor meter - Google Patents

Power-factor meter

Info

Publication number
JPS63231272A
JPS63231272A JP6514387A JP6514387A JPS63231272A JP S63231272 A JPS63231272 A JP S63231272A JP 6514387 A JP6514387 A JP 6514387A JP 6514387 A JP6514387 A JP 6514387A JP S63231272 A JPS63231272 A JP S63231272A
Authority
JP
Japan
Prior art keywords
phase difference
detector
phase
value
power factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6514387A
Other languages
Japanese (ja)
Inventor
Tsutomu Shibata
柴田 勤
Takahiro Shimizu
隆弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki Denki KK
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki Denki KK, Hioki EE Corp filed Critical Hioki Denki KK
Priority to JP6514387A priority Critical patent/JPS63231272A/en
Publication of JPS63231272A publication Critical patent/JPS63231272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To obtain such a digital power-factor meter that its output has linear characteristics and its measured value is easy to read by measuring the digital converted value of a phase difference signal and finding a power-factor. CONSTITUTION:The voltage component and current component of a cable run 1 to be measured are detected by a voltage detector 22 and a current detector 27 and applied to a phase difference detector 25 and a polarity detector 26 through an attenuator 23, a current/voltage converter 28, and waveform shaping devices 24 and 29. Then a DC phase signal Vphi from the phase difference detector 25 is digitized by an A/D converter 30 and applied to a cosphi computing element 32, whose output is displayed numerically as a power-factor on a display device 36. The calculated value of a 1-cosphi calculator 32, on the other hand, is inputted to a D/A converter 33; when the phase difference phi is a delay phase, the analog value of 1-cosphi is sent out as it is through an output switch 34 and when the phase difference indicates a leading phase, the analog value whose polarity is inverted by an inverting amplifier 35 is sent out of the output switch 34 and applied to a recorder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、3相交流電路等の力率を測定する特にディ
ジタル形の力率計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a digital power factor meter, in particular, for measuring the power factor of three-phase AC power lines, etc.

〔従来の技術〕[Conventional technology]

従来は一般にアナログ形の力率計が使用されており、そ
の典形的な例が第5図に示されている。
Conventionally, an analog power factor meter has generally been used, a typical example of which is shown in FIG.

すなわち、被測定電路1の電圧成分は例えば電圧検出器
2にて検出され、減衰器3により適宜のレベルに調整さ
れのち波形整形器4において方形波電圧に整形され1位
相差検出器5と極性検出器6に加えられる。また、上記
被測定電路1の電流成分は例えば電流検出器7にて検出
され、電流/電圧変換器8を介して適宜の電圧レベルに
変換されたのち波形整形器9において上記同様に方形波
電圧に整形され、上記位相差検出器5と極性検出器6に
加えられるようになっている。
That is, the voltage component of the electrical circuit under test 1 is detected by, for example, a voltage detector 2, adjusted to an appropriate level by an attenuator 3, and then shaped into a square wave voltage by a waveform shaper 4. is added to the detector 6. Further, the current component of the electrical circuit under test 1 is detected, for example, by a current detector 7, converted to an appropriate voltage level via a current/voltage converter 8, and then converted into a square wave voltage by a waveform shaper 9 in the same manner as above. and is added to the phase difference detector 5 and polarity detector 6.

位相差検出器5においては、上記加えられた電圧成分を
表す一方の方形波電圧と、電流成分を表す他方の放形波
電圧との例えば立ち上がり時点の位相差φを検出し、こ
の位相差φに比例した大きさの位相差信号■φを送出す
る。また、極性検出:i) 6においては、例えば上記
電圧成分を表す一方の方形波電圧の立ち上がり時点に対
して、電流成分を表す他方の方形波電圧の立ち上がり時
点が進んでいるか遅れているかを検出し、それに対応し
て−、又は十の位相極性信号を加減算器11へ送出する
ようになっている。
The phase difference detector 5 detects the phase difference φ at the time of rising, for example, between one square wave voltage representing the applied voltage component and the other wave voltage representing the current component, and detects this phase difference φ. A phase difference signal ■φ whose magnitude is proportional to is sent out. In addition, in polarity detection: i) 6, for example, it is detected whether the rise time of the other square wave voltage representing the current component is ahead or behind the rise time of one square wave voltage representing the voltage component. Correspondingly, a − or 10 phase polarity signal is sent to the adder/subtractor 11.

