JPS63230078A - Biosensor and production thereof - Google Patents

Biosensor and production thereof

Info

Publication number
JPS63230078A
JPS63230078A JP62062405A JP6240587A JPS63230078A JP S63230078 A JPS63230078 A JP S63230078A JP 62062405 A JP62062405 A JP 62062405A JP 6240587 A JP6240587 A JP 6240587A JP S63230078 A JPS63230078 A JP S63230078A
Authority
JP
Japan
Prior art keywords
membrane
film
treated
gas permeable
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62062405A
Other languages
Japanese (ja)
Other versions
JPH0676985B2 (en
Inventor
Akio Sugama
明夫 菅間
皓男 ▲柳▼下
Akio Yagishita
Naomi Nakane
中根 尚美
Fumio Takei
文雄 武井
Ei Yano
映 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62062405A priority Critical patent/JPH0676985B2/en
Publication of JPS63230078A publication Critical patent/JPS63230078A/en
Publication of JPH0676985B2 publication Critical patent/JPH0676985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To obtain a biosensor having high sensitivity and high response speed free from release of immobilized film, by treating the surface of a gas permeable film with metallic sodium, adsorbing an amino group-containing substance on the film to form a treated film and setting an enzyme bacterium immobilized film on the treated film. CONSTITUTION:The surface of a gas permeable film (e.g. ethylene propylene fluoride) 2 is treated with a Teflon treatment consisting essentially of metallic sodium, fluorine on the surface is removed to make the surface hydrophilic and an amino group-containing substance (e.g. gamma-aminopropyltriethoxysilane) is adsorbed on the film to form a treated film 6. Then an enzyme (e.g. glucose oxidase) bacterium immobilized film 1 is set on the treated film 6 to give the aimed biosensor (e.g. glucose sensor) 3.

Description

【発明の詳細な説明】 〔発明の概要〕 本発明は、従来のバイオセンサーにおいてガス透過膜と
酵素・微生物固定膜との間の密着不十分等が原因で感度
や応答速度が悪くなるという欠点並びに固定膜の剥離と
いう問題を解決するためガス透過膜と酵素・微生物固定
膜との間に処理膜を介装することによりガス透過膜と固
定膜との密着度を増し感度等の透れたバイオセンサーを
提供するものである。
[Detailed Description of the Invention] [Summary of the Invention] The present invention solves the drawbacks of conventional biosensors, such as poor sensitivity and response speed due to insufficient adhesion between the gas permeable membrane and the enzyme/microbe immobilization membrane. In addition, in order to solve the problem of peeling of the fixed membrane, a treatment membrane is interposed between the gas permeable membrane and the enzyme/microorganism fixed membrane, thereby increasing the adhesion between the gas permeable membrane and the fixed membrane and improving the sensitivity and other properties. It provides a biosensor.

〔産業上の利用分野〕[Industrial application field]

本発明はバイオセンサー並びにその製造方法に関し、更
に詳しくは酵素・微生物固定膜の十分な特性を得るよう
にしたバイオセンサーおよびその製造方法に関する。
The present invention relates to a biosensor and a method for producing the same, and more particularly to a biosensor that obtains sufficient characteristics of an enzyme/microorganism immobilized membrane and a method for producing the same.

〔従来技術および発明が解決しようとする問題点〕最近
、種々の分野でセンサーの応用が進められている。特に
酵素の特異性に着目し、これを電極と組合わせて酵素の
基質を計測する原理が見出されて以来、酵素センサーが
開発されている。更に分子識別素子として酵素以外のも
のが使用可能となり例えば固定化微生物を利用する微生
物センサー、等開発され、これらを総称しバイオセンサ
ーと呼ばれ研究開発が急速に進められている。
[Prior art and problems to be solved by the invention] Recently, the application of sensors has been progressing in various fields. Enzyme sensors have been developed since the discovery of a principle that focuses on the specificity of enzymes and combines them with electrodes to measure enzyme substrates. Furthermore, it has become possible to use substances other than enzymes as molecular identification elements, and for example, microbial sensors that utilize immobilized microorganisms have been developed, and these are collectively called biosensors, and research and development is progressing rapidly.

従来のバイオセンサーの構造を第4図に示す。The structure of a conventional biosensor is shown in FIG.

