JPS6322217B2 - - Google Patents

Info

Publication number
JPS6322217B2
JPS6322217B2 JP58129618A JP12961883A JPS6322217B2 JP S6322217 B2 JPS6322217 B2 JP S6322217B2 JP 58129618 A JP58129618 A JP 58129618A JP 12961883 A JP12961883 A JP 12961883A JP S6322217 B2 JPS6322217 B2 JP S6322217B2
Authority
JP
Japan
Prior art keywords
heat
resistant resin
resin composition
composition according
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58129618A
Other languages
Japanese (ja)
Other versions
JPS6020921A (en
Inventor
Taisuke Okada
Juichi Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP58129618A priority Critical patent/JPS6020921A/en
Publication of JPS6020921A publication Critical patent/JPS6020921A/en
Publication of JPS6322217B2 publication Critical patent/JPS6322217B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は暹脂分濃床が高く、貯蔵安定性が良奜
で衚面の平滑性の優れた塗膜、フむルム等の成型
品を䞎える耐熱性暹脂組成物に関する。 ポリアミドむミド暹脂がすぐれた耐熱性、耐薬
品性、機械特性を有するこずはよく知られおお
り、耐熱電線甚塗料、金属衚面保護塗料、フむル
ム等ずしお広く実甚に䟛されおいる。しかしなが
ら、この暹脂は䞀般に−メチル−−ピロリド
ン、−ゞメチルホルムアミド等の高䟡で特
殊な溶媒にしか溶解せず、このため、補品ずしお
の暹脂組成物の䟡栌も高䟡なものずなり、甚途的
に制限されるような堎合もある。塗膜圢成成分ず
はなり埗ない溶媒の䜿甚量を枛少し、暹脂分濃床
を高くするこずができれば、実質的なコストダり
ンを図るこずができ、䜵せお省資源にも貢献する
こずができる。 高暹脂分濃床化の䞀぀の方法ずしお暹脂の分子
量を䜎䞋させるこずがあげられる。珟圚、実甚さ
れおいるポリアミドむミド暹脂組成物は暹脂の還
元粘床が0.4を超え、暹脂分濃床が10〜30重量
30℃における粘床30±ポアズずした堎合の
ものがほずんどである。還元粘床を0.4以䞋、ず
りわけ、0.35以䞋にすれば暹脂分濃床を35重量
以䞊にするこずができる。しかしながら、このよ
うに単玔に分子量を䜎䞋させるのみでは暹脂分濃
床は高くな぀おも、暹脂の末端官胜基濃床が高く
なるため埌述の比范䟋で瀺すように、暹脂組成物
の粘床が時間の経過ずずもに高くなり、぀いには
ゲル化に至る。 経日により増粘した堎合には、䟋えば金属衚面
保護塗料ずしお甚いる堎合、最初に蚭定した塗装
条件を倉曎したり、増粘した暹脂組成物を溶剀で
垌釈しお粘床を調節しなければならない等の䞍郜
合が生じ、たた、溶剀を揮発させお圢成した保護
塗膜の諞特性が倉化するこずもある。 特に電子郚品甚の回路板等に応甚するような堎
合は数ミクロンの厚さのフむルムを圢成させなけ
ればならず、粘床倉化は倧きな問題である。 たた、組成物から加熱によ぀お目的成圢品を圢
成せしめるに際しおは、小さな分子量から急激に
脱炭酞ガス反応を䌎い぀぀高分子量化するため
に、成圢品の衚面に埮小な発泡や凹凞を生じお矎
芳を損うずずもに、埌述の比范䟋で瀺すように機
械的、電気的な各皮の性胜を䜎䞋させる。たた、
゚ナメル線甚塗料ずしお応甚した堎合、近幎のよ
うな高速巻線機を甚いおコむル巻きをする堎合、
発泡などで突起した郚分がガむド装眮郚を通過で
きず、断線する䞍郜合が生じたり、ボビンに敎列
巻きするような堎合、段差が生じお蚭蚈通りのコ
むル巻きができないなどの䞍郜合が生じる。 本発明はこのような問題点を解決すべく、分子
量の小さいポリアミドむミド系暹脂を甚いた高暹
脂分濃床の組成物に関しお、暹脂の分子量、貯蔵
安定性改良剀の皮類ず量及びこれず暹脂ずの反応
条件、溶剀組成等に぀いお詳现な実隓を重ねるこ
ずによ぀おはじめお到達されたものである。 すなわち本発明は、䞀分子䞭に二個以䞊のむ゜
シアネヌト基を有する倚䟡む゜シアネヌトず䞉塩
基酞無氎物又はその機胜誘導䜓ずを反応させお埗
られる還元粘床0.10〜0.40の耐熱性暹脂にアルコ
ヌル類を添加し、加熱反応させた埌、䞋蚘䞀般匏
で瀺される化合物、 R1OOCCH2nCOOR2 R1R2は炭玠数〜のアルキル基、は
〜10の敎数を瀺す を含有する溶媒に溶解せしめお埗られる耐熱性暹
脂組成物に関する。 本発明における耐熱性暹脂の補造においおは、
耐熱性、機械的特性、化孊的特性等の芳点からは
む゜シアネヌト基の圓量をカルボキシル基ず酞無
氎物基の圓量の和に察しお若干過剰に甚いるこず
が奜たしいが、あたり過剰になるず、アルコヌル
類を添加反応させおも貯蔵安定性が劣る結果を招
き、䞡者のバランスを考慮するず、カルボキシル
基ず酞無氎物基の圓量の和に察しおむ゜シアネ
ヌト基の圓量を0.8〜1.1ずするこずが奜たしく、
0.95〜1.08の実質的に等しい圓量比で反応させる
こずが、より奜たしい。 䞀分子䞭に二個以䞊のむ゜シアネヌト基を有す
る倚䟡む゜シアネヌトずしおは脂肪族、脂環族、
芳銙脂肪族、芳銙族及び耇玠環ポリむ゜シアネヌ
ト、䟋えば゚チレンゞむ゜シアネヌト、−
テトラメチレンゞむ゜シアネヌト、−ヘキ
サメチレンゞむ゜シアネヌト、12−ドデカン
ゞむ゜シアネヌト、シクロブテン−−ゞむ
゜シアネヌト、シクロヘキサン−及び
−ゞむ゜シアネヌト、む゜フオロンゞむ゜シア
ネヌト及び−プニレンゞむ゜シア
ネヌト、−及び−トリレンゞむ゜シ
アネヌト及びこれらの異性䜓の混合物、ゞプニ
ルメタン−4′−ゞむ゜シアネヌト、ゞプニ
ルメタン−4′−ゞむ゜シアネヌト、ゞプニ
ル゚ヌテル−4′−ゞむ゜シアネヌト、キシリ
レンゞむ゜シアネヌト、ナフタレン−−ゞ
む゜シアネヌト、ナフタレン−−ゞむ゜シ
アネヌト、−メトキシベンれン−−ゞむ
゜シアネヌト、ゞプニルスルフオン−4′−
ゞむ゜シアネヌト及びこれらのゞむ゜シアネヌト
類を倚量化しお埗られる䞀分子䞭に䞉個以䞊のむ
゜シアネヌト基を有する化合物、ポリプニルメ
チレンポリむ゜シアネヌト䟋えばアニリンずホ
ルムアルデヒドの瞮合物をホスゲンで凊理しお埗
られる等を甚いるこずができ、特に制限はな
い。 䞉塩基酞無氎物ずしおは、䟋えば䞀般匏(i)及び
(ii)で瀺される化合物が甚いられる。
The present invention relates to a heat-resistant resin composition that has a high resin concentration, has good storage stability, and provides molded products such as coatings and films with excellent surface smoothness. It is well known that polyamide-imide resins have excellent heat resistance, chemical resistance, and mechanical properties, and are widely used in practical applications such as heat-resistant wire coatings, metal surface protection coatings, and films. However, this resin is generally soluble only in expensive and special solvents such as N-methyl-2-pyrrolidone and N,N-dimethylformamide, which makes the resin composition as a product expensive. In some cases, there may be restrictions on usage. If the amount of solvent that cannot be used as a coating film-forming component can be reduced and the resin concentration can be increased, substantial cost reductions can be achieved, and at the same time, it can also contribute to resource conservation. One method for increasing the resin concentration is to lower the molecular weight of the resin. Polyamide-imide resin compositions currently in practical use have a reduced viscosity of resin exceeding 0.4 and a resin concentration of 10 to 30% by weight.
(When the viscosity is 30±5 poise at 30°C). If the reduced viscosity is 0.4 or less, especially 0.35 or less, the resin concentration can be reduced to 35% by weight.