上記位相差検出器5から送出される位相差信号Vφは例
えばフィルタ10を介して直流化され、上記加減算器1
1に加えられる。この加減算器11には例えば所定の基
準電圧■。が設定されており、上記位相差信号Vφが進
み位相ならばV。−Vφの減算が行われ、遅れ位相なら
ばV。+Vφなる加算が施されて、その出力にてメータ
12を振らすようにされている。
The phase difference signal Vφ sent from the phase difference detector 5 is converted into a direct current through a filter 10, for example, and the adder/subtractor 1
Added to 1. This adder/subtractor 11 is supplied with, for example, a predetermined reference voltage ■. is set, and if the phase difference signal Vφ has a leading phase, V. -Vφ is subtracted, and if it is a delayed phase, it is V. An addition of +Vφ is applied, and the meter 12 is made to swing with the output.

このメータ12の目盛板は、例えば第6図に示されてい
るように中央値を1とし、その両側に力率を表すcos
φの値が目盛られている。このメータが例えばフルスケ
ール100mVであるとすると、その中央値1は50m
 Vに相当する。よってこのメータ12には例えば50
m Vのオフセット電圧が加えられ、無信号時には中央
値1を指示するようにされている。この場合には、上記
加減算器11の基準電圧■。は50m Vに設定され、
また、位相差φ=π/2のときの位相差信号Vφの最大
レベルもあらかじめ50m Vに調整しておくようにな
っている。なお、3相電路測定用の力率目盛は30°ず
らして施されている。
The scale plate of this meter 12 has a center value of 1 as shown in FIG.
The value of φ is graduated. For example, if this meter has a full scale of 100 mV, its median value 1 is 50 mV.
Corresponds to V. Therefore, this meter 12 has, for example, 50
An offset voltage of mV is applied to indicate the median value 1 when there is no signal. In this case, the reference voltage of the adder/subtractor 11 is set to ■. is set to 50mV,
Further, the maximum level of the phase difference signal Vφ when the phase difference φ=π/2 is also adjusted to 50 mV in advance. Note that the power factor scale for measuring the three-phase electric circuit is shifted by 30°.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来装置は、被測定電路における電圧と電流の位相
差から力率への変換がメータの目盛処理で行われるので
、回路が比較的簡単であるという利点を有している。
This conventional device has the advantage that the circuit is relatively simple, since the phase difference between the voltage and current in the electrical path to be measured is converted into the power factor by meter scale processing.

しかしながら出力が非直線的であるため、記録計などに
それを記録した場合には測定値が読み取りにくく、一般
には、例えば第7図(A)、(B)に示されるような読
取り用のスケールを記録計の紙幅に合わせて何種類か用
意する必要があった。
However, since the output is non-linear, it is difficult to read the measured values when recorded on a recorder, etc., and generally a reading scale such as the one shown in Figures 7 (A) and (B) is used. It was necessary to prepare several types to match the paper width of the recorder.

また、最近では被測定電路の電圧など他の電気量の測定
には、例えばマイクロコンピュータを備えたディジタル
形の測定器が一般に利用されるようになってきているの
で、現場用としては少なくともアナログ形の力率計とデ
ィジタル形の他の測定器とを合わせて2台用意する必要
があり、室外作業の場合には特に不便さがあった。
In addition, recently, digital measuring instruments equipped with microcomputers, for example, have become commonly used to measure other electrical quantities such as the voltage of the electrical circuit under test, so at least analog measuring instruments are available for on-site use. It is necessary to prepare two power factor meters and other digital measuring instruments, which is particularly inconvenient when working outdoors.