図中、lは酵素・微生物の固定膜、2はガス透過膜、3
はガスセンサ一本体、4は固定膜取付ネジ部、5はOリ
ングである。
In the figure, l is an enzyme/microorganism fixed membrane, 2 is a gas permeable membrane, and 3 is a gas permeable membrane.
4 is a gas sensor main body, 4 is a fixed membrane mounting screw portion, and 5 is an O-ring.

従来のバイオセンサーは第4(A)図のように酵素・微
生物固定膜1をガスセンサ本体3とは、別パーツにして
ネジ4またはOリング5で装着する構造である。また、
第4(B)図に示すようにガス透過膜2に金属ナトリウ
ムで親水性処理を施こしてこの上に酵素・微生物同定膜
lを作製した構造も提案されている(S、J、IJpd
ike etal、 J、Lab。
As shown in FIG. 4A, a conventional biosensor has a structure in which an enzyme/microorganism immobilization membrane 1 is a separate part from a gas sensor main body 3 and is attached using screws 4 or O-rings 5. Also,
As shown in Figure 4(B), a structure has also been proposed in which the gas permeable membrane 2 is subjected to hydrophilic treatment with metallic sodium and an enzyme/microorganism identification membrane l is fabricated thereon (S, J, IJpd
ike etal, J. Lab.

Cl1n、Mod、、93,518(1979)、S、
J、Updtke etal。
Cl1n, Mod, 93, 518 (1979), S.
J, Updtke et al.

Diabetes Care、 5.207(1982
)。
Diabetes Care, 5.207 (1982
).

しかるにこれらの従来のバイオセンサでは、ガス透過膜
の材質が化学的に安定で接着剤が効かないため、酵素固
定膜および微生物固定膜(以下、単に固定膜とも言う)
をネジ止めや0リングなどの機械的方法で装着していた
。しかし、この方法では、固定膜の強度を確保するため
厚膜化や透析膜などの支持体を使用しなければならない
こと、同定膜とガスセンサとの密着が十分にとりにくい
ことによりセンサーの感度および応答速度が悪くなりや
すいという欠点があった。
However, in these conventional biosensors, the material of the gas permeable membrane is chemically stable and adhesives are not effective, so enzyme-immobilized membranes and microorganism-immobilized membranes (hereinafter also simply referred to as immobilized membranes) are used.
were attached mechanically using screws or O-rings. However, with this method, in order to ensure the strength of the fixed membrane, it is necessary to make the membrane thicker or use a support such as a dialysis membrane, and it is difficult to maintain sufficient contact between the identification membrane and the gas sensor, resulting in problems with sensor sensitivity and response. The drawback was that the speed was likely to deteriorate.

一方、テフロン系のガス透過膜を金属ナトリウムで処理
して表面を親水性にした上に固定膜を作製する方法では
、上記の機械的装着方法の欠点はないが、ガス透過膜と
固定膜の間の接着力は特に考慮されていないため、固定
膜がはがれやすいという欠点があった。
On the other hand, a method in which a Teflon-based gas permeable membrane is treated with metallic sodium to make the surface hydrophilic and then a fixed membrane is fabricated does not have the drawbacks of the mechanical attachment method described above, but the difference between the gas permeable membrane and the fixed membrane is Since no particular consideration was given to the adhesive strength between the two, there was a drawback that the fixed film was easily peeled off.

〔問題点を解決するための手段、および発明の作用〕[Means for solving the problem and operation of the invention]

本発明は上記の問題点を解決するためになされたもので
、本発明のバイオセンサーは、酵素・微生物固定膜とガ
ス透過膜との間に処理膜を設けたことを特徴とする。
The present invention has been made to solve the above problems, and the biosensor of the present invention is characterized in that a treatment membrane is provided between the enzyme/microorganism immobilization membrane and the gas permeable membrane.