You can do more than that. However, if the molecular weight is simply lowered in this way, even though the resin concentration increases, the terminal functional group concentration of the resin increases, and as shown in the comparative example below, the viscosity of the resin composition decreases over time. As the temperature rises, it finally reaches gelation. If the viscosity increases over time, for example, when used as a metal surface protection paint, the viscosity must be adjusted by changing the initially set coating conditions or diluting the thickened resin composition with a solvent. In addition, the properties of the protective coating formed by volatilizing the solvent may change. Particularly when applied to circuit boards for electronic components, it is necessary to form a film with a thickness of several microns, and viscosity change is a major problem. In addition, when forming a desired molded product from a composition by heating, the molecular weight is rapidly increased from a small molecular weight to a high molecular weight with a decarbonation reaction, resulting in minute foaming and unevenness on the surface of the molded product. In addition to impairing the aesthetic appearance, it also deteriorates various mechanical and electrical performances as shown in the comparative example below. Also,
When applied as a paint for enameled wire, when winding a coil using a high-speed winding machine like in recent years,
Protruding parts due to foaming or the like cannot pass through the guide device, resulting in wire breakage, and when winding coils in a bobbin in an aligned manner, steps may occur, making it impossible to wind the coil as designed. In order to solve these problems, the present invention aims to improve the molecular weight of the resin, the type and amount of the storage stability improver, and the combination of this and the resin with respect to a composition with a high resin concentration using a polyamide-imide resin with a small molecular weight. This was achieved only through repeated detailed experiments regarding the reaction conditions, solvent composition, etc. That is, the present invention involves adding an alcohol to a heat-resistant resin having a reduced viscosity of 0.10 to 0.40, which is obtained by reacting a polyvalent isocyanate having two or more isocyanate groups in one molecule with a tribasic acid anhydride or a functional derivative thereof. After adding and heating reaction, a compound represented by the following general formula, R 1 OOC (CH 2 ) nCOOR 2 (R 1 and R 2 are alkyl groups having 1 to 5 carbon atoms, n is an integer of 1 to 10) It relates to a heat-resistant resin composition obtained by dissolving it in a solvent containing the following. In the production of heat-resistant resin in the present invention,
From the viewpoint of heat resistance, mechanical properties, chemical properties, etc., it is preferable to use the equivalent of the isocyanate group in a slight excess with respect to the sum of the equivalents of the carboxyl group and the acid anhydride group. Even if the addition reaction is carried out, the storage stability will be poor. Considering the balance between the two, it is preferable that the equivalent of the isocyanate group is 0.8 to 1.1 relative to the sum of the equivalents of the carboxyl group and the acid anhydride group. ,
It is more preferred to react in substantially equal equivalent ratios of 0.95 to 1.08. Polyvalent isocyanates having two or more isocyanate groups in one molecule include aliphatic, alicyclic,
Aroaliphatic, aromatic and heterocyclic polyisocyanates, such as ethylene diisocyanate, 1,4-
Tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutene-1,3-diisocyanate, cyclohexane 1,3- and 1,
4-diisocyanate, isophorone diisocyanate 1,3 and 1,4-phenylene diisocyanate, 2,4- and 2,6-tolylene diisocyanate and mixtures of these isomers, diphenylmethane-2,4'-diisocyanate, diphenylmethane- 4,4'-diisocyanate, diphenyl ether-4,4'-diisocyanate, xylylene diisocyanate, naphthalene-1,4-diisocyanate, naphthalene-1,5-diisocyanate, 1-methoxybenzene-2,4-diisocyanate, diphenyl diisocyanate Enylsulfone-4,4'-
Diisocyanates and compounds having three or more isocyanate groups in one molecule obtained by multiplying these diisocyanates, polyphenylmethylene polyisocyanates (for example, obtained by treating a condensate of aniline and formaldehyde with phosgene), etc. It can be used without any particular restriction. Examples of tribasic acid anhydrides include general formulas (i) and
A compound shown in (ii) is used.