この発明は上記の点に鑑みなされたもので、その第1の
目的は、出力が直線特性を有し、測定値が読み取りやす
いディジタル形の力率計を実現することにある。また、
この発明の第2の目的は、例えば他のディジタル計測器
に組み込み、その有するマイクロコンピュータを共用し
て測定が行えるようにした力率計を提供することにある
The present invention has been made in view of the above points, and its first purpose is to realize a digital power factor meter whose output has linear characteristics and whose measured values are easy to read. Also,
A second object of the present invention is to provide a power factor meter that can be incorporated into, for example, another digital measuring instrument and can perform measurements by sharing its microcomputer.

〔発明の構成〕[Structure of the invention]

この発明の一実施例が示されている第1図を参照すると
、との力率計においては1例えば位相差検出器25から
出力される位相差φに比例した大きさの位相差信号Vφ
をディジタル変換するA/Dコンバータ30と、このデ
ィジタル変換値V′φからcosφの値を算出するe0
8φ演算器31と、このcosφの値を1から減算する
1 、 000− cosφ演算器(以下r 1−co
sφ演算器」という。)32とを有し、この減算結果を
例えばアナログ値に変換するD/Aコンバータ33と、
上記アナログ変換値をそのまま又は反転させて出力する
出力切換器34と、反転増幅器35、及び上記出力切換
器34の切換え動作を制御する極性検出器26とを備え
ている。
Referring to FIG. 1, which shows an embodiment of the present invention, in the power factor meter of 1, for example, a phase difference signal Vφ having a magnitude proportional to the phase difference φ output from the phase difference detector 25 is shown.
an A/D converter 30 that digitally converts the value, and e0 that calculates the value of cosφ from this digital conversion value V'φ.
8φ operator 31 and a 1,000-cosφ operator (hereinafter referred to as r1-co) that subtracts the value of cosφ from 1.
It is called "sφ operator". ) 32, and a D/A converter 33 that converts the subtraction result into, for example, an analog value;
It includes an output switch 34 that outputs the analog conversion value as is or inverted, an inverting amplifier 35, and a polarity detector 26 that controls the switching operation of the output switch 34.

〔測定原理〕[Measurement principle]

位相差検出器25から出力される位相差信号■φは、上
記したように被測定電路1の電圧と電流の位相差φに比
例した大きさのレベルを有するから、Vφ=k・φ  
   ・・・・・・・・・・・・(1)である。ただし
、には比例定数とする。
Since the phase difference signal ■φ output from the phase difference detector 25 has a level proportional to the phase difference φ between the voltage and current of the circuit under test 1 as described above, Vφ=k・φ
・・・・・・・・・・・・(1). However, is a constant of proportionality.

ここで、Vφの最大値Vφmaxはφ=π/2のときで
あるから Vφmax=k・π/2  ・・・・・・・・・・・・
(2)となり、既知である。
Here, since the maximum value Vφmax of Vφ is when φ=π/2, Vφmax=k・π/2 ・・・・・・・・・・・・
(2), which is known.

よって式(1)と(2)から Vφ/Vφmax=φ/(π/2) 上式より φ=(π/2)vφ/Vφmax・・・・・・・・・(
3)を得る。
Therefore, from equations (1) and (2), Vφ/Vφmax=φ/(π/2) From the above equation, φ=(π/2)vφ/Vφmax・・・・・・・・・(
3) is obtained.

式(3)より、Vφを測定すれば位相差φの値がわかる
From equation (3), the value of the phase difference φ can be found by measuring Vφ.

このφの値から力率cosφを求め、1−cosφを算
出すると1例えば第2図の第1象限に示されるように、
原点を1とする等間隔目盛の力率を表す横軸と上記原点
をOとする等間隔目盛の出力1−COSφを表す縦軸を
有するグラフ上に力率CO3φの値を直線OAで表すこ
とができる。
The power factor cosφ is determined from this value of φ, and 1-cosφ is calculated.For example, as shown in the first quadrant of FIG. 2,
Expressing the value of the power factor CO3φ by a straight line OA on a graph having a horizontal axis representing the power factor on an evenly spaced scale with the origin as 1 and a vertical axis representing the output 1-COSφ on the equally spaced scale with the origin as O. Can be done.

