JPS63224242A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JPS63224242A
JPS63224242A JP62056595A JP5659587A JPS63224242A JP S63224242 A JPS63224242 A JP S63224242A JP 62056595 A JP62056595 A JP 62056595A JP 5659587 A JP5659587 A JP 5659587A JP S63224242 A JPS63224242 A JP S63224242A
Authority
JP
Japan
Prior art keywords
linear expansion
heating element
transfer device
heat
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62056595A
Other languages
Japanese (ja)
Inventor
Hiroaki Doi
土居 博昭
Heikichi Kuwabara
桑原 平吉
Tadakatsu Nakajima
忠克 中島
Tatsuji Sakamoto
坂本 達事
Motohiro Sato
佐藤 元宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62056595A priority Critical patent/JPS63224242A/en
Publication of JPS63224242A publication Critical patent/JPS63224242A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To decrease thermal strain caused in a heating element, by selecting materials of heat conductive elements such that the heat conductive element disposed near the place where the heating element is attached has a smaller coefficient of linear expansion than those of the heat conductive elements disposed in the other places. CONSTITUTION:Five perforated copper plates 1 with very small fins are stacked one over another, and a tungsten plate 2 is disposed under these stacked copper plates 1 with a foil of silver solder 3 interposed therebetween. They are held at a temperature of 500 deg.C under a pressure of 0.5 kg/mm2 for one hour so that the tungsten plate 2 is bonded to the copper plate 1 with a silver brazing 3. The tungsten plate 2 is then plated with nickel and with gold, and an LSI chip 4 is soldered on the plated tungsten plate 2 with solder 5. Thermal strain caused in the heating element 4 is decreased, because thermal deformation due to the heat conducting element 1 having a large coefficient of linear expansion is constrained by the heat conducting element 2 having a small coefficient of linear expansion and disposed close to the place where the heating element 4 is attached.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱伝達装置に係り、特にコンビエータ用hsI
、サイリスタなどのパワー半導体などの冷却用の熱伝達
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat transfer device, and particularly to a heat transfer device for a combiator.
, relates to a heat transfer device for cooling power semiconductors such as thyristors.

〔従来の技術〕[Conventional technology]

特開昭60−229353号公報に述べられている従来
の熱伝達装置に用いら扛る熱伝導体の材質として、高い
熱伝導率を待つという点から銅やアルミニウムなどの金
属、また発熱体がシリコンなどの低い線膨張係数を持つ
材料の場合には発熱体と熱伝導体の間の線膨張係数差に
より発熱体に生じる熱ひずみを回避するために高熱伝導
率でラミックス(ベリリウムλ5ie)、シリコンなど
の非金属材料が用いられている。
As the material of the thermal conductor used in the conventional heat transfer device described in Japanese Patent Application Laid-open No. 60-229353, metals such as copper and aluminum, as well as heating elements, are used because of their high thermal conductivity. In the case of materials with low linear expansion coefficients such as silicon, we use Lamix (beryllium λ5ie) with high thermal conductivity to avoid thermal distortion caused in the heating element due to the difference in linear expansion coefficient between the heating element and the thermal conductor. Non-metallic materials such as silicon are used.

以上で発熱体に生じる熱ひずみを回避する理由は、この
熱ひずみにより発熱体である半導体素子の破壊、電気特
性の劣化、半導体素子と熱伝導体がはんだのような柔軟
な材料で接合された場合にはこの柔軟材料の破壊による
半導体素子と熱伝導体界面のはく離が生じるなどの問題
が生じるためである。
The reason for avoiding the thermal strain that occurs in the heating element is that this thermal strain can cause damage to the semiconductor element that is the heating element, deterioration of its electrical characteristics, and the possibility that the semiconductor element and the heat conductor are bonded with a flexible material such as solder. This is because, in some cases, problems such as delamination of the interface between the semiconductor element and the thermal conductor occur due to the destruction of the flexible material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、熱伝導体として非金属材料を用いる場合には、
熱伝導体として必要な空洞群の成形のための加工や接合
が困鋤であるという欠点があった。
However, when using non-metallic materials as thermal conductors,
The drawback is that it is difficult to process and join the cavities needed as heat conductors.

このため熱伝導体材料として成形の容易であるが線膨張
係数の高い金属を用い、この熱伝導体を線膨張係数の低
い発熱体へ接合した場合に発熱体に生じる熱ひずみを回
避することが必要である。
For this reason, it is necessary to use a metal that is easy to mold but has a high coefficient of linear expansion as the thermal conductor material, and to avoid the thermal strain that occurs in the heating element when this thermal conductor is joined to a heating element with a low coefficient of linear expansion. is necessary.

