JPS63219252A - Multilevel qam communication system - Google Patents

Multilevel qam communication system

Info

Publication number
JPS63219252A
JPS63219252A JP62052151A JP5215187A JPS63219252A JP S63219252 A JPS63219252 A JP S63219252A JP 62052151 A JP62052151 A JP 62052151A JP 5215187 A JP5215187 A JP 5215187A JP S63219252 A JPS63219252 A JP S63219252A
Authority
JP
Japan
Prior art keywords
error correction
differential logic
decoder
bit
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62052151A
Other languages
Japanese (ja)
Other versions
JP2548932B2 (en
Inventor
Eisuke Fukuda
英輔 福田
Noboru Iizuka
昇 飯塚
Sadao Takenaka
竹中 貞夫
Yasuhisa Nakamura
康久 中村
Yoichi Saito
洋一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujitsu Ltd
Priority to JP62052151A priority Critical patent/JP2548932B2/en
Publication of JPS63219252A publication Critical patent/JPS63219252A/en
Application granted granted Critical
Publication of JP2548932B2 publication Critical patent/JP2548932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve an error rate characteristic with comparatively simple constitution, by providing a required error correction encoder/decoder in the inside of a differential logic. CONSTITUTION:In a multilevel Quadrature Amplitude Modulation(QAM) communication system on which the differential ligic is applied setting a multivalue as Z<n>, the error correction encoder 2 which performs error encoding independently for each of (n) series is provided in the inside of a differential logic part 1 on a transmission side, and a multilevel QAM signal is transmitted via the encoder 2 and a transmission modulation part 3. Also, on a reception side, the error correction decoder 5 is provided in the inside of a differential logic part 6 similarly. ln such a way, the expansion of a one-bit error to a two-bit error due to the continuance of the one-bit error which occurs in a case where the error correction encoder/decoder is arranged outside the logic can be prevented from being generated, thereby, no two-bit error correction circuit, etc., is required, and it is possible to heighten an error rate characteristic with comparatively simple constitution.

Description

【発明の詳細な説明】 〔概要〕 多値QAM通借方式に於いて、差動論理を施すと共に、
差動論理の内側に於いて、多値数を2nとした時のn系
列のそれぞれについて独立に、送信側では誤り訂正符号
化、受信側では誤り訂正復号化を行うもので、比較的簡
単な構成で多値QAMiill信方式に於ける誤り率特
性を改善することができるものである。
[Detailed Description of the Invention] [Summary] In the multi-level QAM borrowing system, differential logic is applied and
Inside the differential logic, error correction encoding is performed on the transmitting side and error correction decoding is performed on the receiving side independently for each of the n sequences when the multilevel number is 2n, and it is a relatively simple method. This configuration can improve the error rate characteristics in the multilevel QAM Ill communication system.

〔産業上の利用分野〕[Industrial application field]

本発明は、ディジクル信号を多値直交振幅変調を用いて
伝送する多値QAM通信方式に関するものである。
The present invention relates to a multilevel QAM communication system for transmitting digital signals using multilevel orthogonal amplitude modulation.

多値CAM (Quadrature Amplitu
de  Modu−1ation)  (直交振幅変調
〕通信方式は、I、Qチャネルの直交したm値の振幅変
調信号を合成した多値QAM信号を送信するものであり
、この多値QAM信号は、m2 (=2”)個の信号点
を有する。例えば、m=8  (n=6)とすると、6
4個の信号点を有する64値QAM信号となり、m=1
6(n=8)とすると、256個の信号を有する256
値QAM信号となる。
Multivalued CAM (Quadrature Amplitude
The (orthogonal amplitude modulation) communication system transmits a multi-level QAM signal that is a combination of orthogonal m-value amplitude modulation signals of I and Q channels, and this multi-level QAM signal has m2 ( = 2") signal points. For example, if m = 8 (n = 6), then 6
It becomes a 64-value QAM signal with 4 signal points, m=1
6 (n=8), 256 with 256 signals
It becomes a value QAM signal.