この場合、上記第1象限の直線OAを例えば遅れ位相の
力率とすると、進み位相の場合の力率は第2象限の点線
で示されるように縦軸に対して対称の直線○B′となり
、原点○において不運となる。
In this case, if the straight line OA in the first quadrant is, for example, the power factor in the lagging phase, the power factor in the leading phase becomes a straight line ○B' that is symmetrical with respect to the vertical axis, as shown by the dotted line in the second quadrant. , it is unlucky at the origin ○.

よってこの実施例においては、第3象限に示されるよう
に上記進み位相の出力1−cosφを反転させて上記直
線OB’を直線OBとなし、進み位相と遅れ位相間で不
連続点が無い1本の直線で力率cosφを表すようにな
されている。
Therefore, in this embodiment, as shown in the third quadrant, the output 1-cosφ of the leading phase is inverted to make the straight line OB' the straight line OB, and there is no discontinuity point between the leading phase and the lagging phase. The power factor cosφ is represented by a straight line.

なお、力率cosφを表す上記直線AOBは、見やすく
するため横軸に対して45°傾斜した例が示されている
が、縦軸と横軸の目盛間隔が違うようにすればその傾斜
が変わることは言うまでもない。
Note that the straight line AOB representing the power factor cosφ is shown as an example inclined at 45 degrees with respect to the horizontal axis to make it easier to see, but the slope can be changed by making the scale intervals of the vertical and horizontal axes different. Needless to say.

〔実 施 例〕〔Example〕

再び第1図を参照すると、この力率計の人力部には上記
第5図に示された従来装置とほぼ同様に、例えば電圧検
出器22、減衰器23、波形整形器24、位相差検出器
25.極性検出器26.及び電流検出器27、電流/電
圧変換器28、波形整形器29等を備えている。この実
施例においては、上記位相差検出器25には例えばその
位相差信号Vφを直流化して出力するフィルタも備えら
れている。また、」二記極性検出器26においては、例
えば上記位相差φの進み、遅れを表す−、又は十の位相
極性信号を出力切換器34と表示器36へ加えるように
されている。
Referring again to FIG. 1, the manual section of this power factor meter includes, for example, a voltage detector 22, an attenuator 23, a waveform shaper 24, a phase difference detector, and the like as in the conventional device shown in FIG. Vessel 25. Polarity detector 26. It also includes a current detector 27, a current/voltage converter 28, a waveform shaper 29, and the like. In this embodiment, the phase difference detector 25 is also equipped with a filter that converts the phase difference signal Vφ into a direct current and outputs the DC signal, for example. Furthermore, the polarity detector 26 is adapted to apply, for example, a - or ten phase polarity signal to the output switch 34 and the display 36, indicating the lead or lag of the phase difference φ.

上記位相差検出器25から送出される直流の位相差信号
■φは、例えばA/Dコンバータ30にてディジタル変
換され、変換されたディジタル信号V′φはcosφ演
算器31に加えられてcosφの値が求められるように
なっている。このcosφの値は例えば1−cosφ演
算器32と表示器36に加えられ、表示器36において
は数字表示器などに力率として表示されるようになって
いる。この場合、表示される力率値が進み位相のときに
は、例えば上記極性検出器26からの位相極性信号によ
り一の表示が付せられる。
The DC phase difference signal ■φ sent from the phase difference detector 25 is converted into a digital signal by, for example, an A/D converter 30, and the converted digital signal V′φ is added to a cosφ calculator 31 to obtain a value of cosφ. The value is now required. This value of cosφ is applied to, for example, a 1-cosφ calculator 32 and a display 36, and is displayed as a power factor on a numeric display or the like in the display 36. In this case, when the displayed power factor value is in a leading phase, a display of 1 is given by the phase polarity signal from the polarity detector 26, for example.