本発明の目的は熱伝導体に高い線膨張係数を用いた場合
にも線膨張係数の低い発熱体に生じる熱ひずみを十分に
低減する熱伝達装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat transfer device that sufficiently reduces thermal strain occurring in a heating element having a low coefficient of linear expansion even when a heat conductor has a high coefficient of linear expansion.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は発熱体取り付け而近くの熱伝導体の線膨張係
数がその他の部分の熱伝導体の線膨張係数より小さくな
るように熱伝導体の構成材料を選択することにより達成
される。
The above object is achieved by selecting the constituent material of the heat conductor so that the coefficient of linear expansion of the heat conductor near the attachment of the heat generating element is smaller than the coefficient of linear expansion of the heat conductor in other parts.

すなわち本発明の熱伝達装置は、熱伝導体内に外部と通
ずる細長く平行に延びる空洞群が三次元状に複数形成さ
れ、前記空洞群が互いに連通し合う構造を有する熱伝導
体全発熱体に取シ付けて発熱体を冷却する装置において
、前記発熱体奴り付け面近傍の熱伝導体の線膨張係数が
熱伝導体のその他の部分の線膨張係数より小さいことを
特徴とする。
That is, the heat transfer device of the present invention has a structure in which a plurality of elongated, parallel-extending cavities communicating with the outside are formed in a three-dimensional shape within the heat conductor, and the cavity groups communicate with each other. In the device for cooling a heat generating element by attaching the heat generating element, the coefficient of linear expansion of the heat conductor near the surface on which the heat generating element is attached is smaller than the coefficient of linear expansion of other parts of the heat conductor.

上記構成において特に望ましい態様は(1)熱伝導体が
複数の孔あき板よシ構成され1発熱体取り付ける孔あき
板の線膨張係数がその他の孔あき板より小さいこと、(
2)熱伝導体が複数の孔あき板とこれらの孔あき板よシ
小さい線膨張係数を有する板より構成されること、(3
)孔あき板及び板の接合を拡散接合で行うこと、及び/
または(4)孔あき板の材質が金属であることである。
Particularly desirable aspects of the above configuration are (1) that the thermal conductor is composed of a plurality of perforated plates, and that the linear expansion coefficient of the perforated plate to which one heating element is attached is smaller than that of the other perforated plates;
2) The thermal conductor is composed of a plurality of perforated plates and a plate having a smaller coefficient of linear expansion than these perforated plates, (3)
) the perforated plate and the plate are joined by diffusion bonding, and/
or (4) the material of the perforated plate is metal.

〔作用〕[Effect]

発熱体取り付け面近くの熱伝導体の線膨張係数が熱伝導
体の他の部分より小さい場合には、熱伝導体の大きい線
膨張係数による熱変形を発熱体取り付け面近くの線膨張
係数の小さい部分の熱伝導体が拘束するため、発熱体に
生じる熱ひずみが低減される。また発熱体が熱伝導体に
柔軟な材料で接着される場合にはこの柔軟材料に生じる
ひずみが低減烙れ、発熱体と熱伝導体の界面はく離が防
止できる。
If the coefficient of linear expansion of the thermal conductor near the mounting surface of the heating element is smaller than that of other parts of the thermal conductor, thermal deformation due to the large coefficient of linear expansion of the thermal conductor will be reduced by the coefficient of linear expansion near the mounting surface of the heating element. Since the thermal conductor of the portion is restrained, thermal strain occurring in the heating element is reduced. Further, when the heating element is bonded to the thermal conductor using a flexible material, the strain generated in the flexible material is reduced, and delamination at the interface between the heating element and the thermal conductor can be prevented.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図から第4図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

初めに本発明の熱伝達装置の製造方法を述べる。First, a method for manufacturing the heat transfer device of the present invention will be described.

銅板を機械加工することにより第2図に示す微細フィン
付き穴あき板1(鋼製>’5r:作る。この微細フィン
付き穴あき板1を5枚重ねたものの下に銀ろうはく3を
はさんでタングステン板2を置き。
A perforated plate 1 with fine fins (made of steel>'5r) as shown in Fig. 2 is made by machining a copper plate. Silver wax 3 is placed under a stack of five perforated plates 1 with fine fins. Place tungsten plate 2 between them.

温度500C1圧力0.5匂f/1m”で1時間保持す
る。これによシ微細フィン付穴あき板1同志は拡散接合
され、微細フィン付穴あき板1とタングステン板2とは
銀ろう付け3される。次にこのタングステン板2にニッ
ケルメッキと金メッキを設し、この上へLSI(シリコ
ン)テップ4を95P b−58にはんだ5でろう付け
する。
The temperature is 500C and the pressure is 0.5 odor f/1m'' for 1 hour.As a result, the perforated plate 1 with fine fins is diffusion bonded to each other, and the perforated plate 1 with fine fins and the tungsten plate 2 are soldered with silver. Next, nickel plating and gold plating are provided on this tungsten plate 2, and an LSI (silicon) tip 4 is brazed thereon to 95P b-58 with solder 5.