受信側では、この多値QAM信号から搬送波を再生し、
互いに位相の直交する再生搬送波を用いて復調し、多値
レヘル識別によって、1.Qチャネルの信号の合計n系
列のディジタル信号を得る。その場合に、再生搬送波の
引込位相は、0度。
On the receiving side, a carrier wave is regenerated from this multilevel QAM signal,
Demodulation is performed using regenerated carrier waves whose phases are orthogonal to each other, and multi-level level identification is performed.1. A total of n series of digital signals of Q channel signals are obtained. In that case, the pull-in phase of the reproduced carrier wave is 0 degrees.

90度、180度、270度のいずれかになるという位
相不確定性を有する為、送信信号に差動輪理を施す方式
が一般的である。又隣接信号点間の識別誤りが1ビツト
以内となるように、グレイ符号が採用されている。
Since there is a phase uncertainty of 90 degrees, 180 degrees, or 270 degrees, a common method is to apply differential processing to the transmitted signal. Furthermore, a Gray code is employed so that the identification error between adjacent signal points is within 1 bit.

又多値QAM通信方式に於いては、その多値数を大きく
することにより、伝送容量を増大できるが、反面雑音や
伝送歪による誤り率特性の劣化が著しく大きくなる。従
って、多値数を大きくした場合にも、誤り率特性が劣化
しない方式が要望されている。
In the multilevel QAM communication system, the transmission capacity can be increased by increasing the number of levels, but on the other hand, the deterioration of error rate characteristics due to noise and transmission distortion becomes significant. Therefore, there is a need for a system in which the error rate characteristics do not deteriorate even when the number of multilevel values is increased.

〔従来の技術〕[Conventional technology]

従来の多値QAM通信方式は、前述のように、受信側の
再生搬送波の位相不確定性の影響を受けないように差動
論理を施す方式が一般的である。
As described above, conventional multilevel QAM communication systems generally employ differential logic so as not to be affected by the phase uncertainty of the recovered carrier wave on the receiving side.

又m=8 (n=6)とした時の信号点は、第4図に示
すように、I、  Q軸により分けられた各象限(I)
〜(IV)内にそれぞれ16個となり、合計で64個と
なる。
Also, when m = 8 (n = 6), the signal points are in each quadrant (I) divided by the I and Q axes, as shown in Figure 4.
There are 16 pieces in each of ~(IV), making a total of 64 pieces.

又各象限(I)〜(IV)内の信号点の符号はグレイ符
号が用いられており、隣接する信号点の符号は1ビツト
異なるだけとなるから、誤りがあったとしても、1ビッ
ト誤りとなる。
Also, Gray codes are used for the codes of signal points in each quadrant (I) to (IV), and the codes of adjacent signal points differ by only 1 bit, so even if there is an error, it will be a 1-bit error. becomes.

又第4図に示す信号点の配置を90度の整数倍だけ回転
しても、各象限(I)〜(TV)内の符号配置が同じく
なるように、即ち、回転対称符号配置となるように、各
信号点の符号を選定する方式が多く採用されている。こ
の回転対称符号配置では、象限を示す2ビツトについて
のみ差動論理を施すことになるから、差動論理の処理が
簡単となる。
Furthermore, even if the arrangement of signal points shown in Fig. 4 is rotated by an integral multiple of 90 degrees, the code arrangement in each quadrant (I) to (TV) will be the same, that is, the code arrangement will be rotationally symmetrical. In many cases, a method is adopted in which the sign of each signal point is selected. With this rotationally symmetrical code arrangement, differential logic is applied only to the two bits representing the quadrant, so differential logic processing becomes simple.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