」二記1−cosφ演算器32においては1−cosφ
が算出され、この算出値は例えばD/Aコンバータ33
にてアナログ変換されたのち、出力切換器34と反転増
幅器35に加えられる。この実施例においては、上記位
相差φが遅れ位相のときは、上記1−cosφのアナロ
グ値は例えばそのまま出力切換器34を介して送出され
、進み位相のときは上記反転増幅器35にて極性の反転
されたアナログ値が出力切換器34から送出されるよう
になっている。この出力は例えば図示しない記録計に加
えられ、被測定電路1の力率記録に利用される。この場
合、出力切換器34の切換動作は、例えば上記極性検出
器26から加えられる位相極性信号にて制御されるよう
になっている。
” In the 1-cosφ calculator 32, 1-cosφ
is calculated, and this calculated value is used, for example, by the D/A converter 33.
After being analog-converted at , it is applied to an output switch 34 and an inverting amplifier 35 . In this embodiment, when the phase difference φ is a lagging phase, the analog value of 1-cosφ is sent out as it is, for example, via the output switch 34, and when it is a leading phase, the polarity is changed by the inverting amplifier 35. The inverted analog value is sent out from the output switch 34. This output is applied to a recorder (not shown), for example, and is used to record the power factor of the electrical circuit 1 to be measured. In this case, the switching operation of the output switch 34 is controlled by a phase polarity signal applied from the polarity detector 26, for example.

第3図には、例えば図示しない記録計にてその等間隔目
盛を有する記録紙37に被測定電路を3筒所測定した例
が示されている。上記記録計は例えば入力が無いとき記
録紙37の記録幅の中央位置を指示するようにセットさ
れ、この記録紙37には、その中央位置を1としその両
側にそれぞれ遅れ位相(+)と進み位相(−)がわかる
ようにした適宜の等間隔目盛0.8.0.6.・・・・
・・0が付されている。測定値は例えば(イ)ないしく
ハ)に示されているが、(イ)は力率0.8、(ロ)は
0.9、(ハ)は0.7と直観的□に読み取ることがで
きる。更に細かく読み取る場合、あるいは目盛線か無い
記録紙をイ(用する場合には、第4図に示されるように
、例えば記録幅に合わせて厚紙などに目盛線を書゛き込
んだ定規を用意すればよい。
FIG. 3 shows an example in which three electrical circuits to be measured are measured on a recording paper 37 having equally spaced scales using a recorder (not shown). For example, the recorder is set so as to indicate the center position of the recording width of the recording paper 37 when there is no input, and the recording paper 37 has a lag phase (+) on each side of the recording paper 37, with the center position being 1. Appropriate equally spaced scale 0.8.0.6 so that the phase (-) can be seen.・・・・・・
...0 is added. For example, the measured values are shown in (a) or c), but it can be intuitively read that (a) is a power factor of 0.8, (b) is 0.9, and (c) is 0.7. Can be done. If you want to read more precisely, or if you are using recording paper that does not have scale lines, prepare a ruler with scale lines written on thick paper to match the recording width, as shown in Figure 4. do it.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、この力率計は例えば被測
定電路の電圧と′止流間の位相差φに比例した大きさの
位相差信号Vφのディジタル変換値V′φを測定してそ
の位相差φを求め、cosφを算1”J′Jするcos
φ演算器と、このcosφの値を用いて1−cosφを
算出する1−cosφ演算器と、この演算結果のアナロ
グ変換値を上記位相差φが遅れ位相の場合にはそのまま
送出し、進み位相の場合にはその極性が反転された値を
切り換え送出する出力切換器と反転増幅器とを備えてお
り、その切換動作は、極性検出器から加えられる+、−
の位相極性信号によって制御されるようになっている。
As explained in detail above, this power factor meter measures, for example, the digital conversion value V'φ of the phase difference signal Vφ, which has a magnitude proportional to the phase difference φ between the voltage of the electrical circuit to be measured and the current stop. Find the phase difference φ and calculate cosφ by 1”J′J cos
A φ calculation unit, a 1-cosφ calculation unit that calculates 1-cosφ using the value of cosφ, and an analog conversion value of this calculation result, which is sent out as it is when the phase difference φ is a lagging phase, and a leading phase. In the case of
is controlled by the phase polarity signal.