【匏】【formula】

【匏】 は−CR2−CH3−CO−−SO2
−−−等である 匏(i)又は匏(ii)の構造匏で瀺される化合物の具䜓
䟋ずしおはトリメリツト酞無氎物、−
−ゞカルボキシプニル−−−カルボキシ
プニルプロパン無氎物、−ゞカルボ
キシプニル−カルボキシプニルメタ
ン無氎物、−ゞカルボキシプニル
−カルボキシプニル゚ヌテル無氎物、
3′−トリカルボキシベンゟプノン無氎物等
がある。そのほか、−ブタントリカル
ボン酞無氎物、−ナフタレントリカル
ボン酞無氎物、−ナフタレントリカル
ボン酞無氎物、−ナフタレントリカル
ボン酞無氎物、2′−ビプニルトリカル
ボン酞無氎物等があげられる。耐熱性、コストの
点からトリメリツト酞無氎物を甚いるこずが奜た
しい。 必芁に応じお、䞊蚘の䞉塩基酞無氎物又はその
機胜誘導䜓以倖の倚塩基酞たたはその機胜誘導䜓
を䜵甚するこずができる。倚塩基酞ずしおはトリ
メシン酞、トリス−カルボキシ゚チルむ゜
シアヌレヌトなどの䞉塩基酞、テレフタル酞、む
゜フタル酞、コハク酞、アゞピン酞、セバシン
酞、ドデカンゞカルボン酞などの二塩基酞、
−ブタンテトラカルボン酞、シクロペ
ンタンテトラカルボン酞、゚チレンテトラカルボ
ン酞、ビシクロ−〔〕−オクト−(7)−゚
ン−−テトラカルボン酞等の脂肪
族系および脂環族系四塩基酞、ピロメリツト酞、
3′4′−ベンゟプノンテトラカルボン
酞、ビス−ゞカルボキシプニル゚ヌ
テル、−ナフタレンテトラカルボ
ン酞、−ナフタレンテトラカルボ
ン酞、゚チレングリコヌルビストリメリテヌト、
2′−ビス−ゞカルボキシプニル
プロパン、2′3′−ゞプニルテトラカ
ルボン酞、10−ペリレンテトラカル
ボン酞、ビス−ゞカルボキシプニル
スルホン、ビス−ゞカルボキシプニ
ルメタン等の芳銙族四塩基酞、チオプン−
−テトラカルボン酞、ピラゞンテ
トラカルボン酞等の耇玠環匏四塩基酞などがあげ
られる。 本発明においお、䞉塩基酞無氎物の機胜誘導䜓
又は倚塩基酞の機胜誘導䜓ずは䞉塩基酞無氎物又
は倚塩基酞から誘導される䞀無氎物、二無氎物、
゚ステル、アミド、クロラむド等を意味する。 䞀分子䞭に二個以䞊のむ゜シアネヌト基を有す
る倚䟡む゜シアネヌトず䞉塩基酞無氎物又はその
機胜誘導䜓及び必芁に応じお倚塩基酞又はその機
胜誘導䜓ずを反応させるに際しおは、有機溶媒䞭
で行なうこずが奜たしく、有機溶媒の䟋ずしお
は、−メチル−−ピロリドン、−ゞメ
チルフオルムアミド、−ゞメチルアセトア
ミド、ゞゞメチルスルホキシド、ヘキサメチルフ
オスフオンアミド、−メチル−カプロラクタ
ム、ニトロベンれン、アセトプノン、アニ゜ヌ
ルなどが甚いられる。反応性や埗られる暹脂の性
胜の点から−メチル−−ピロリドンを合成溶
媒ずするこずが奜たしい。 合成時のモノマ濃床は40〜80重量、特に50〜
60重量ずしお反応させるこずが奜たしい。モノ
マ濃床が40重量未満では、本発明の䞀぀の目的
である暹脂分濃床の高い組成物ずするために、合
成埌過剰の溶媒を蒞発せしめなければならず、経
枈的に䞍利ずなる傟向があり、たた、80重量を
超えた堎合には反応の進行が速すぎお制埡が困難
ずなる傟向があるからである。ここで、モノマ濃
床ずは、反応開始時における䞀分子䞭に二個以䞊
のむ゜シアネヌト基を有する倚䟡む゜シアネヌト
ず䞉塩基酞無氎物又はその機胜誘導䜓及び必芁に
応じお甚いる倚塩基酞又はその機胜誘導䜓の重量
の和が系䞭に占める重量分率を指す。 䞀分子䞭に二個以䞊のむ゜シアネヌト基を有す
る倚䟡む゜シアネヌトず䞉塩基酞無氎物又はその
機胜誘導䜓ずを反応させお埗られる暹脂の還元粘
床は0.10〜0.40ずされ、0.15〜0.35ずするこずが
より奜たしい。還元粘床が0.10未満では貯蔵安定
性や耐熱性その他の実甚性胜が䞍十分ずなり、
0.40を越えた堎合には暹脂分濃床が䜎䞋し、本発
明の目的の䞀぀を満足できなくなる。還元粘床の
調敎はあらかじめ反応系からサンプリングした溶
液の粘床ガヌドナヌ粘床、絶察粘床等ず暹脂
の還元粘床ずの怜量線を䜜成しおおき、反応䞭に
適宜、粘床を枬定するこずによ぀お行なうこずが
できる。還元粘床は次のようにしお枬定する。即
ち合成盎埌の暹脂溶液濃床玄10重量15を
氎又はメタノヌル䞭に投じお沈殿を生成せし
め、この沈殿物をmmHg以䞋の枛圧䞋、50〜70
℃で〜12時間加熱也燥させる。次いでこの固型
暹脂を−ゞメチルホルムアミドで垌釈しお
濃床0.5dlの溶液ずし、以䞋、垞法によ぀お、
30℃でオストワルド粘床蚈又はキダノンプンス
ケ粘床蚈を甚いお流䞋時間を枬定しお算出され
る。 還元粘床が0.40を越える堎合には組成物を20〜
60℃で数ケ月貯蔵しおも粘床倉化はほずんど認め
られない。これに察しお還元粘床を0.40以䞋にし
た堎合、特に0.35以䞋の堎合には前述のように貯
蔵䞭に増粘したりゲル化したりしお実甚䞊倧きな
問題が生じる。このような貯蔵安定性の問題を解
決するためにはアルコヌル類を添加反応させるこ
ずが極めお効果的である。その際、アルコヌル類
を単に添加混合したのみでは貯蔵安定性は改良さ
れず、奜たしくは40℃以䞊の枩床、より奜たしく
は50〜150℃、さらに奜たしくは80〜120℃で奜た
しくは0.1〜20時間、より奜たしくは0.5〜10時
間、さらに奜たしくは〜時間加熱反応させる
必芁がある。 アルコヌル類を添加反応させるこずによ぀お貯
蔵安定性が改良される理由は十分明らかではない
が、次匏で瀺すように、分子鎖末端のむ゜シアネ
ヌト基がアルコヌル類でブロツクされお安定化さ
れるためである。 〜〜〜〜暹脂〜〜〜〜NCOROH―→ 〜〜〜〜暹脂〜〜〜〜NHCOOR なお、宀枩付近で単にアルコヌル類を添加混合
したのみでは貯蔵安定性が改良されないが、この
理由は、この末端む゜シアネヌト基が十分にブロ
ツクされないためず考えられる。 たた、必芁以䞊に高枩又は長時間で加熱反応さ
せた堎合には耐熱性その他の実甚性胜が䜎䞋す
る。これはあたりに高枩又は長時間反応させた堎
合には次匏で瀺すように、分子鎖䞭のアミド結合
やむミド結合がアルコヌル類によ぀おアルコリシ
ス反応を受け、結合が解裂するこずが䞀因ではな
いかず考える。 〜〜〜〜CONH〜〜〜〜ROH―→ 〜〜〜〜COORH2N〜〜〜〜 アルコヌル類の添加量は、暹脂に察しお奜たし
くは0.1〜10重量、より奜たしくは0.5〜重量
、さらに奜たしくは〜重量ずされる。
0.1重量未満では貯蔵安定性の改良効果が乏し
く、たた、10重量を越えた堎合には耐熱性をは
じめずする実甚特性が䜎䞋する。 アルコヌル類ずしおは、メタノヌル、゚タノヌ
ル、−プロパノヌル、む゜プロパノヌル、−
ブタノヌル、−ブタノヌル、−ブタノヌル、
メチルセロ゜ルブ、゚チルセロ゜ルブ、メチルカ
ルビトヌル、ベンゞルアルコヌル、シクロヘキサ
ノヌル等が甚いられる。これらのうち、メタノヌ
ル、゚タノヌル、プロパノヌル又はブタノヌルが
特に効果的である。 このようにしお埗られた暹脂は䞊蚘の䞀般匏で
瀺される化合物を含有する溶媒、奜たしくはこの
化合物を〜35重量、より奜たしくは〜25重
量含有する溶媒に溶解せしめお耐熱性暹脂組成
物ずされる。 䞊蚘の䞀般匏で瀺される化合物を溶媒ずしお甚
いた堎合には、これを溶媒ずしお甚いない堎合ず
比范しお、゚ナメル線等の成型品は衚面に発泡や
凹凞がなく、厚みが均䞀で平滑ずなり、物理的、
化孊的、電気的な諞性胜が優れおいる。 䞊蚘の䞀般匏で瀺される化合物は、溶媒ずしお
単独で甚いおもよく、たた、他の溶媒ず䜵甚しお
も良い。他の溶媒ず䜵甚する堎合には、暹脂の溶
解性及び成型物衚面の平滑性付䞎の効果の点から
溶媒䞭の重量〜50重量の範囲で甚いるこず
が奜たしい。 䞊蚘䞀般匏で瀺される化合物の具䜓䟋ずしお
は、マロン酞ゞメチル、マロン酞ゞ゚チル、マロ
ン酞ゞむ゜プロピル、マロン酞ゞブチル、マロン
酞ゞペンチル、コハク酞ゞメチル、コハク酞ゞ゚
チル、コハク酞ゞむ゜プロピル、コハク酞ゞブチ
ル、コハク酞ゞペンチル、グルタル酞ゞメチル、
グルタル酞ゞ゚チル、グルタル酞ゞプロピル、グ
ルタル酞ゞブチル、グルタル酞ゞペンチル、アゞ
ピン酞ゞメチル、アゞピン酞ゞ゚チル、アゞピン
酞ゞプロピル、アゞピン酞ゞブチル、アゞピン酞
ゞペンチル、マレむン酞ゞメチル、マレむン酞ゞ
゚チル、マレむン酞ゞプロピル、マレむン酞ゞブ
チル、マレむン酞ゞペンチル、フマル酞ゞメチ
ル、フマル酞ゞ゚チル、、フマル酞ゞプロピル、
フマル酞ゞブチル、フマル酞ゞペンチル、ピメリ
ツク酞ゞメチル、ピメリツク酞ゞ゚チル等があげ
られる。これらの化合物のうち、コハク酞ゞメチ
ル、グルタル酞ゞメチル、アゞピン酞ゞメチル、
コハク酞ゞ゚チル、グルタル酞ゞ゚チル、アゞピ
ン酞ゞ゚チルを甚いるこずが奜たしい。 䜵甚できる有機溶媒ずしおは、前述の暹脂の合
成時に甚いる有機溶媒のほか、ベンれン、トル゚
ン、キシレン、高沞点芳銙族炭化氎玠䟋えば日
本石油補ハむゟヌル100、ハむゟヌル150等、γ
−ブチロラクトン、曎に䞋蚘の䞀般匏で瀺される
倚䟡アルコヌル誘導䜓類を䜿甚するこずができ
る。 R3COOCHR4CH2OnH R3COOCHR4CH2OnCOR5 R3OCHR4CH2OnR6 R3OCHR4CH2OnH R3COOCHR4CH2OnR7 ただし、䞊匏においおR3R5R6R7は䜎
玚アルキル基、アリヌル基たたはアラルキル基、
R4は氎玠たたはメチル基、はからの敎数
である。 この䞀般匏で瀺される化合物の具䜓䟋ずしお
は、゚チレングリコヌルモノアセテヌト、プロピ
レングリコヌルモノアセテヌト、ゞ゚チレングリ
コヌルモノアセテヌト、゚チレングリコヌルゞア
セテヌト、プロピレングリコヌルゞアセテヌト、
ゞ゚チレングリコヌルゞアセテヌト、゚チレング
リコヌルゞメチル゚ヌテル、゚チレングリコヌル
ゞ゚チル゚ヌテル、゚チレングリコヌルゞプロピ
ル゚ヌテル、゚チレングリコヌルゞブチル゚ヌテ
ル、プロピレングリコヌルゞメチル゚ヌテル、ゞ
゚チレングリコヌルゞメチル゚ヌテル、ゞ゚チレ
ングリコヌルゞ゚チル゚ヌテル、ゞ゚チレングリ
コヌルゞプロピル゚ヌテル、゚チレングリコヌル
モノメチル゚ヌテル、゚チレングリコヌルモノ゚
チル゚ヌテル、゚チレングリコヌルモノプロピル
゚ヌテル、゚チレングリコヌルモノブチル゚ヌテ
ル、ゞ゚チレングリコヌルモノメチル゚ヌテル、
ゞ゚チレングリコヌルモノ゚チル゚ヌテル、ゞ゚
チレングリコヌルモノプロピル゚ヌテル、ゞ゚チ
レングリコヌルモノブチル゚ヌテル、゚チレング
リコヌルモノメチル゚ヌテルアセテヌト、゚チレ
ングリコヌルモノ゚チル゚ヌテルアセテヌト、゚
チレングリコヌルモノむ゜プロピル゚ヌテルアセ
テヌト、゚チレングリコヌルモノブチル゚ヌテル
アセテヌト、ゞ゚チレングリコヌルモノメチル゚
ヌテルアセテヌト、ゞ゚チレングリコヌルモノ゚
チル゚ヌテルアセテヌト、ゞ゚チレングリコヌル
モノむ゜プロピル゚ヌテルアセテヌト、プロピレ
