JPS63218200A - Superconductive sor generation device - Google Patents

Superconductive sor generation device

Info

Publication number
JPS63218200A
JPS63218200A JP5078887A JP5078887A JPS63218200A JP S63218200 A JPS63218200 A JP S63218200A JP 5078887 A JP5078887 A JP 5078887A JP 5078887 A JP5078887 A JP 5078887A JP S63218200 A JPS63218200 A JP S63218200A
Authority
JP
Japan
Prior art keywords
electromagnet
ring
sor
superconductive
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5078887A
Other languages
Japanese (ja)
Inventor
Eiichi Shiba
栄一 芝
Takeru Ikeda
池田 ▲長▼
Takashi Shimano
島野 隆
Shinichi Mukoyama
晋一 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5078887A priority Critical patent/JPS63218200A/en
Publication of JPS63218200A publication Critical patent/JPS63218200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To optimize the electromagnet arrangement of an accumulation ring for miniaturizing and energy saving, by forming the electromagnet arrangement consisting of superconductive electromagnets in an accumulation ring having rotational symmetry in three phases and using a super conductive acceleration tube. CONSTITUTION:In an accumulation ring, the shape of the ring has rotational symmetry in three phases in relation to the center, while a septum electromagnet 10, a wiggler electromagnet 9 and a superconductive acceleration cavity 8 are arranged respectively in long linear space at three spots. By such a ring form and arrangement of constituent elements, a compact accumulation ring, in which necessary constituent elements are fully arranged without any needless/space, can be obtained. Further, since electronic energy is proportional to a product of a magnetic field made by a deflection electromagnet and an orbital radius, the orbital radius can be reduced while miniaturizing the accumlation ring by making the deflection electromagnet 7 superconductive and heightening the magnetic flield intensity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分析、計測、加工等のSOR利用装置に対し
てSORを供給するためのSOR発生装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an SOR generation device for supplying SOR to SOR utilization devices such as analysis, measurement, and processing.

〔従来の技術〕[Conventional technology]

電子蓄積リングの中を光速に近い速度で走る電子が、偏
向電磁石によって軌道を曲げられるとき、強力な電磁波
を発生する。この電磁波はSORと呼ばれ、その波長や
強度は電子の持つエネルギーや電流量、リングの半径、
磁界の強さなどによって決まる。
When electrons traveling at near the speed of light inside an electron storage ring have their orbits bent by a bending magnet, they generate powerful electromagnetic waves. This electromagnetic wave is called SOR, and its wavelength and intensity depend on the energy and current of the electrons, the radius of the ring,
Determined by factors such as the strength of the magnetic field.

SORの発生装置は、本来高エネルギー物理の実験装置
であったが、最近、分析、計測、加工等の工業用の小型
SOR@777に対する要求が強(なってきた。
SOR generators were originally experimental equipment for high-energy physics, but recently there has been a strong demand for compact SOR@777 for industrial use such as analysis, measurement, and processing.

従来のSOR装置では、線形加速器によって電子を加速
し、この電子を加速および蓄積のための蓄積リングに入
射させる。!積すングにおいて、電子をさらに最終電子
エネルギーまで加速し、その後この電子を長時間蓄積し
、SORを発生させる。SORは各偏向電磁石のところ
で電子の軌道が曲げられる時に放出される0M積クリン
グおいて、偏向電磁石は電子の軌道を曲げて電子をリン
グの軌道上に保持するために用いられる。また、四極電
磁石は電子を軌道上に集束させるために用いられる。加
速空胴は、入射された電子を最終電子エネルギーまで加
速するためと、SORを放出したためにエネルギーを失
った電子を加速してもとのエネルギーに戻すために用い
られる。これらの電磁石と加速空胴はすべて常電導タイ
プである。
In a conventional SOR device, a linear accelerator accelerates electrons, and the electrons enter a storage ring for acceleration and storage. ! In accumulating, the electrons are further accelerated to a final electron energy and then stored for a long time to generate SOR. SOR is a 0M ring that is emitted when the orbit of electrons is bent at each bending electromagnet.The bending electromagnet is used to bend the orbit of electrons and hold the electrons on the orbit of the ring. Quadrupole electromagnets are also used to focus electrons into orbits. The acceleration cavity is used to accelerate incident electrons to final electron energy and to accelerate electrons that have lost energy due to SOR emission to return them to their original energy. These electromagnets and accelerating cavities are all of the normally conducting type.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記のように、従来のSOR装置は常電導線形加速器を
用いているため、高周波損失により加速電場が制限され
、従って加速管が長くなる。また、蓄積リングの偏向電
磁石は常電導タイプであるため、冷却、エネルギー効率
、サイズの点でKN場を得ることが難しく、電子エネル
ギーを大きくするためには、軌道半径、従ってリングを
太き(しなければならない0以上はSOR装置が大型に
なるというサイズ上の問題点である0次に、蓄積リング
の加速空胴は常電導であるため、高い加速電場が得られ
ないと言う難点がある。また、リングに入射した電子を
より高いエネルギーに加速しているため、加速中にリン
グの真空度が悪化し電子が失われる。従って、最終電子
エネルギーの電子が蓄積するまでに時間がかかるという
欠点がある。
As mentioned above, since conventional SOR devices use a normally conducting linear accelerator, the accelerating electric field is limited by high frequency losses, and therefore the accelerating tube becomes long. In addition, since the storage ring's bending electromagnet is a normal conduction type, it is difficult to obtain a KN field in terms of cooling, energy efficiency, and size. The problem with the size is that the SOR device becomes large when the SOR device is larger than 0. Since the accelerating cavity of the storage ring is normally conductive, there is a problem that a high accelerating electric field cannot be obtained. In addition, since the electrons that entered the ring are accelerated to a higher energy, the degree of vacuum in the ring deteriorates during acceleration and electrons are lost.Therefore, it takes time for the electrons to accumulate to the final electron energy. There are drawbacks.