したがってこの力率計によれば、進み又は遅れ位相差φ
による非直線特性の力率値cosφを用いて1−cos
φの演算を行い、原点を1とする等間隔の目盛線を備え
た力率を表す横軸と、上記原点をOとする等間隔の目盛
線を備えた1−cosφの値を表す縦軸とからなるグラ
フ上に上記1−cosφの実測演算値をプロットすると
、力率cosφの値は上記原点を通る直線で表すことが
できる。
Therefore, according to this power factor meter, the leading or lagging phase difference φ
Using the power factor value cosφ of the nonlinear characteristic according to 1-cos
φ is calculated, and the horizontal axis represents the power factor with equally spaced scale lines with the origin as 1, and the vertical axis represents the value of 1-cosφ with equally spaced scale lines with the origin as O. When the actually measured calculated value of 1-cosφ is plotted on a graph consisting of the above, the value of the power factor cosφ can be represented by a straight line passing through the origin.

よってこの演算値を例えば記録計にて記録紙に記録する
と、被測定電路の力率が目視で直観的に読み取ることが
でき、極めて使いやすい高精度のディジタル形力率計を
提供することができる。
Therefore, by recording this calculated value on recording paper using a recorder, for example, the power factor of the electrical circuit to be measured can be visually and intuitively read, making it possible to provide a highly accurate digital power factor meter that is extremely easy to use. .

また、この力率計を他のディジタル測定器に組み込み、
例えばその有するマイクロコンピュータを共用とすれば
、力率計を備えた比較的低価格で多機能の現場用計測器
を実現することが可能である。
In addition, this power factor meter can be incorporated into other digital measuring instruments,
For example, by sharing the microcomputer, it is possible to realize a relatively low-cost, multifunctional on-site measuring instrument equipped with a power factor meter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はこの発明による力率計の実施例に
係り、第1図はその構成の一例を示すブロック線図、第
2図は測定原理説明図、第3図は記録計による力率測定
の説明図、第4は力率読取り用定規の説明図、第5図は
従来装置のブロック線図、第6図はその力率目盛説明図
、第7図(A)及び第7図(B)は力率読取り用定規の
説明図である。 図中、1は被測定電路、22は電圧検出器、24゜29
は波形整形器、25は位相差検出器、26は極性検出器
、27は電流検出器、30はA/Dコンバータ。 31はcosφ演算器、32は1−cosφ演算器、3
3はD/Aコンバータ、34は出力切換器、35は反転
増幅器、φは位相差、Vφは位相差信号、V′φはディ
ジタル変換値である。
1 to 4 relate to an embodiment of the power factor meter according to the present invention, FIG. 1 is a block diagram showing an example of its configuration, FIG. 2 is a diagram explaining the measurement principle, and FIG. 3 is a recorder 4 is an explanatory diagram of power factor measurement, 4th is an explanatory diagram of a power factor reading ruler, 5 is a block diagram of a conventional device, 6 is an explanatory diagram of its power factor scale, 7 (A) and 7 Figure (B) is an explanatory diagram of a power factor reading ruler. In the figure, 1 is the electrical circuit to be measured, 22 is the voltage detector, 24°29
25 is a phase difference detector, 26 is a polarity detector, 27 is a current detector, and 30 is an A/D converter. 31 is a cosφ operator, 32 is a 1-cosφ operator, 3
3 is a D/A converter, 34 is an output switch, 35 is an inverting amplifier, φ is a phase difference, Vφ is a phase difference signal, and V'φ is a digital conversion value.

Claims (1)

【特許請求の範囲】 被測定電路の電圧と電流をそれぞれ検出して方形波電圧
に波形整形し、その位相差φに比例した大きさの電圧を
有する位相差信号を形成する位相差検出器と、 上記位相差φの進み遅れに対応して正、負の位相極性信
号を形成する極性検出器と、 上記位相差信号のディジタル変換値から力率cosφを
求め、1−cosφを算出する演算器と、上記算出値1
−cosφのアナログ変換値、もしくはその反転アナロ
グ変換値を上記極性検出器からの位相極性信号にて選択
的に切り換え、上記力率cosφの値を正負にわたり直
線特性となして出力する出力切換器とを備えていること
を特徴とする力率計。
[Claims] A phase difference detector that detects the voltage and current of the electrical circuit to be measured, shapes the waveforms into square wave voltages, and forms a phase difference signal having a voltage proportional to the phase difference φ. , a polarity detector that forms positive and negative phase polarity signals in response to the lead and lag of the phase difference φ, and an arithmetic unit that determines the power factor cosφ from the digital conversion value of the phase difference signal and calculates 1-cosφ. and the above calculated value 1
- an output switching device that selectively switches the analog conversion value of cosφ or its inverted analog conversion value using the phase polarity signal from the polarity detector, and outputs the value of the power factor cosφ as a linear characteristic over positive and negative sides; A power factor meter characterized by comprising:
JP6514387A 1987-03-19 1987-03-19 Power-factor meter Pending JPS63231272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6514387A JPS63231272A (en) 1987-03-19 1987-03-19 Power-factor meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6514387A JPS63231272A (en) 1987-03-19 1987-03-19 Power-factor meter