ングリコヌルモノメチル゚ヌテルアセテヌト、プ
ロピレングリコヌルモノむ゜プロピル゚ヌテルア
セテヌト、ゞプロピレングリコヌルモノメチル゚
ヌテルアセテヌトなどがあげられる。 このようにしお埗られた組成物に必芁に応じお
硬化促進觊媒を添加するこずができる。硬化促進
觊媒ずしおは、䟋えばトリ゚チルアミン、トリ゚
チレンゞアミン、ゞメチルアニリン、ゞメチル゚
タノヌルアミン、−ゞアザ−ビシクロ
りンデセン−又はこの有機酞
塩等の第䞉玚アミン類、ゞブチルスズゞラりレ
ヌト、ゞブチルスズゞオクト゚ヌト等の有機スズ
化合物、テトラブトキシチタネヌト、テトラむ゜
プロポキシチタネヌト又はこれらのキレヌト、ア
シレヌト化合物等の有機チタン化合物、トリアル
キルホスフむンなどが甚いられる。ずくに第䞉玚
アミン類が奜たしい。たた、必芁に応じお硬化
剀、界面掻性剀などの皮々の添加剀を䜵甚するこ
ずができる。 硬化剀ずしおは䟋えば、゚ポキシ暹脂、アミノ
暹脂、プノヌルホルムアルデヒド暹脂、氎酞基
及び又はカルボキシル基を有するポリ゚ステル
暹脂、む゜シアネヌト基に掻性氎玠化合物を付加
させお安定化した安定化ポリむ゜シアネヌト等が
甚いられる。 本発明になる耐熱性暹脂組成物は、溶液粘床を
25〜30ポアズ30℃に蚭定した堎合、暹脂分濃
床は玄35〜55重量ずなり、埓来品の玄30重量
ず比范するず高濃床化されおおり、埌述の実斜䟋
で瀺すように貯蔵安定性や成型品の衚面平滑性䞊
びに物理的、化孊的、電気的な諞特性が優れるも
のである。 以䞋に本発明を実斜䟋及び比范䟋によ぀お説明
する。 比范䟋  ゞプニルメタン−4′−ゞむ゜シアネヌト
459.8、無氎トリメリツト酞351.3、−メチ
ル−−ピロリドン1076を枩床蚈、撹拌機、窒
玠導入管を備えたフラスコに入れ90℃で1.5
時間、100℃で1.5時間、120℃で1.0時間反応さ
せ、キシレン37、−ゞメチルホルムアミ
ド276を加えお垌釈した。埗られた組成物の暹
脂分濃床200℃で時間加熱埌の暹脂分残量か
ら算出は37.1重量で初期粘床は34ポアズであ
぀た。 比范䟋  比范䟋で埗られた合成盎埌の組成物1000に
メタノヌル7.4を添加し、90℃で時間加熱反
応させた。埗られた組成物の暹脂分濃床は36.9重
量で初期粘床は34ポアズであ぀た。 実斜䟋  ゞプニルメタン−4′−ゞむ゜シアネヌト
292.6、無氎トリメリツト酞223.6、−メチ
ル−−ピロリドン685をフラスコに入れ
比范䟋ず同様にしお反応させた。次いで、グル
タル酞ゞメチル93、コハク酞ゞメチル40、
−ゞメチルホルムアミド66を加えお垌釈
し、曎に、メタノヌル10.3を加え、90℃で時
間加熱反応させた。埗られた組成物の暹脂分濃床
は37.0重量で初期粘床は32ポアズであ぀た䞀
般匏R1OOCCH2nCOOR2で瀺される化合物の
䜿甚割合は溶媒䞭の15重量。 実斜䟋  ゞプニルメタン−4′−ゞむ゜シアネヌト
294.1、無氎トリメリツト酞223.9、−メチ
ル−−ピロリドン687をフラスコに入れ
比范䟋ず同様にしお反応させた。次いでアゞピ
ン酞ゞメチル17、グルタル酞ゞメチル49、コ
ハク酞ゞメチル22、−ゞメチルホルムア
ミド106を加えお垌釈し、曎に、メタノヌル8.3
、゚タノヌル2.1を加え、100℃で時間加熱
反応させた。埗られた組成物の暹脂分濃床は37.4
重量で初期粘床は33ポアズであ぀た䞀般匏
R1OOCCH2nCOOR2で瀺される化合物の䜿甚
割合は溶媒䞭の10重量。 実斜䟋  ゞプニルメタン−4′−ゞむ゜シアネヌト
249.4、ゞプニル゚ヌテル−4′−ゞむ゜
シアネヌト44.4、無氎トリメリツト酞224.2、
−メチル−−ピロリドン687をフラス
コに入れ比范䟋ず同様にしお反応させた。次い
でグルタル酞ゞメチル124、コハク酞ゞメチル
53、−ゞメチルホルムアミド19を加え
お垌釈し、曎に、メタノヌル7.8を加え、90℃
で時間加熱反応させた。埗られた組成物の暹脂
分濃床は36.9重量で初期粘床は34ポアズであ぀
た䞀般匏R1OOCCH2nCOOR2で瀺される化
合物の䜿甚割合は溶媒䞭の20重量。 実斜䟋  ゞプニルメタン−4′−ゞむ゜シアネヌト
285.3、無氎トリメリツト酞196.2、3′
4′−ベンゟプノンテトラカルボン酞二無氎
物36.6、−メチル−−ピロリドン687を
フラスコに入れ比范䟋ず同様にしお反応さ
せた。次いでグルタル酞ゞ゚チル33、グルタル
酞ゞメチル33、コハク酞ゞ゚チル33、コハク
酞ゞメチル33、−ゞメチルホルムアミド
62を加えお垌釈し、曎に、メタノヌル10.4、
む゜プロパノヌル2.6を加えお100℃で時間加
熱反応させた。埗られた組成物の暹脂分濃床は
37.1重量で初期粘床は31ポアズであ぀た䞀般
匏R1OOCCH2nCOOR2で瀺される化合物の䜿
甚割合は溶媒䞭の15重量。 実斜䟋〜で埗られた組成物の貯蔵安定性及
びこれらを合成埌30時間以内に垞法により、盎埄
mmの銅線に塗垃し、炉枩260360400℃入
口䞭倮出口で焌付けるこずを回繰り返し
お埗られた゚ナメル銅線の特性JIS  3003に
準じお枬定した。を比范䟋〜及び埓来品で
ある垂販ポリアミドむミドワニス日立化成工業
(æ ª)補HI−405−30ず比范しお衚に瀺した。
[Formula] (X is -CR 2 - (R=H, CH 3 ), -CO-, -SO 2
-, -O-, etc.) Specific examples of compounds represented by the structural formula of formula (i) or formula (ii) include trimellitic anhydride, 2-(3,4
-dicarboxyphenyl)-2-(3-carboxyphenyl)propane anhydride, (3,4-dicarboxyphenyl)(3-carboxyphenyl)methane anhydride, (3,4-dicarboxyphenyl) )(3
-carboxyphenyl)ether anhydride, 3,
Examples include 3',4-tricarboxybenzophenone anhydride. In addition, 1,2,4-butanetricarboxylic anhydride, 2,3,5-naphthalenetricarboxylic anhydride, 2,3,6-naphthalenetricarboxylic anhydride, 1,2,4-naphthalenetricarboxylic anhydride, Examples include 2,2',3-biphenyltricarboxylic anhydride. From the viewpoint of heat resistance and cost, it is preferable to use trimellitic acid anhydride. If necessary, a polybasic acid or a functional derivative thereof other than the above-mentioned tribasic acid anhydride or functional derivative thereof can be used in combination. Examples of polybasic acids include tribasic acids such as trimesic acid and tris(2-carboxyethyl)isocyanurate, dibasic acids such as terephthalic acid, isophthalic acid, succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid;
2,3,4-butanetetracarboxylic acid, cyclopentanetetracarboxylic acid, ethylenetetracarboxylic acid, bicyclo-[2,2,2]-oct-(7)-ene-2:3,5:6-tetracarboxylic acid Aliphatic and alicyclic tetrabasic acids such as acids, pyromellitic acid,
3,3',4,4'-benzophenonetetracarboxylic acid, bis(3,4-dicarboxyphenyl)ether, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6 - naphthalenetetracarboxylic acid, ethylene glycol bistrimelitate,
2,2'-bis(3,4-dicarboxyphenyl)
Propane, 2,2',3,3'-diphenyltetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, bis(3,4-dicarboxyphenyl)
Aromatic tetrabasic acids such as sulfone, bis(3,4-dicarboxyphenyl)methane, thiophene-
Examples include heterocyclic tetrabasic acids such as 2,3,4,5-tetracarboxylic acid and pyrazinetetracarboxylic acid. In the present invention, functional derivatives of tribasic acid anhydrides or functional derivatives of polybasic acids are monoanhydrides, dianhydrides derived from tribasic acid anhydrides or polybasic acids,