なお、従来の蓄積リングは素粒子研究用のものであり、
リングの電磁右記!(ラティス)はSOR発生用の専用
リングという点で最適でない。
Note that conventional storage rings are for elementary particle research.
Electromagnetic description of the ring! (Lattice) is not optimal in that it is a dedicated ring for SOR generation.

本発明は以上のような点にかんがみてなされたもので、
その目的とするところは、SOR発生専用装置という観
点に立って、蓄積リングの電磁石配置を最適化し、SO
Rの安定供給までの運転時間を短縮し、小型化と省エネ
ルギー化を計ったSOR装置を提供することにある。
The present invention has been made in view of the above points.
The purpose of this is to optimize the electromagnet arrangement of the storage ring from the perspective of a device dedicated to SOR generation, and to
The purpose of the present invention is to provide an SOR device that shortens the operating time required to provide a stable supply of R, and is compact and energy-saving.

〔問題点を解決するため゛の手段〕[Means for solving problems]

上記目的を達成するために本発明によれば電磁石として
超伝導電磁石を用い、該電磁石配列を3回の回転対称と
した蓄積リングと、加速管として超伝導加速管を用いた
入射用線形加速器とから構成されていることを特徴とし
たSOR装置が提供される。
In order to achieve the above object, the present invention includes a storage ring in which superconducting electromagnets are used as electromagnets, and the electromagnet arrangement is made 3-fold rotationally symmetric; and an injection linear accelerator using a superconducting accelerator tube as an accelerator tube. An SOR device is provided, characterized in that it is comprised of:

〔作用〕[Effect]

第1図において、電子銃(1)から発射した電子ビーム
は超伝導加速管(3)より構成される線形加速器により
蓄積電子エネルギーまで加速される。加速管を超伝導化
することにより、大電力の高周波を供給することができ
高加速電場により短い線形加速器によって電子を蓄積電
子エネルギーまで十分に加速することができる。線形加
速器によって加速された電子は蓄積リングに入射される
。第2図に示すように、蓄積リングには、入射電子ビー
ムを曲げてリングの電子軌道にのせるセプタム電磁石0
[D1電子を短い区間で急激に曲げることにより偏向電
磁石(7)から得られるSORよりもより短い波長で、
より強い強度のSORを発生させるウィグラー電磁石(
9)、リングを回る間にSORを放出して失われたエネ
ルギーを、失われた分だけ電子に補給するための超伝導
加速空胴(8)が配置されている0本発明によれば、リ
ングの形状は中心に対して3回の回転対称性を持ってお
り、3個所の長い直線空間に、セプタム電磁石、ウィグ
ラー電磁石および超伝導加速空胴がそれぞれ配置されて
いる。このようなリング形状と構成要素の配置により、
必要な構成要素をもれなく配置し、かつ、不要な空間の
ないコンパクトな蓄積リングを得ることができる。また
、電子のエネルギーは偏向電磁石の作る磁界と軌道半径
の積に比例するため、偏向電磁石を超伝導化し磁界強度
を上げることにより、軌道半径を小さくシ蓄積リングを
小型化することができる。
In FIG. 1, an electron beam emitted from an electron gun (1) is accelerated to stored electron energy by a linear accelerator composed of a superconducting accelerator tube (3). By making the accelerator tube superconducting, it is possible to supply high-power high-frequency waves, and the high accelerating electric field allows a short linear accelerator to sufficiently accelerate electrons to the stored electron energy. Electrons accelerated by the linear accelerator are incident on the storage ring. As shown in Figure 2, the storage ring has a septum electromagnet 0 that bends the incident electron beam and places it on the ring's electron orbit.
[At a shorter wavelength than the SOR obtained from the bending magnet (7) by sharply bending the D1 electrons in a short period,
Wiggler electromagnet (
9) According to the present invention, a superconducting accelerating cavity (8) is arranged to replenish the energy lost by emitting SOR while going around the ring to the electrons by the amount lost. The shape of the ring has three-fold rotational symmetry about the center, and a septum electromagnet, a wiggler electromagnet, and a superconducting acceleration cavity are arranged in three long linear spaces. With this ring shape and arrangement of components,
A compact storage ring can be obtained in which all necessary components are arranged and there is no unnecessary space. Furthermore, since the energy of an electron is proportional to the product of the magnetic field created by the bending electromagnet and the orbital radius, by making the bending electromagnet superconducting and increasing the magnetic field strength, the orbital radius can be reduced and the storage ring can be made smaller.