Publications (1)

Publication Number Publication Date
JPS63231272A true JPS63231272A (en) 1988-09-27

Family

ID=13278365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6514387A Pending JPS63231272A (en) 1987-03-19 1987-03-19 Power-factor meter

Country Status (1)

Country Link
JP (1) JPS63231272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689665A1 (en) * 1992-04-07 1993-10-08 Elale Surveillance and control system for urban lighting - uses microprocessor linked to data interface with both analogue and digital data collection via data bus
US7639000B2 (en) 1993-03-26 2009-12-29 Itron, Inc. Apparatus for electronically measuring or distributing electrical energy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894475A (en) * 1972-03-13 1973-12-05
JPS51105867A (en) * 1975-02-21 1976-09-20 Hitachi Ltd Rikiritsuhenkankino shutsuryokushingochokusenkasochi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894475A (en) * 1972-03-13 1973-12-05
JPS51105867A (en) * 1975-02-21 1976-09-20 Hitachi Ltd Rikiritsuhenkankino shutsuryokushingochokusenkasochi

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689665A1 (en) * 1992-04-07 1993-10-08 Elale Surveillance and control system for urban lighting - uses microprocessor linked to data interface with both analogue and digital data collection via data bus
US7639000B2 (en) 1993-03-26 2009-12-29 Itron, Inc. Apparatus for electronically measuring or distributing electrical energy
US7688061B2 (en) * 1993-03-26 2010-03-30 Itron, Inc. Apparatus for electronically measuring electrical energy
US7688060B2 (en) 1993-03-26 2010-03-30 Itron, Inc. Electronic revenue meter with automatic service sensing
US7999532B2 (en) 1993-03-26 2011-08-16 Itron, Inc. Apparatus for electronically measuring or distributing electrical energy

Similar Documents

Publication Publication Date Title
JPH02136754A (en) Method and apparatus for measuring fine electrical signal
JPS61292067A (en) Method for measuring electric energy
JPS63231272A (en) Power-factor meter
US3631342A (en) Digital voltmeter apparatus employing a bipolar amplifier having a unidirectional output and a voltage controlled oscillator
JP3312504B2 (en) Position detection device
JPS61126485A (en) Error measuring instrument
JPS59187272A (en) Electric constant measuring apparatus
JP2560772B2 (en) Deterioration detection device for lightning arrester
JP2802322B2 (en) Impedance measuring device
KR960003360B1 (en) Zero phase voltage measuring device
EP0465476A1 (en) A sampling circuit
GB2156084A (en) A resistivity meter
JPS6316973Y2 (en)
JP2926848B2 (en) Soil property measurement device
JPS61116925A (en) Method of measuring ohmic value of power system
JP2862333B2 (en) AC voltage measuring instrument
JPS62161061A (en) Method for measuring electric power
SU1145291A1 (en) Meter of direct current without breaking electric circuit
SU1000933A1 (en) Three-element two terminal network parameter converter
JPH0525072B2 (en)
SU1012012A1 (en) Thickness gauge
JP2995769B2 (en) How to measure electrical variables
JPH04240574A (en) Method for measuring fundamental wave power and higher harmonic power of strain wave power supply
JPS6387123A (en) Distance relay
Kuppurajulu et al. A solid-state instrument for the measurement of frequency and phase angle in power systems