多値QAM信号の多値数2fiを大きくするに従って、
同一のS/Nに対してビット誤り率が大きくなる。例え
ば、第5図に於いて、曲線aは4値QAM (4相PS
Kと等価)、bは16値QAM、Cは64値QAMSd
は256値QAMのそれぞれのビット誤り率の理論値の
特性曲線を示し、64値CAMの場合の実際のピント誤
り率は、点線曲線eに示すように理論値より大きくなり
、曲線Cをシフトした特性に近似する。この64値QA
Mより多値数の大きい256値QAMに於いては、実際
のビット誤り率は、点線曲線fに示すように、理論値よ
り更に大きくなると共に、理論値の曲線dとは異なる傾
向を示すものとなる。即ち、S/Nを大きくしても、実
際のビット誤り率の減少は理論値に比較して僅かとなる
As the multilevel number 2fi of the multilevel QAM signal increases,
The bit error rate increases for the same S/N. For example, in FIG. 5, curve a is 4-phase QAM (4-phase PS
(equivalent to K), b is 16-value QAM, C is 64-value QAMSd
shows the characteristic curve of the theoretical value of each bit error rate of 256-value QAM, and the actual focus error rate in the case of 64-value CAM is larger than the theoretical value as shown by the dotted line curve e, and the curve C is shifted. Approximate characteristics. This 64-value QA
In 256-value QAM where the number of multi-values is larger than M, the actual bit error rate becomes even larger than the theoretical value, as shown by the dotted curve f, and shows a different tendency from the theoretical value curve d. becomes. That is, even if the S/N is increased, the actual bit error rate decreases only slightly compared to the theoretical value.

256値CAMのように、多値数2nを大きくした場合
に於けるビット誤り率特性の劣化を改善する為に、誤り
訂正符号を用いることが提案された。即ち、送信側でビ
ット誤り訂正符号化を行って送信し、受信側ではビット
誤り訂正復号化を行うことにより、ビット誤り率を改善
するものである。
It has been proposed to use an error correction code in order to improve the deterioration of bit error rate characteristics when the multi-level number 2n is increased as in the case of H.256-level CAM. That is, the bit error rate is improved by performing bit error correction encoding on the transmitting side and performing bit error correction decoding on the receiving side.

このような誤り訂正符号を適用する場合、差動論理の外
側にビット誤り訂正符号/復号器を設けることが考えら
れる。即ち、送信側では誤り訂正符号化を行った後に差
動論理を施し、受信側では差動論理の復号を行った後に
、誤り訂正の復号化を行うものである。
When applying such an error correction code, it is conceivable to provide a bit error correction code/decoder outside the differential logic. That is, on the transmitting side, differential logic is applied after performing error correction encoding, and on the receiving side, after performing differential logic decoding, error correction decoding is performed.

しかし、この方式は、1ビット誤りが連続する2ビット
誤りに拡大される為、誤り訂正符号としく5) ては、2ビット誤り訂正符号を用いるか、又は1ビット
誤り訂正符号をインターリーバと併用して用いることが
不可欠となる。一般に、2ビット誤り訂正符号は、1ビ
ット誤り訂正符号に比べて冗長度が約2倍大きく、又復
号回路規模も著しく増大するという欠点がある。一方、
連続する2ビット誤りは1ビット誤りとなるから、1ビ
ット誤り訂正符号を用いても、正しく復号することがで
きるが、その場合、先に受信した信号を、復号が完了す
るまで保持しておく必要があり、回路規模が大きくなる
欠点がある。
However, in this method, a 1-bit error is expanded to a consecutive 2-bit error. It is essential to use them in combination. In general, a 2-bit error correction code has the disadvantage that it has about twice the redundancy as a 1-bit error correction code, and also significantly increases the scale of the decoding circuit. on the other hand,
Since consecutive 2-bit errors become 1-bit errors, it is possible to decode correctly even if a 1-bit error correction code is used, but in that case, the signal received first is held until the decoding is completed. This has the disadvantage of increasing the circuit scale.

又前述と反対に、差動論理の内側にビット誤り訂正符号
/復号器を設けることも考えられる。即ち、送信側では
、差動論理を施した後に誤り訂正符号化を行い、受信側
では、ビット誤り訂正復号化を行った後に差動論理を施
すものである。
Contrary to the above, it is also conceivable to provide a bit error correction code/decoder inside the differential logic. That is, on the transmitting side, error correction encoding is performed after applying differential logic, and on the receiving side, differential logic is applied after performing bit error correction decoding.