また、本発明のバイオセンサーの製造方法は、ガス透過
膜の表面を金属ナトリウムで処理し次いでアミノ基を持
つ物質を吸着させ処理膜を形成し次いで該処理膜上に酵
素・微生物同定膜を設けたことを特徴とするものであり
、あるいは又、ガス透過膜の表面を金属ナトリウムで処
理し次いでγ−アミノプロピルトリエトキシシランで処
理し、処理膜を形成し、次いで該処理膜上に酵素・微生
物同定膜を設けたことを特徴とするものである。
Furthermore, the method for producing a biosensor of the present invention includes treating the surface of a gas permeable membrane with metallic sodium, adsorbing a substance having an amino group to form a treated membrane, and then providing an enzyme/microorganism identification membrane on the treated membrane. Alternatively, the surface of the gas permeable membrane is treated with metallic sodium and then treated with γ-aminopropyltriethoxysilane to form a treated membrane, and then enzymes and It is characterized by being provided with a microorganism identification membrane.

本発明のバイオセンサーの原理を第1図に示す。The principle of the biosensor of the present invention is shown in FIG.

先に説明したように本発明のバイオセンサーは、酵素・
微生物同定膜1とガス透過膜2との間に処理膜2を設け
て成るものである。尚、3はガスセンサ一本体を示す。
As explained above, the biosensor of the present invention uses enzymes and
A treatment membrane 2 is provided between a microorganism identification membrane 1 and a gas permeable membrane 2. Note that 3 indicates the main body of the gas sensor.

すなわち、本発明のバイオセンサーはガス透過膜上に酵
素又は微生物を確実に固定化するための処理膜2を施こ
し、この処理膜の上に化学的結合により酵素・微生物固
定膜を作製する。このようにガス透過膜と固定膜との間
に処理膜を介装したことにより三者間の結合が強固とな
り固定膜が剥離が阻止される。
That is, in the biosensor of the present invention, a treatment membrane 2 for reliably immobilizing enzymes or microorganisms is provided on a gas permeable membrane, and an enzyme/microorganism immobilization membrane is produced on this treatment membrane by chemical bonding. By interposing the treated membrane between the gas permeable membrane and the fixed membrane in this way, the bond between the three is strong and the fixed membrane is prevented from peeling off.

以下、本発明を更に実施例により説明する。Hereinafter, the present invention will be further explained with reference to Examples.

第2図は本発明の一実施例のフローチャートである。ガ
ス透過膜としてFEP (フッ化エチレンプロピレン)
を使用する。このFEPフィルム上に金属ナトリウムを
主成分としたテフロン処理剤(Chemplast社製
)を滴下し、FEP表面のフッ素を取除き、親水性にす
る。このFEPに固定膜用の表面処理を施し処理膜を形
成する。この1つの方法は、γ−アミノプロピルトリエ
トキシシラン(γ−APTES)HtNCzHaSi(
OCzlls):+を使用する方法である。中性の5〜
30%γ−APTES水溶液をナトリウム処理を施した
部分に滴下し、40〜60℃で30〜180分反応させ
る。もう1つの方法は、アミノ基のような官能基を持つ
物質をナトリウム処理を施した部分に吸着させるもので
ある。このような物質としては、特に限定はされないが
吸着のしやすさと可視化という面から、アミドブラック
、クーマシーブリリアントブルー、トルイジンブルー、
ヘマトキシリン、メチレンブルーの如き色素が好ましい
FIG. 2 is a flow chart of one embodiment of the present invention. FEP (fluorinated ethylene propylene) as a gas permeable membrane
use. A Teflon treatment agent (manufactured by Chemplast) containing metallic sodium as a main component is dropped onto this FEP film to remove fluorine from the FEP surface and make it hydrophilic. This FEP is subjected to surface treatment for a fixed film to form a treated film. One method is to use γ-aminopropyltriethoxysilane (γ-APTES) HtNCzHaSi (
OCzlls): + is used. Neutral 5~
A 30% γ-APTES aqueous solution is added dropwise to the sodium-treated portion and reacted at 40 to 60°C for 30 to 180 minutes. Another method is to adsorb a substance with a functional group, such as an amino group, onto the sodium-treated part. Examples of such substances include, but are not limited to, amide black, Coomassie brilliant blue, toluidine blue, from the viewpoint of ease of adsorption and visualization.
Dyes such as hematoxylin and methylene blue are preferred.

これらの表面処理により、ガス透過膜の上にアミノ基な
どの官能基を持った薄膜が作製される。
Through these surface treatments, a thin film having functional groups such as amino groups is produced on the gas permeable membrane.

さらに、酵素および微生物の固定膜を作製する。Furthermore, enzyme and microorganism immobilization membranes are prepared.