Means ester, amide, chloride, etc. When reacting a polyvalent isocyanate having two or more isocyanate groups in one molecule with a tribasic acid anhydride or its functional derivative and, if necessary, with a polybasic acid or its functional derivative, it must be carried out in an organic solvent. is preferred, and examples of organic solvents include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, didimethylsulfoxide, hexamethylphosphonamide, N-methyl-caprolactam, and nitrobenzene. , acetophenone, anisole, etc. are used. From the viewpoint of reactivity and performance of the resulting resin, it is preferable to use N-methyl-2-pyrrolidone as the synthesis solvent. The monomer concentration during synthesis is 40-80% by weight, especially 50-80% by weight.
It is preferable to carry out the reaction at 60% by weight. If the monomer concentration is less than 40% by weight, excess solvent must be evaporated after synthesis in order to obtain a composition with a high resin content, which is one of the objects of the present invention, which tends to be economically disadvantageous. Moreover, if it exceeds 80% by weight, the reaction tends to progress too quickly and become difficult to control. Here, the monomer concentration refers to the polyvalent isocyanate having two or more isocyanate groups in one molecule at the start of the reaction, the tribasic acid anhydride or its functional derivative, and the polybasic acid or its functional derivative used as necessary. The sum of the weights represents the weight fraction occupied in the system. The reduced viscosity of the resin obtained by reacting a polyvalent isocyanate having two or more isocyanate groups in one molecule with a tribasic acid anhydride or its functional derivative is 0.10 to 0.40, and can be 0.15 to 0.35. More preferred. If the reduced viscosity is less than 0.10, storage stability, heat resistance, and other practical performance will be insufficient.
If it exceeds 0.40, the resin concentration will decrease, making it impossible to satisfy one of the objects of the present invention. To adjust the reduced viscosity, prepare a calibration curve between the viscosity of the solution sampled from the reaction system (Gardner viscosity, absolute viscosity, etc.) and the reduced viscosity of the resin, and then measure the viscosity as appropriate during the reaction. can be done. Reduced viscosity is measured as follows. That is, 15 g of the resin solution (concentration approximately 10% by weight) immediately after synthesis is poured into water or methanol to form a precipitate.
Heat and dry at ℃ for 8 to 12 hours. Next, this solid resin was diluted with N,N-dimethylformamide to obtain a solution with a concentration of 0.5 g/dl, and the following was carried out using a conventional method.
Calculated by measuring the flow time using an Ostwald viscometer or Canon Fuenske viscometer at 30°C. If the reduced viscosity exceeds 0.40, the composition should be
Almost no change in viscosity is observed even after storage at 60°C for several months. On the other hand, if the reduced viscosity is set to 0.40 or less, especially if it is 0.35 or less, the viscosity increases or gels during storage as described above, causing a serious problem in practice. In order to solve this problem of storage stability, it is extremely effective to add and react alcohols. At that time, simply adding and mixing alcohols does not improve the storage stability, and the temperature is preferably 40°C or higher, more preferably 50 to 150°C, even more preferably 80 to 120°C, and preferably 0.1 to 20 hours. It is necessary to carry out the heating reaction more preferably for 0.5 to 10 hours, still more preferably for 1 to 6 hours. The reason why storage stability is improved by addition of alcohol is not fully clear, but as shown in the following formula, the isocyanate group at the end of the molecular chain is blocked and stabilized by alcohol. It is. 〜〜〜〜(Resin)〜〜〜〜NCO+ROH―→ 〜〜〜〜(Resin)〜〜〜〜NHCOOR Note that simply adding and mixing alcohols at around room temperature does not improve storage stability, but this is the reason. This is thought to be because this terminal isocyanate group is not sufficiently blocked. Furthermore, if the reaction is heated at a higher temperature or for a longer time than necessary, the heat resistance and other practical performance will deteriorate. One reason for this is that if the reaction is carried out at too high a temperature or for a long time, the amide and imide bonds in the molecular chain undergo an alcoholysis reaction with the alcohol, causing the bonds to cleave, as shown in the following formula. I wonder if there is. 〜〜〜〜CONH〜〜〜〜ROH―→ 〜〜〜〜COORH 2 N〜〜〜〜 The amount of alcohol added is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, and even more preferably 1 to 3% by weight based on the resin.