この場合、差動論理は再生搬送波の位相不確定性の影響
を除く為のものである。差動論理を施した後に、ビット
誤り訂正符号化を行う場合は、信号が反転しても、正し
く誤り訂正が行われるような誤り訂正符号、所謂トラン
スペアレントな符号を用いる必要がある。この場合の符
号としては2元符号と多元符号とに分けることができる
。後者の多元符号は、回転対称符号との関係から符号系
に制約があり、現在では数種類の符号系が知られている
に過ぎない。更に、多元の乗除算を行う必要があるから
回路構成が複雑となる欠点がある。
In this case, the differential logic is for eliminating the influence of phase uncertainty of the recovered carrier. When bit error correction coding is performed after applying differential logic, it is necessary to use an error correction code, a so-called transparent code, that allows correct error correction even if the signal is inverted. The codes in this case can be divided into binary codes and multi-element codes. The latter multi-dimensional code has restrictions on its code system due to its relationship with rotationally symmetric codes, and only a few types of code systems are currently known. Furthermore, since it is necessary to perform multiplication and division of multiple elements, there is a drawback that the circuit configuration becomes complicated.

又前者の2元符号は、そのまま適用すると、回転対称符
号との整合性が良くなく、象限を横切るような誤りに対
して訂正することができない欠点がある。
Furthermore, if the former binary code is applied as is, it does not match well with rotationally symmetric codes and has the disadvantage that it cannot correct errors that cross quadrants.

本発明は、トランスペアレントな誤り訂正符号化復号化
を可能とし、多値QAM通信に於ける誤り率を改善する
ことを目的とするものである。
The present invention aims to enable transparent error correction coding and decoding and improve the error rate in multilevel QAM communication.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の多値QAM通信方式は、差動論理の内側に、各
系列について独立に誤り訂正符号/復号器を設けたもの
であり、第1図を参照して説明する。多値数を2nとし
た時、送信側では、nビットのデータD1〜Dnを差動
論理部1により差動論理を行う。その出力に対してn系
列の誤り訂正符号器2によりn系列独立に誤り訂正符号
化を行い、送信変調部3に加える。送信変調部3では、
■、Qチャネル毎にDA変換等により多値化し、このI
、Qチャネルの信号を互いに直交する搬送波により変調
した後に合成し、多値QAM信号を形成して送出する。
The multilevel QAM communication system of the present invention has an error correction code/decoder provided independently for each series inside the differential logic, and will be explained with reference to FIG. When the multilevel number is 2n, the differential logic unit 1 performs differential logic on n-bit data D1 to Dn on the transmitting side. The output is subjected to error correction coding independently by the n-series error correction encoder 2 and is applied to the transmission modulation section 3. In the transmission modulation section 3,
③ Multi-level conversion is performed by DA conversion etc. for each Q channel, and this I
, Q channel signals are modulated by mutually orthogonal carrier waves and then combined to form a multilevel QAM signal and send it out.

受信側では、受信復調部4に於いて受信多値QAM信号
から搬送波再生を行い、互いに直交する再生搬送波によ
り復調し、AD変換等により多値レベル識別を行い、合
計でnビットのデータを得る。その出力に対して誤り訂
正復号器5によりn系列独立にビット誤りを訂正して差
動論理復号部6に加え、差動論理の復号を行って、nビ
ットのデータD1〜Dnを出力する。
On the receiving side, a reception demodulator 4 performs carrier wave recovery from the received multi-level QAM signal, demodulates it using mutually orthogonal recovered carrier waves, performs multi-level discrimination by AD conversion, etc., and obtains a total of n bits of data. . The error correction decoder 5 independently corrects bit errors in n series of the outputs, and inputs them to the differential logic decoding section 6, where differential logic decoding is performed and n-bit data D1 to Dn are output.

〔作用〕[Effect]