その方法は、対象とする酵素および微生物に適した方法
で行えば良く、固定化方法によっては、先の表面処理膜
の上に第2、第3の表面処理膜が必要な場合もある。こ
こでは−船釣な、グルコースオキシダーゼ(COD)を
牛1mff1アルブミン(B S A)とグルタルアル
デヒド(G A)で固定化する方法を述べる。GAはア
ミン基に対して反応するため、γ−APTESや吸着に
よる表面処理膜とCODおよびBSAとを確実に結合さ
せることができる。1mj2中にC0D5〜50mg、
B5A3〜50mg 、 GA 0.1〜1%を含む水
溶液を表面処理膜の上に滴下し、反応させる。このよう
にしてできた同定膜は薄くて丈夫であり、γ−APTE
Sや吸着による表面処理を行わなかった固定膜は、5分
間の超音波処理により部分的あるいは固定膜全部が剥離
したが、表面処理を行った固定膜には異常が見られなか
った。このCOD固定膜付FEPを使って酸素電極を組
立て、グルコースセンサとしたときの特性を第3図に示
す。固定膜がきわめて薄く、しかもガス透過膜との密着
が完全なため、感度および応答速度とも従来の2〜5倍
向上した。
The method may be carried out by a method suitable for the target enzyme and microorganism, and depending on the immobilization method, a second and third surface treatment film may be required on the previous surface treatment film. Here, we describe a method for immobilizing glucose oxidase (COD) with bovine 1mff1 albumin (BSA) and glutaraldehyde (GA). Since GA reacts with amine groups, it is possible to reliably bond COD and BSA to the surface treatment film by γ-APTES or adsorption. 5-50 mg of C0D in 1 mj2,
An aqueous solution containing 3 to 50 mg of B5A and 0.1 to 1% of GA is dropped onto the surface treated film and reacted. The identified film made in this way is thin and strong, and contains γ-APTE.
Fixed films that were not subjected to surface treatment by S or adsorption were partially or completely peeled off after 5 minutes of ultrasonic treatment, but no abnormality was observed in fixed films that were surface treated. FIG. 3 shows the characteristics when an oxygen electrode is assembled using this FEP with a COD fixed film and used as a glucose sensor. Since the fixed membrane is extremely thin and in close contact with the gas permeable membrane, both the sensitivity and response speed are improved by 2 to 5 times compared to conventional ones.

本発明は以上説明したように構成したものであるから、
処理膜により酵素固定膜および微生物固定膜をガス透過
膜上に直接、しかも確実に装着できる効果が得られる。
Since the present invention is configured as explained above,
The treated membrane provides the effect that the enzyme-immobilized membrane and the microorganism-immobilized membrane can be directly and reliably mounted on the gas permeable membrane.

さらに、同定膜がきわめて薄く、ガス透過膜との密着が
完全なため、感度および応答速度のすぐれたバイオセン
サーを得ることができる。更に、物情物質として色素を
使用し、吸着量を可視化できる。
Furthermore, since the identification membrane is extremely thin and has perfect contact with the gas permeable membrane, a biosensor with excellent sensitivity and response speed can be obtained. Furthermore, the amount of adsorption can be visualized by using a dye as a physical substance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、第2図は本発明の一実施例を
示すフローチャート、第3図は本発明を適用したグルコ
ースセンサの特性図、第4図は従来のバイオセンサーの
説明図である。 ■・・・酵素微生物同定膜、 2・・・ガス透過膜、  3・・・ガスセンサ本体、4
・・・取付ネジ、    5・・・0リング、6・・・
処理膜。
Fig. 1 is a principle diagram of the present invention, Fig. 2 is a flowchart showing an embodiment of the present invention, Fig. 3 is a characteristic diagram of a glucose sensor to which the present invention is applied, and Fig. 4 is an explanatory diagram of a conventional biosensor. It is. ■... Enzyme microorganism identification membrane, 2... Gas permeable membrane, 3... Gas sensor body, 4
...Mounting screw, 5...0 ring, 6...
treatment membrane.