第3図に微細フィン付穴あき板1の重なった様子を示す
。また、第1図に熱伝達装置の全体構造と寸法を示す。
FIG. 3 shows how the perforated plates 1 with fine fins are overlapped. Further, FIG. 1 shows the overall structure and dimensions of the heat transfer device.

この熱伝達装置に温度サイフル(−55C→150tZ
’) ’t”加えるとはんだに熱ひずみが生じ、疲労破
壊する。この疲労寿命はタングステン板2の厚さを厚く
すると長くすることができる。第4図にタングステン板
2の厚さtとはんだの疲労寿命Ntの関係をシミュレー
ションにより求めた結十 果を示す。第卆図に示すようにはんだの疲労寿命Ntは
タングステン板2の厚さtの増加とともに向上している
Temperature siful (-55C → 150tZ) is applied to this heat transfer device.
') 't' causes thermal strain in the solder, resulting in fatigue failure.This fatigue life can be extended by increasing the thickness of the tungsten plate 2. Figure 4 shows the thickness t of the tungsten plate 2 and the solder. The results of a simulation of the relationship between the fatigue life Nt and the fatigue life Nt of the solder are shown below.As shown in the figure, the fatigue life Nt of the solder improves as the thickness t of the tungsten plate 2 increases.

本発明の第2の実施例として、上記の実施例のタングス
テン製低熱膨張板2の代わりに、銅とりングステンのク
ラツド材を用いたものがある。この実施例では微細フィ
ン付孔あき板6へ接合するクラツド材表面を鋼にするC
とにより、クラツド材も微細フィン付孔あき板6と同時
に拡散接合することができる。
As a second embodiment of the present invention, a cladding material of copper and lingsten is used in place of the tungsten low thermal expansion plate 2 of the above embodiment. In this embodiment, the surface of the clad material to be joined to the perforated plate 6 with fine fins is made of steel.
Accordingly, the cladding material can also be diffusion bonded to the perforated plate 6 with fine fins at the same time.

〔発明の効果〕〔Effect of the invention〕

本発明の熱伝達装置によれば発熱体を接合した時に発熱
体に生じる熱ひずみを低減できる。
According to the heat transfer device of the present invention, it is possible to reduce the thermal strain that occurs in the heat generating elements when the heat generating elements are joined.

【図面の簡単な説明】[Brief explanation of the drawing]

今 第1図は本発明の熱伝達装置のはんだの疲労寿命と低熱
膨張部材の厚さとの関係を示す説明図である。 1・・・微細フィン付穴あき板、2・・・タングステン
仮。 3・・・銀ろう、4・・・LSl、5・・・はんだ。 
    、−83代理人 弁理士 小川勝男□・19.
、、ノ−碕 渦゛ さ 斉
FIG. 1 is an explanatory diagram showing the relationship between the fatigue life of the solder and the thickness of the low thermal expansion member in the heat transfer device of the present invention. 1...Perforated plate with fine fins, 2...Tungsten temporary. 3...Silver solder, 4...LSI, 5...Solder.
, -83 Agent Patent Attorney Katsuo Ogawa □・19.
,, no-saki vortex sasai

Claims (1)

【特許請求の範囲】 1、熱伝導体内に外部と通ずる細長く平行に延びる空洞
群が三次元状に複数形成され、前記空洞群が互いに連通
し合う構造を有する熱伝導体を発熱体に取り付けて発熱
体を冷却する装置において、前記発熱体取り付け面近傍
の熱伝導体の線膨張係数が熱伝導体のその他の部分の線
膨張係数より小さいことを特徴とする熱伝達装置。 2、特許請求の範囲第1項の熱伝達装置において熱伝導
体が複数の孔あき板より構成され、発熱体取り付ける孔
あき板の線膨張係数がその他の孔あき板より小さいこと
を特徴とする熱伝達装置。 3、特許請求の範囲第1項の熱伝達装置において熱伝導
体が複数の孔あき板とこれらの孔あき板より小さい線膨
張係数を有する板より構成されることを特徴とする熱伝
達装置。 4、特許請求の範囲第2項または第3項の熱伝達装置に
おいて、孔あき板及び板の接合を拡散接合で行うことを
特徴とする熱伝達装置。 5、特許請求の範囲第2項または第3項の熱伝達装置に
おいて、孔あき板の材質が金属であることを特徴とする
熱伝達装置。
[Scope of Claims] 1. A thermal conductor having a structure in which a plurality of elongated, parallel-extending cavities communicating with the outside are formed in a three-dimensional shape in the thermal conductor, and the cavity groups communicate with each other is attached to a heating element. A heat transfer device for cooling a heat generating element, wherein a linear expansion coefficient of the heat conductor in the vicinity of the heat generating element mounting surface is smaller than a linear expansion coefficient of other parts of the heat conductor. 2. In the heat transfer device according to claim 1, the heat conductor is composed of a plurality of perforated plates, and the linear expansion coefficient of the perforated plate to which the heating element is attached is smaller than that of the other perforated plates. Heat transfer device. 3. The heat transfer device according to claim 1, wherein the heat conductor is composed of a plurality of perforated plates and a plate having a smaller coefficient of linear expansion than the perforated plates. 4. A heat transfer device according to claim 2 or 3, characterized in that the perforated plate and the plate are joined by diffusion bonding. 5. The heat transfer device according to claim 2 or 3, wherein the perforated plate is made of metal.
JP62056595A 1987-03-13 1987-03-13 Heat transfer device Pending JPS63224242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62056595A JPS63224242A (en) 1987-03-13 1987-03-13 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056595A JPS63224242A (en) 1987-03-13 1987-03-13 Heat transfer device