次に、入射電子エネルギーはI GeVで蓄積電子エネ
ルギーと同等である。このためはじめから高強度のSO
Rが発生し、このSORによってビームパイプの内面の
ガス分子がたたき出されるため、早期に高真空が達成さ
れる。また、電磁石系は時間的に変動させる必要がなく
定常的に運転されるため、超伝導電磁石は安定した状態
で作動する。
Next, the incident electron energy is I GeV and is equivalent to the stored electron energy. For this reason, high-strength SO
Since R is generated and gas molecules on the inner surface of the beam pipe are knocked out by this SOR, a high vacuum is quickly achieved. Furthermore, since the electromagnet system does not need to be varied over time and is operated steadily, the superconducting electromagnet operates in a stable state.

L実施例〕 以下図面に示した実施例に基づいて本発明の詳細な説明
する。
L Embodiment] The present invention will be described in detail below based on the embodiment shown in the drawings.

第1図は、本発明による超伝導SOR発生装置の全体を
示し、電子銃(1)から10MeVの電子が線形加速器
に打ち込まれ、線形加速器中の40MV/ mの高加速
電場によってリングの蓄積電子エネルギーまで加速され
る。線形加速器は長さ1.6mの超伝導加速管(3)1
6本と電子集束のための四極電磁石(4)から構成され
る。加速管2本で1ユニツトとなり、2ユニツトに対し
て加速のための高周波電力を供給するタライストロン(
2)1台が配置される。加速管の冷却はタライオスタッ
ト構造の簡素化と運転、保守を容易にするために、液体
ヘリウムによる強制間接冷却方式をとっている。線形加
速器によって加速された電子はN積すングへ入射される
。第2図は蓄積リングを示し、入射電子ビーム0りはセ
プタム電磁石0ωによって曲げられてリングの電子軌道
に乗せられ、超伝導偏向電磁石(7)により電子ビーム
軌道0湯上に保持される。四極電磁石(4)は電子を集
束するのに用いられる。リングは中心に対して3回の回
転対称特性をもち、長い直線空間部分3個所にそれぞれ
セプタム電磁石Ol、ウィグラー電磁石(9)、超伝導
加速空胴(8)が配置されている。
Figure 1 shows the entire superconducting SOR generator according to the present invention, in which 10 MeV electrons are injected into a linear accelerator from an electron gun (1), and the accumulated electrons in a ring are generated by a high accelerating electric field of 40 MV/m in the linear accelerator. Accelerated to energy. The linear accelerator is a superconducting acceleration tube with a length of 1.6 m (3) 1
It consists of six magnets and a quadrupole electromagnet (4) for electron focusing. Two accelerator tubes make up one unit, and a talistron (
2) One unit is placed. The accelerator tube is cooled by forced indirect cooling using liquid helium in order to simplify the Taliostat structure and facilitate operation and maintenance. Electrons accelerated by the linear accelerator are incident on the N multiplier. FIG. 2 shows a storage ring, in which the incident electron beam is bent by a septum electromagnet (0ω) and placed on the electron orbit of the ring, and is held above the electron beam orbit by a superconducting bending electromagnet (7). A quadrupole electromagnet (4) is used to focus the electrons. The ring has three-fold rotational symmetry with respect to the center, and a septum electromagnet Ol, a wiggler electromagnet (9), and a superconducting accelerating cavity (8) are arranged in three long linear space parts, respectively.