Claims (1)

【特許請求の範囲】 1、酵素・微生物固定膜とガス透過膜との間に処理膜を
設けたことを特徴とするバイオセンサー。 2、処理膜がアミノ基を持つ物質である、特許請求の範
囲第1項記載のバイオセンサー。 3、処理膜がγ−アミノプロピルトリエトキシシランで
ある、特許請求の範囲第1項記載のバイオセンサー。 4、ガス透過膜の表面を金属ナトリウムで処理し次いで
アミノ基を持つ物質を吸着させ処理膜を形成し次いで該
処理膜上に酵素・微生物固定膜を設けたことを特徴とす
る、バイオセンサーの製造方法。 5、ガス透過膜の表面を金属ナトリウムで処理し次いで
γ−アミノプロピルトリエトキシシランで処理し、処理
膜を形成し、次いで該処理膜上に酵素・微生物固定膜を
設けたことを特徴とする、特許請求の範囲第4項記載の
バイオセンサーの製造方法。
[Scope of Claims] 1. A biosensor characterized in that a processing membrane is provided between an enzyme/microorganism immobilization membrane and a gas permeable membrane. 2. The biosensor according to claim 1, wherein the treatment membrane is a substance having an amino group. 3. The biosensor according to claim 1, wherein the treated membrane is γ-aminopropyltriethoxysilane. 4. A biosensor characterized in that the surface of a gas permeable membrane is treated with metallic sodium, a substance having an amino group is adsorbed to form a treated membrane, and then an enzyme/microbe immobilization membrane is provided on the treated membrane. Production method. 5. The surface of the gas permeable membrane is treated with metallic sodium and then treated with γ-aminopropyltriethoxysilane to form a treated membrane, and then an enzyme/microbe immobilization membrane is provided on the treated membrane. , a method for producing a biosensor according to claim 4.
JP62062405A 1987-03-19 1987-03-19 Biosensor and manufacturing method thereof Expired - Lifetime JPH0676985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062405A JPH0676985B2 (en) 1987-03-19 1987-03-19 Biosensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062405A JPH0676985B2 (en) 1987-03-19 1987-03-19 Biosensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63230078A true JPS63230078A (en) 1988-09-26
JPH0676985B2 JPH0676985B2 (en) 1994-09-28

Family

ID=13199196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062405A Expired - Lifetime JPH0676985B2 (en) 1987-03-19 1987-03-19 Biosensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0676985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258254B1 (en) 1997-07-28 2001-07-10 Matsushita Electric Industrial Co., Ltd. Biosensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843079U (en) * 1981-09-16 1983-03-23 ティーディーケイ株式会社 waterproof acoustic transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843079U (en) * 1981-09-16 1983-03-23 ティーディーケイ株式会社 waterproof acoustic transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258254B1 (en) 1997-07-28 2001-07-10 Matsushita Electric Industrial Co., Ltd. Biosensor

Also Published As

Publication number Publication date
JPH0676985B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
Bourdillon et al. Covalent linkage of glucose oxidase on modified glassy carbon electrodes. Kinetic phenomena
JP2689531B2 (en) Glucose sensor
EP1182450A1 (en) Biosensor
Mizutani et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly (vinyl alcohol)/polyion complex-bilayer membrane
JPS63230078A (en) Biosensor and production thereof
JPS61145447A (en) Immobilized enzyme membrane
JPS59164953A (en) Immobilized enzyme film and manufacture thereof
JPH10506994A (en) Biosensor with biological material covalently immobilized on a signal-active surface
JPS61176845A (en) Film deposited by evaporation for immobilization of physiologically active material and field effect transistor urea sensor using said film
JPH1019832A (en) Measuring method for concentration by using oxidoreductase immobilized biosensor
JPH02236153A (en) Permselective membrane and electrode using the same
JP2508297B2 (en) Enzyme electrode
JPH0266440A (en) Enzyme electrode and method of measuring concentration of alcohol
JPH04372626A (en) Process for bonding fluororesin film
JPH10506788A (en) How to immobilize biological material on a substrate
JPH08338826A (en) Arginine sensor
JPH0614020B2 (en) Enzyme electrode activation method
JPS61187792A (en) Production of immobilized living body catalyst
JPH0223868A (en) Production of carrier for immobilizing physiologically active substance
JP2926771B2 (en) Enzyme electrode and concentration measurement method
JPS5934882A (en) Biosensor
JPH01102352A (en) Biosensor
JPS61274253A (en) Oxygen film and manufacture thereof
JPH04231858A (en) Biosensor
JPH02287148A (en) Enzyme electrode