Publications (1)

Publication Number Publication Date
JPS63224242A true JPS63224242A (en) 1988-09-19

Family

ID=13031555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056595A Pending JPS63224242A (en) 1987-03-13 1987-03-13 Heat transfer device

Country Status (1)

Country Link
JP (1) JPS63224242A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257953A (en) * 1990-03-08 1991-11-18 Nobuo Mikoshiba Semiconductor device
US5525753A (en) * 1994-01-14 1996-06-11 Brush Wellman, Inc. Multilayer laminate product and process
US6022426A (en) * 1995-05-31 2000-02-08 Brush Wellman Inc. Multilayer laminate process
DE10352670A1 (en) * 2003-11-11 2005-06-16 eupec Europäische Gesellschaft für Leistungshalbleiter mbH Electric component with equaliser of temperature caused mechanical stresses, connecting two part-elements with different length expansion coefficients, e.g. for optical components, i.e. glass plate connected to copper electrode etc
CN110335854A (en) * 2019-06-17 2019-10-15 中国科学院微电子研究所 A kind of forced convertion fluid channel radiator structure, manufacturing method and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257953A (en) * 1990-03-08 1991-11-18 Nobuo Mikoshiba Semiconductor device
US5525753A (en) * 1994-01-14 1996-06-11 Brush Wellman, Inc. Multilayer laminate product and process
US5583317A (en) * 1994-01-14 1996-12-10 Brush Wellman Inc. Multilayer laminate heat sink assembly
US6022426A (en) * 1995-05-31 2000-02-08 Brush Wellman Inc. Multilayer laminate process
DE10352670A1 (en) * 2003-11-11 2005-06-16 eupec Europäische Gesellschaft für Leistungshalbleiter mbH Electric component with equaliser of temperature caused mechanical stresses, connecting two part-elements with different length expansion coefficients, e.g. for optical components, i.e. glass plate connected to copper electrode etc
CN110335854A (en) * 2019-06-17 2019-10-15 中国科学院微电子研究所 A kind of forced convertion fluid channel radiator structure, manufacturing method and electronic device

Similar Documents

Publication Publication Date Title
US5151777A (en) Interface device for thermally coupling an integrated circuit to a heat sink
JP2592308B2 (en) Semiconductor package and computer using the same
KR100705868B1 (en) Semiconductor device and the method of manufacturing the same
JP2006240955A (en) Ceramic substrate, ceramic circuit board, and power control component using the same
JP2005094842A (en) Inverter arrangement and manufacturing method thereof
JP2004356625A (en) Semiconductor device and method for manufacturing the same
JP2004022973A (en) Ceramic circuit board and semiconductor module
JPH11265976A (en) Power-semiconductor module and its manufacture
JP2000150743A (en) Substrate for semiconductor device and manufacture thereof
JP2006351988A (en) Ceramic substrate, ceramic circuit board and power control component using same
JPS63224242A (en) Heat transfer device
JP3669980B2 (en) MODULE STRUCTURE MANUFACTURING METHOD, CIRCUIT BOARD FIXING METHOD, AND CIRCUIT BOARD
KR102524167B1 (en) Electronic chip device with improved thermal resistance and associated manufacturing process
JP6881304B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JPH10247763A (en) Circuit board and manufacture thereof
JP3669981B2 (en) Method for manufacturing module structure
JPWO2018164206A1 (en) Insulated circuit board terminal, insulated circuit board composite, and semiconductor device composite
JP4573467B2 (en) Power semiconductor device
CN216389353U (en) Power module with step pad formed on ceramic substrate
JPH03218054A (en) Substrate for heater element
JPS6315430A (en) Manufacture of semiconductor device
CN220324457U (en) Low-inductance silicon carbide module adopting flexible connecting sheet
JPS6076179A (en) Thermoelectric converter
JPS5915386B2 (en) Method for manufacturing headers for semiconductor devices
JPS5835956A (en) Hybrid integrated circuit device