差動論理部1により差動論理が施され、その出力に対し
て各系列毎に独立にトランスペアレントな誤り訂正符号
化が行われるから、差動論理を施した関係が維持されて
送信変調部3に加えられることになり、差動論理部1と
送信変調部3との間はトランスペアレントな誤り訂正符
号化が行われることになる。又その誤り訂正符号は2元
符号であるから、回路構成も簡単となる。又受信側に於
いても、受信復調部4と差動論理復号部6との間に誤り
訂正復号器5が設けられ、復調出力の各系列について独
立に誤り訂正が行われて、ビット誤り率が改善され、差
動論理を施した関係が維持されて差動論理復号部6に加
えられるから、再生搬送波の位相不確定性の影響を除く
復号化を行うことができる。
Differential logic is applied to the differential logic by the differential logic unit 1, and transparent error correction encoding is performed independently for each sequence on the output thereof, so that the relationship in which the differential logic is applied is maintained and the transmission modulation unit 3 Transparent error correction encoding is performed between the differential logic unit 1 and the transmission modulation unit 3. Furthermore, since the error correction code is a binary code, the circuit configuration is also simple. Also, on the receiving side, an error correction decoder 5 is provided between the reception demodulation section 4 and the differential logic decoding section 6, and error correction is performed independently on each series of demodulated output to improve the bit error rate. is improved and the relationship applied with differential logic is maintained and applied to the differential logic decoding section 6, so decoding can be performed that eliminates the influence of phase uncertainty of the reproduced carrier wave.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例について詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の送信装置の要部ブロック図であり、多
値数2′″のnを8とした256値CAMの場合につい
て示すものである。同図に於いて、11は差動論理部、
12−1〜12−8は誤り訂正符号器、13はD/A変
換器、14.15は低域フィルタ、16.17は変調器
、18はπ/2の移相器、19は基準搬送波発生器、2
0は合成器である。
FIG. 2 is a block diagram of the essential parts of the transmitter of the present invention, and shows the case of a 256-value CAM where n of the multi-value number 2'' is 8. In the figure, 11 is a differential logic department,
12-1 to 12-8 are error correction encoders, 13 is a D/A converter, 14.15 is a low-pass filter, 16.17 is a modulator, 18 is a π/2 phase shifter, and 19 is a reference carrier wave. generator, 2
0 is a synthesizer.

8系列の送信データD1〜D8は、差動論理部11に於
いて差動論理を施される。又必要に応じて象限内グレイ
符号化回転対称符号配置となる符号化が行われる。8系
列の出力信号は、8系列の誤り訂正符号器12−1〜1
2−8によりそれぞれ1ビツト以上の誤り訂正能力を有
する符号に変換される。例えば、ランダム誤り訂正ブロ
ック符号に変換され、ブロック長は、要求される誤り率
、冗長度及びハードウェア規模等により選定される。
The eight series of transmission data D1 to D8 are subjected to differential logic in the differential logic section 11. Further, if necessary, encoding is performed to provide a rotationally symmetric code arrangement for intra-quadrant Gray encoding. The 8 series output signals are sent to 8 series error correction encoders 12-1 to 1.
2-8, each code is converted into a code having error correction capability of 1 bit or more. For example, it is converted into a random error correction block code, and the block length is selected depending on the required error rate, redundancy, hardware scale, etc.

誤り訂正符号器12−1〜12−8の出力信号は、D/
A変換器13により16レベルのアナログ信号に変換さ
れる。即ち、4系列毎の4ビツトによって表される16
値のT、Qチャネルの信号に変換される。この2系列の
16値の信号は、低域フィルタ14.15によりスペク
トラム整形されて変調器16.17に加えられる。
The output signals of the error correction encoders 12-1 to 12-8 are D/
The A converter 13 converts the signal into a 16-level analog signal. That is, 16
The signal is converted into T and Q channel signals. These two series of 16-value signals are spectrum-shaped by a low-pass filter 14.15 and then applied to a modulator 16.17.

変調器16には、基Y$搬送波発生器19からの搬送波
がπ/2の移相器18により90度移相された搬送波が
加えられ、又変調器17には基準搬送波発生器19から
の搬送波が直接的に加えられ、各変調器1.6.17に
於いて直交した搬送波によって変調を行うことになり、
その変調出力信号は合成器20により合成されて、25
6値QAM信号となる。
The modulator 16 is supplied with a carrier wave from the base Y$ carrier generator 19, which is phase-shifted by 90 degrees by the π/2 phase shifter 18, and the modulator 17 is supplied with the carrier wave from the base Y$ carrier generator 19. The carrier waves are applied directly and modulation is carried out by orthogonal carrier waves in each modulator 1.6.17,
The modulated output signals are combined by a combiner 20 and 25
It becomes a 6-level QAM signal.