If it is less than 0.1% by weight, the effect of improving storage stability will be poor, and if it exceeds 10% by weight, practical properties such as heat resistance will deteriorate. Alcohols include methanol, ethanol, n-propanol, isopropanol, n-
Butanol, i-butanol, t-butanol,
Methyl cellosolve, ethyl cellosolve, methyl carbitol, benzyl alcohol, cyclohexanol, etc. are used. Among these, methanol, ethanol, propanol or butanol are particularly effective. The resin thus obtained is heat resistant by dissolving it in a solvent containing the compound represented by the above general formula, preferably containing 1 to 35% by weight, more preferably 5 to 25% by weight of this compound. It is considered to be a resin composition. When the compound represented by the above general formula is used as a solvent, molded products such as enameled wires have no foaming or unevenness on the surface, and the thickness is uniform and smooth, compared to when this is not used as a solvent. ,Physical,
Excellent chemical and electrical performance. The compound represented by the above general formula may be used alone as a solvent, or may be used in combination with another solvent. When used in combination with other solvents, it is preferably used in the range of 1% to 50% by weight in the solvent from the viewpoint of resin solubility and effect of imparting smoothness to the surface of the molded product. Specific examples of the compounds represented by the above general formula include dimethyl malonate, diethyl malonate, diisopropyl malonate, dibutyl malonate, dipentyl malonate, dimethyl succinate, diethyl succinate, diisopropyl succinate, dibutyl succinate, dipentyl acid, dimethyl glutarate,
Diethyl glutarate, dipropyl glutarate, dibutyl glutarate, dipentyl glutarate, dimethyl adipate, diethyl adipate, dipropyl adipate, dibutyl adipate, dipentyl adipate, dimethyl maleate, diethyl maleate, dipropyl maleate, maleic acid Dibutyl, dipentyl maleate, dimethyl fumarate, diethyl fumarate, dipropyl fumarate,
Examples include dibutyl fumarate, dipentyl fumarate, dimethyl pimelic acid, diethyl pimelic acid, and the like. Among these compounds, dimethyl succinate, dimethyl glutarate, dimethyl adipate,
It is preferable to use diethyl succinate, diethyl glutarate, and diethyl adipate. Examples of organic solvents that can be used in combination include, in addition to the organic solvents used during the resin synthesis described above, benzene, toluene, xylene, high-boiling aromatic hydrocarbons (for example, Nippon Oil's Hysol 100, Hysol 150, etc.), and γ.
-Butyrolactone as well as polyhydric alcohol derivatives represented by the general formula below can be used. R 3 COO (CHR 4 CH 2 O) nH R 3 COO (CHR 4 CH 2 O) n COR 5 R 3 O (CHR 4 CH 2 O) nR 6 R 3 O (CHR 4 CH 2 O) nH R 3 COO ( CHR 4 CH 2 O) nR 7 (However, in the above formula, R 3 , R 5 , R 6 , R 7 are lower alkyl groups, aryl groups or aralkyl groups,
R 4 is hydrogen or a methyl group, and n is an integer from 1 to 3. ) Specific examples of compounds represented by this general formula include ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate,
Diethylene glycol diacetate, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether , ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether,
Diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monoisopropyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate , diethylene glycol monoisopropyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoisopropyl ether acetate, dipropylene glycol monomethyl ether acetate, and the like. A curing accelerating catalyst can be added to the composition thus obtained, if necessary. Examples of curing accelerating catalysts include tertiary amines such as triethylamine, triethylenediamine, dimethylaniline, dimethylethanolamine, and 1,8-diaza-bicyclo(5,4,0)undecene-7 (or its organic acid salt). , organic tin compounds such as dibutyltin dilaurate and dibutyltin dioctoate, organic titanium compounds such as tetrabutoxytitanate, tetraisopropoxytitanate, or chelates and acylate compounds thereof, and trialkylphosphines. Particularly preferred are tertiary amines. Moreover, various additives such as a curing agent and a surfactant can be used in combination as necessary. Examples of the curing agent used include epoxy resins, amino resins, phenol formaldehyde resins, polyester resins having hydroxyl and/or carboxyl groups, and stabilized polyisocyanates obtained by adding active hydrogen compounds to isocyanate groups. The heat-resistant resin composition of the present invention has a solution viscosity of
When set at 25 to 30 poise (30℃), the resin concentration will be approximately 35 to 55% by weight, which is approximately 30% by weight of conventional products.