差動論理部11により差動論理処理された信号について
、各系列を一括して誤り訂正符号化を行うものではなく
、各系列対応に二元符号のトランスペアレントな誤り訂
正符号化を行うものである。
For signals subjected to differential logic processing by the differential logic unit 11, error correction encoding is not performed on each series at once, but transparent error correction encoding using a binary code is performed for each series. .

第3図は本発明の実施例の受信装置の要部ブロック図で
あり、21は分配器、22.23は復調器、24はπ/
2の移相器、25は搬送波再生部、26.27は低域フ
ィルタ、28.29はA/D変換器、30−1〜30−
8は誤り訂正復号器、31は差動論理復号部である。
FIG. 3 is a block diagram of the main parts of the receiving device according to the embodiment of the present invention, in which 21 is a distributor, 22 and 23 are demodulators, and 24 is a π/
2 is a phase shifter, 25 is a carrier wave regeneration unit, 26.27 is a low-pass filter, 28.29 is an A/D converter, 30-1 to 30-
8 is an error correction decoder, and 31 is a differential logic decoder.

受信256値QAM信号は、分配器21により2分岐さ
れてそれぞれ復調器22.23に加えられ、搬送波再生
部25からの再生搬送波が、復調器23には直接、復調
器24には移相器24を介してそれぞれ加えられ、位相
検波によってI、  Qチャネルに復調され、低域フィ
ルタ26.27により高調波成分が除去されてA/D変
換器28゜29に加えられる。この実施例に於ける搬送
波再生部25は、A/D変換器28.29の出力を用い
て搬送波を再生する構成の場合を示すものであるが、他
の公知の種々の構成を用いることも勿論可能である。
The received 256-value QAM signal is split into two parts by a divider 21 and applied to demodulators 22 and 23, respectively, and the recovered carrier wave from the carrier wave regeneration unit 25 is directly sent to the demodulator 23 and the demodulator 24 is sent to the phase shifter. 24, demodulated into I and Q channels by phase detection, harmonic components removed by low-pass filters 26 and 27, and added to A/D converters 28 and 29. Although the carrier wave regenerating section 25 in this embodiment has a configuration in which the carrier wave is regenerated using the outputs of the A/D converters 28 and 29, various other known configurations may also be used. Of course it is possible.

低域フィルタ26.27を介してA/D変換器28.2
9に加えられた16値レヘルのI、Qチャネルの復調信
号は、4ビツト構成のディジタル信号に変換され、それ
ぞれ誤り訂正復号器30−1〜30−8に加えられ、送
信側の誤り訂正符号器12−1〜12−8による符号化
に対応した復号化が行われ、ビット誤りが訂正されて差
動論理復号部31に加えられる。
A/D converter 28.2 via low pass filter 26.27
The demodulated signals of the I and Q channels of the 16-level level added to the I/Q channel are converted into digital signals of 4-bit configuration, and are applied to the error correction decoders 30-1 to 30-8, respectively, and are converted into error correction codes on the transmitting side. The decoding corresponding to the encoding by the decoders 12-1 to 12-8 is performed, bit errors are corrected, and the resulting data is applied to the differential logic decoding unit 31.

差動論理復号部31では、差動論理を復号して搬送波再
生部25に於ける再生搬送波の90度の位相不確定性の
影響を除去し、送信側でダレイ符号化を行っている場合
には、象限内グレイ符号回転対称符号配置の信号の復号
を行って、データD1〜D8を出力する。
The differential logic decoding unit 31 decodes the differential logic to remove the influence of the 90 degree phase uncertainty of the recovered carrier wave in the carrier wave recovery unit 25, and when delay encoding is performed on the transmitting side. decodes a signal with an intra-quadrant Gray code rotationally symmetric code arrangement and outputs data D1 to D8.

誤り訂正復号器30−1〜30−8は、A/D変換器2
8.29により16値レヘルの復調信号が4ビツト構成
のディジタル信号に変換された各ピント系列について誤
り訂正を行うものであり、差動論理の関係を変更するも
のでばないから、差動論理復号部31により、再生搬送
波の位相不確定性による影響を除く処理を行うことがで
きる。
The error correction decoders 30-1 to 30-8 are A/D converters 2
8.29, the 16-level demodulated signal is converted into a 4-bit digital signal, and the error correction is performed for each focus series, and it does not change the relationship of the differential logic, so the differential logic The decoding unit 31 can perform processing to remove the influence of phase uncertainty of the reproduced carrier wave.