It has a high concentration compared to the above, and has excellent storage stability, surface smoothness of molded products, and various physical, chemical, and electrical properties, as shown in the examples below. The present invention will be explained below using Examples and Comparative Examples. Comparative Example 1 Diphenylmethane-4,4'-diisocyanate
459.8 g, trimellitic anhydride 351.3 g, and 1076 g of N-methyl-2-pyrrolidone were placed in 3 flasks equipped with a thermometer, stirrer, and nitrogen inlet tube, and heated to 90°C for 1.5 g.
The mixture was reacted for 1.5 hours at 100°C and for 1.0 hour at 120°C, and diluted by adding 37 g of xylene and 276 g of N,N-dimethylformamide. The resulting composition had a resin concentration (calculated from the amount of resin remaining after heating at 200° C. for 2 hours) of 37.1% by weight, and an initial viscosity of 34 poise. Comparative Example 2 7.4 g of methanol was added to 1000 g of the composition obtained in Comparative Example 1 immediately after synthesis, and the mixture was heated and reacted at 90° C. for 4 hours. The resulting composition had a resin concentration of 36.9% by weight and an initial viscosity of 34 poise. Example 1 Diphenylmethane-4,4'-diisocyanate
292.6 g of trimellitic anhydride, 223.6 g of trimellitic anhydride, and 685 g of N-methyl-2-pyrrolidone were placed in two flasks and reacted in the same manner as in Comparative Example 1. Next, 93 g of dimethyl glutarate, 40 g of dimethyl succinate,
The mixture was diluted by adding 66 g of N,N-dimethylformamide, and then 10.3 g of methanol was added, followed by a heating reaction at 90° C. for 4 hours. The resulting composition had a resin concentration of 37.0% by weight and an initial viscosity of 32 poise (the proportion of the compound represented by the general formula R 1 OOC(CH 2 )nCOOR 2 in the solvent was 15% by weight). Example 2 Diphenylmethane-4,4'-diisocyanate
294.1 g of trimellitic anhydride, 223.9 g of trimellitic anhydride, and 687 g of N-methyl-2-pyrrolidone were placed in two flasks and reacted in the same manner as in Comparative Example 1. Next, 17 g of dimethyl adipate, 49 g of dimethyl glutarate, 22 g of dimethyl succinate, and 106 g of N,N-dimethylformamide were added for dilution, and further, 8.3 g of methanol was added.
g and 2.1 g of ethanol were added thereto, and the mixture was heated and reacted at 100° C. for 5 hours. The resin concentration of the obtained composition was 37.4
The initial viscosity in weight percent was 33 poise (general formula
The proportion of the compound represented by R 1 OOC(CH 2 )nCOOR 2 is 10% by weight in the solvent). Example 3 Diphenylmethane-4,4'-diisocyanate
249.4g, diphenyl ether-4,4'-diisocyanate 44.4g, trimellitic anhydride 224.2g,
687 g of N-methyl-2-pyrrolidone was placed in two flasks and reacted in the same manner as in Comparative Example 1. Next, 124 g of dimethyl glutarate, dimethyl succinate
53g, diluted with 19g of N,N-dimethylformamide, further added 7.8g of methanol, and heated at 90°C.
The mixture was heated and reacted for 4 hours. The resulting composition had a resin concentration of 36.9% by weight and an initial viscosity of 34 poise (the proportion of the compound represented by the general formula R 1 OOC(CH 2 )nCOOR 2 in the solvent was 20% by weight). Example 4 Diphenylmethane-4,4'-diisocyanate
285.3g, trimellitic anhydride 196.2g, 3,3′,
36.6 g of 4,4'-benzophenonetetracarboxylic dianhydride and 687 g of N-methyl-2-pyrrolidone were placed in two flasks and reacted in the same manner as in Comparative Example 1. Next, 33 g of diethyl glutarate, 33 g of dimethyl glutarate, 33 g of diethyl succinate, 33 g of dimethyl succinate, N,N-dimethylformamide
Add 62g and dilute, and then add 10.4g of methanol,
2.6 g of isopropanol was added and the mixture was heated and reacted at 100° C. for 5 hours. The resin concentration of the obtained composition is
The initial viscosity was 37.1% by weight and 31 poise (the proportion of the compound represented by the general formula R 1 OOC(CH 2 )nCOOR 2 in the solvent was 15% by weight). Storage stability of the compositions obtained in Examples 1 to 4. They were coated on a copper wire with a diameter of 1 mm by a conventional method within 30 hours after synthesis, and the furnace temperature was 260/360/400°C (inlet/center/ The properties (measured according to JIS C 3003) of the enamelled copper wire obtained by repeating baking at the outlet) seven times were compared with Comparative Examples 1 and 2 and conventional commercially available polyamide-imide varnish (Hitachi Chemical Co., Ltd.).
Table 1 shows a comparison with HI-405-30 manufactured by Co., Ltd.