前述の実施例は、多値数2・を256とした場合を示す
ものであるが、n−10として1024値QAM信号等
の更に多値数を大きくした場合に対しても適用すること
ができるものである。
The above embodiment shows the case where the multilevel number 2 is 256, but it can also be applied to a case where the multilevel number is even larger, such as a 1024-value QAM signal with n-10. It is something.

上記では、差動論理を施された信号に対して象限内グレ
イ符号化を行う場合について述べたが、必ずしもこれに
限定されず、他の符号化を行っても良い。その場合、差
動論理符号部、差動論理復号部のうち、」二記の符号化
に関する部分を符号化の種類に応じて変えれば良い。
Although the case where intra-quadrant Gray encoding is performed on a signal subjected to differential logic is described above, the present invention is not necessarily limited to this, and other encoding may be performed. In that case, of the differential logic encoding section and the differential logic decoding section, the section related to encoding described in "2" may be changed depending on the type of encoding.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、多値数を2nとし、差
動論理を施した多値QAM信号を伝送する多値QAM通
信方弐に於いて、差動論理の内側、即ち、送信側の差動
論理部1と、受信側の差動論理復号部6との間に位置す
るように、且っn系列のそれぞれに対し独立に誤り訂正
符号の符号化復号化を行う誤り訂正符号/復号器、即ち
、誤り訂正符号器2及び誤り訂正復号器5を設けたもの
であり、差動論理の外側に誤り訂正符号/復号器を設け
る場合に比較して、■ビット誤り訂正符号を用いること
が可能となって、構成が簡単化される利点がある。
As explained above, the present invention provides a multi-value QAM communication method 2 in which the multi-value number is 2n and multi-value QAM signals subjected to differential logic are transmitted. An error correction code/error correction code is located between the differential logic unit 1 of A decoder, that is, an error correction encoder 2 and an error correction decoder 5, is provided.Compared to the case where an error correction code/decoder is provided outside the differential logic, ■Bit error correction code is used. This has the advantage of simplifying the configuration.

差動論理の内側に誤り訂正符号/復号器を設けて多元符
号を用いる場合に比較して、二元符号の場合は、誤り訂
正符号化及び復号化の構成が簡単となる。更に、再生搬
送波の位相不確定性があっても誤り訂正ができる所謂ト
ランスペアレントな符号として、比較的多くの種類の誤
り訂正符号を用いることが可能となる利点がある。
Compared to the case where an error correction code/decoder is provided inside the differential logic and a multi-dimensional code is used, in the case of a binary code, the configuration of error correction coding and decoding is simplified. Furthermore, there is an advantage that relatively many types of error correction codes can be used as so-called transparent codes that can perform error correction even when there is phase uncertainty of a reproduced carrier wave.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理ブロック図、第2図は本発明の実
施例の送信装置の要部ブロック図、第3図は本発明の実
施例の受信装置の要部ブロック図、第4図は64値QA
Mの符号配置説明図、第5図はビット誤り率特性曲線図
である。 1は差動論理部、2は誤り訂正符号器、3は送信変調部
、4は受信復調部、5は誤り訂正復号器、6は差動論理
復号部である。
FIG. 1 is a block diagram of the principle of the present invention, FIG. 2 is a block diagram of main parts of a transmitter according to an embodiment of the invention, FIG. 3 is a block diagram of main parts of a receiver according to an embodiment of the invention, and FIG. is 64-value QA
An explanatory diagram of the code arrangement of M, and FIG. 5 is a bit error rate characteristic curve diagram. 1 is a differential logic section, 2 is an error correction encoder, 3 is a transmission modulation section, 4 is a reception demodulation section, 5 is an error correction decoder, and 6 is a differential logic decoder.

Claims (1)

【特許請求の範囲】 多値数を2^n(n=正の整数)とし、差動論理を施し
た多値QAM通信方式に於いて、 前記差動論理の内側に、n系列のそれぞれについて独立
に誤り訂正符号の符号化復号化を行う誤り訂正符号/復
号器を設けた ことを特徴とする多値QAM通信方式。
[Claims] In a multi-value QAM communication system in which the number of multi-values is 2^n (n = positive integer) and differential logic is applied, inside the differential logic, for each of the n series, A multilevel QAM communication system characterized by having an error correction code/decoder that independently encodes and decodes error correction codes.
JP62052151A 1987-03-09 1987-03-09 Multilevel QAM communication system Expired - Lifetime JP2548932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052151A JP2548932B2 (en) 1987-03-09 1987-03-09 Multilevel QAM communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052151A JP2548932B2 (en) 1987-03-09 1987-03-09 Multilevel QAM communication system

Publications (2)

Publication Number Publication Date
JPS63219252A true JPS63219252A (en) 1988-09-12
JP2548932B2 JP2548932B2 (en) 1996-10-30

Family

ID=12906862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052151A Expired - Lifetime JP2548932B2 (en) 1987-03-09 1987-03-09 Multilevel QAM communication system

Country Status (1)

Country Link
JP (1) JP2548932B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168509A (en) * 1989-04-12 1992-12-01 Kabushiki Kaisha Toshiba Quadrature amplitude modulation communication system with transparent error correction
JPH0548658A (en) * 1990-10-09 1993-02-26 Philips Gloeilampenfab:Nv Digital signal modulation/demodulation system
US5862175A (en) * 1995-11-30 1999-01-19 Nippon Telegraph And Telephone Corporation Digital transmission apparatus using differential coding and forward error correction
US6147375A (en) * 1992-02-05 2000-11-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421211A (en) * 1977-07-19 1979-02-17 Nec Corp Error correction decoder for differential code
JPS5951645A (en) * 1982-09-17 1984-03-26 Nec Corp System and apparatus for coding and decoding of error correction multi-value

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421211A (en) * 1977-07-19 1979-02-17 Nec Corp Error correction decoder for differential code
JPS5951645A (en) * 1982-09-17 1984-03-26 Nec Corp System and apparatus for coding and decoding of error correction multi-value

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168509A (en) * 1989-04-12 1992-12-01 Kabushiki Kaisha Toshiba Quadrature amplitude modulation communication system with transparent error correction
JPH0548658A (en) * 1990-10-09 1993-02-26 Philips Gloeilampenfab:Nv Digital signal modulation/demodulation system
US6147375A (en) * 1992-02-05 2000-11-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US6476447B1 (en) 1992-02-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device including a transistor
US5862175A (en) * 1995-11-30 1999-01-19 Nippon Telegraph And Telephone Corporation Digital transmission apparatus using differential coding and forward error correction

Also Published As

Publication number Publication date
JP2548932B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US5502744A (en) Data coding system
US3983485A (en) Multi-phase and multi-amplitude level modulator and modulation and demodulation methods
JP2845705B2 (en) Multi-level coded modulation communication device
JPH04322592A (en) Method and apparatus for encoding modulation
JPH028503B2 (en)
US3947767A (en) Multilevel data transmission system
CA2052906A1 (en) System for modulating/demodulating digital signals transmitted with encoded modulation
US4993046A (en) Coded modulation communication system
JPH0642682B2 (en) Error correction multilevel encoding / decoding device
JPH07114419B2 (en) QAM communication system
JPH06501348A (en) coded QAM system
US4613860A (en) Coder-decoder for purged binary block codes
US4346472A (en) Method and apparatus for eliminating double bit errosion in a differential phase shift keying system
JPS63219252A (en) Multilevel qam communication system
US6370201B1 (en) Simplified branch metric calculation in pragmatic trellis decoders
JPS60134545A (en) Data communication signal structure
US4406009A (en) Method and apparatus for converting binary information into a single-sideband 3-level correlative signal
WO1999044342A1 (en) Demodulator of receiver
JPH02288752A (en) Multilevel qam communication system
JPH0648830B2 (en) Modulator
JPS5923946A (en) Error correcting system of digital signal transmission
US4800576A (en) Convolution data recovery circuit
JPH0795762B2 (en) Multilevel QAM communication system
JPH05304542A (en) Demodulation method and demodulator
RU2210858C2 (en) Method for noise-immune data transmission

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term