【衚】 電圧を枬定した。
衚から明らかなように、本発明になる組成物
は比范䟋ず比范しお貯蔵安定性が優れ、たた、
比范䟋〜ず比范しお衚面状態、絶瞁砎壊電圧
が優れおいる。曎に埓来品ず比范しお衚面状態が
向䞊し、暹脂分濃床が高くな぀おいる。 以䞊のように、本発明になる耐熱性暹脂組成物
は、耐熱性が優れおおり、暹脂分濃床が高く、貯
蔵安定性が良奜で、耐熱電線甚塗料、金属衚面保
護塗料、フむルム、積局品、接着剀等ずしお広く
工業的に応甚するこずができる。
[Table] Voltage was measured.
As is clear from Table 1, the composition of the present invention has excellent storage stability compared to Comparative Example 1, and
The surface condition and dielectric breakdown voltage are excellent compared to Comparative Examples 1 and 2. Furthermore, compared to conventional products, the surface condition is improved and the resin concentration is higher. As described above, the heat-resistant resin composition of the present invention has excellent heat resistance, high resin concentration, and good storage stability, and is suitable for use in heat-resistant wire coatings, metal surface protection coatings, films, and laminated products. , can be widely applied industrially as adhesives, etc.

Claims (1)

【特蚱請求の範囲】  䞀分子䞭に二個以䞊のむ゜シアネヌト基を有
する倚䟡む゜シアネヌトず䞉塩基酞無氎物又はそ
の機胜誘導䜓ずを反応させお埗られる還元粘床
0.10〜0.40の耐熱性暹脂にアルコヌル類を添加
し、加熱反応させた埌、䞋蚘䞀般匏で瀺される化
合物 R1OOCCH2nCOOR2 R1R2は炭玠数〜のアルキル基、は
〜10の敎数を瀺す を含有する溶媒に溶解せしめお埗られる耐熱性暹
脂組成物。  䞀分子䞭に二個以䞊のむ゜シアネヌト基を有
する倚䟡む゜シアネヌトがゞプニルメタンゞむ
゜シアネヌト又はトリレンゞむ゜シアネヌトであ
る特蚱請求の範囲第項蚘茉の耐熱性暹脂組成
物。  䞉塩基酞無氎物又はその機胜誘導䜓がトリメ
リツト酞無氎物である特蚱請求の範囲第項又は
第項蚘茉の耐熱性暹脂組成物。  アルコヌル類がメタノヌル、゚タノヌル、む
゜プロパノヌル又はブタノヌルである特蚱請求の
範囲第項、第項又は第項蚘茉の耐熱性暹脂
組成物。  アルコヌル類の添加量が暹脂100重量郚に察
しお0.1〜10重量郚である特蚱請求の範囲第項、
第項、第項、第項又は第項蚘茉の耐熱性
暹脂組成物。  耐熱性暹脂ずアルコヌル類の加熱反応条件が
枩床50〜150℃、時間〜時間である特蚱請求
の範囲第項、第項、第項、第項、第項
又は第項蚘茉の耐熱性暹脂組成物。  䞀般匏R1OOCCH2nCOOR2で瀺される化
合物がコハク酞ゞメチル、グルタル酞ゞメチル、
アゞピン酞ゞメチル、コハク酞ゞ゚チル、グルタ
ル酞ゞ゚チル又はアゞピン酞ゞ゚チルである特蚱
請求の範囲第項、第項、第項、第項、第
項又は第項蚘茉の耐熱性暹脂組成物。
[Claims] 1. Reduced viscosity obtained by reacting a polyvalent isocyanate having two or more isocyanate groups in one molecule with a tribasic acid anhydride or a functional derivative thereof.
After adding alcohol to a heat-resistant resin of 0.10 to 0.40 and heating reaction, a compound represented by the following general formula R 1 OOC (CH 2 ) nCOOR 2 (R 1 and R 2 are alkyl having 1 to 5 carbon atoms) group, n is an integer of 1 to 10). 2. The heat-resistant resin composition according to claim 1, wherein the polyvalent isocyanate having two or more isocyanate groups in one molecule is diphenylmethane diisocyanate or tolylene diisocyanate. 3. The heat-resistant resin composition according to claim 1 or 2, wherein the tribasic acid anhydride or its functional derivative is trimellitic anhydride. 4. The heat-resistant resin composition according to claim 1, 2, or 3, wherein the alcohol is methanol, ethanol, isopropanol, or butanol. 5. Claim 1, wherein the amount of alcohol added is 0.1 to 10 parts by weight per 100 parts by weight of the resin;
The heat-resistant resin composition according to item 2, 3, 4, or 5. 6. Claims 1, 2, 3, 4, 5, or 6, wherein the heating reaction conditions for the heat-resistant resin and alcohol are a temperature of 50 to 150°C and a time of 1 to 6 hours. The heat-resistant resin composition according to item 6. 7 The compound represented by the general formula R 1 OOC(CH 2 )nCOOR 2 is dimethyl succinate, dimethyl glutarate,
The heat-resistant resin composition according to claim 1, 2, 3, 4, 5, or 6, which is dimethyl adipate, diethyl succinate, diethyl glutarate, or diethyl adipate. thing.
JP58129618A 1983-07-15 1983-07-15 Heat-resistant resin composition Granted JPS6020921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58129618A JPS6020921A (en) 1983-07-15 1983-07-15 Heat-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58129618A JPS6020921A (en) 1983-07-15 1983-07-15 Heat-resistant resin composition

Publications (2)

Publication Number Publication Date
JPS6020921A JPS6020921A (en) 1985-02-02
JPS6322217B2 true JPS6322217B2 (en) 1988-05-11

Family

ID=15013919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58129618A Granted JPS6020921A (en) 1983-07-15 1983-07-15 Heat-resistant resin composition

Country Status (1)

Country Link
JP (1) JPS6020921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111437U (en) * 1989-02-23 1990-09-06

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443519A (en) * 1987-08-11 1989-02-15 Mitsui Toatsu Chemicals Production of heat-resistant polymer
JPWO2013065714A1 (en) * 2011-10-31 2015-04-02 東掋玡株匏䌚瀟 Polyamideimide resin composition for compression molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111437U (en) * 1989-02-23 1990-09-06

Also Published As

Publication number Publication date
JPS6020921A (en) 1985-02-02

Similar Documents

Publication Publication Date Title
US4497944A (en) Process for producing polyamide-imide resin
US8685536B2 (en) Polyamide-imide resin insulating coating material, insulated wire and method of making the same
US4505980A (en) Insulated wire
JP2004506796A (en) Polyamide-imide resin solution and its use for producing wire enamel
US4447589A (en) Method for preparing polyamide-imide resin
US4384061A (en) Thermosetting polycondensates containing amide and imide groups, and their use
JPS6322217B2 (en)
US4379879A (en) Heat resistant resin composition and insulating wire using the same which is a composition of an active hydrogen compound and the reaction product of a polyvalent isocyanate and a polyvalent carboxylic acid anhydride in an organic solvent
JP4341113B2 (en) Polyamideimide resin composition and film forming material containing the same
JP5477327B2 (en) Method for producing polyimide resin
JPH0153975B2 (en)
JPS5953304B2 (en) Covered conductor and its manufacturing method
JPS6336610B2 (en)
JPS59126422A (en) Polyamide-imide resin composition
JPS61166854A (en) Heat-resistant resin composition
JPH02218722A (en) Heat-resistant resin composition
JP2012171979A (en) Resin composition for electric insulation, and enamel wire
JPH08143663A (en) Heat-resistant resin composition
JP2010215785A (en) Heat-resistant polyamideimide resin and seamless tubular body, coating film, coating film plate, and heat-resistant coating material using the same
JPS606366B2 (en) Method for producing polyamide-imide resin and water-soluble polyamide-imide resin
JPH01182364A (en) Heat resistant resin composition
JP2011236384A (en) Heat-resistant resin composition, coating material, and enameled wire using the same
JPS5822053B2 (en) Water-soluble resin composition
JP2002155204A (en) Heat-resistant resin composition and coating
JP2011225741A (en) Polyamideimide resin solution and method for producing the same, resin composition, and coating composition