第1図に示すように、SORは偏向電磁石の側面に設け
られたSOR取出しパイプ(5)を通して外部に供給さ
れる。
As shown in FIG. 1, SOR is supplied to the outside through an SOR extraction pipe (5) provided on the side of the bending electromagnet.

なお、本発明は上記実施例に限定されるものではなく、
リング形状が中心に対して3回の回転対称であり、その
長線空間部分3個所にセプタム電磁石等の入射装置、加
速空胴、ウィグラー電磁石等の挿入型光源が配置できる
のであれば、それらの構成要素の配列は第2図の例に限
定されない。
Note that the present invention is not limited to the above embodiments,
If the ring shape has three-fold rotational symmetry with respect to the center, and if an injection device such as a septum electromagnet, an accelerating cavity, and an insertion type light source such as a wiggler electromagnet can be placed in the three long-line spaces, then the configuration The arrangement of elements is not limited to the example shown in FIG.

また、ウィグラー電磁石の代りにアンジェレーター等の
他の挿入型光源を用いてもよいし、ウィグラー電磁石を
リングから除いてもよい、リングは加速空胴は常電導タ
イプにしてもよい0本実施例では超伝導加速管の冷却方
法は液体ヘリウムによる強制間接冷却としているが、自
然対流による間接冷却、浸漬冷却でもよく、冷媒として
液体ヘリウムの代りに超臨界圧ヘリウムを用いてもよい
In addition, other insertion type light sources such as an angerator may be used instead of the wiggler electromagnet, the wiggler electromagnet may be removed from the ring, and the accelerating cavity of the ring may be of a normal conducting type. Although the superconducting accelerator tube is cooled by forced indirect cooling using liquid helium, indirect cooling using natural convection or immersion cooling may be used, and supercritical pressure helium may be used instead of liquid helium as the coolant.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、超伝導加速管を用
いることにより、線形加速器の長さを短くすることがで
き、超伝導偏向電磁石を用いることにより蓄積リングを
小さくすることができ、さらに電磁石の配列をSOR発
生用として最適化しであるため、装置全体を著しく小型
化することができる。また、蓄積リングへの入射電子エ
ネルギーが最終蓄積電子エネルギーまで高められている
ため、短時間でSORが安定供給され、電磁石磁場およ
び加速空胴の高周波電力の変化がないため、装置の設計
、運転、制御が容易になる。
As explained above, according to the present invention, by using a superconducting accelerator tube, the length of the linear accelerator can be shortened, and by using a superconducting bending electromagnet, the storage ring can be made small. Since the arrangement of electromagnets is optimized for SOR generation, the entire device can be significantly downsized. In addition, since the incident electron energy to the storage ring is increased to the final stored electron energy, SOR is stably supplied in a short time, and there is no change in the electromagnet magnetic field and the high frequency power of the accelerating cavity. , control becomes easier.

以上により、本発明はSORの工業的利用に対して大き
な効果を有するものである。
As described above, the present invention has great effects on the industrial use of SOR.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる超伝導SOR発生装置の一実施
例を示す全体図、第2図は本発明にかかる超伝導SOR
発生装置の蓄積リングの一実施例を示す図である。 l・・・電子銃、 2・・・クライストロン、 3・・
・超伝導加速管、 4・・・四極電磁石、 5・・・S
OR取出しバイブ、 6・・・遮敵壁、 7・・・超伝
導偏向電磁石、 8・・・超伝導加速空胴、 9・・・
ウィグラー電磁石、 lO・・・セプタム電磁石、 1
1・・・キツカー電磁石、 12・・・入射電子ビーム
、 13・・・電子ビーム軌道。
FIG. 1 is an overall diagram showing an embodiment of a superconducting SOR generator according to the present invention, and FIG. 2 is a diagram showing a superconducting SOR generator according to the present invention.
FIG. 3 shows an example of a storage ring of a generator. l...electron gun, 2...klystron, 3...
・Superconducting accelerator tube, 4...quadrupole electromagnet, 5...S
OR extraction vibe, 6... Enemy shielding wall, 7... Superconducting bending electromagnet, 8... Superconducting accelerating cavity, 9...
Wiggler electromagnet, lO... septum electromagnet, 1
1... Kitzker electromagnet, 12... Incident electron beam, 13... Electron beam trajectory.

Claims (1)

【特許請求の範囲】[Claims] 電磁石として超伝導電磁石を用い、該電磁石の配列を3
回の回転対称とした蓄積リングと、加速管として超伝導
加速管を用いた線形加速器とから構成されていることを
特徴とする超伝導SOR発生装置。
A superconducting electromagnet is used as an electromagnet, and the electromagnet is arranged in three ways.
A superconducting SOR generator comprising a storage ring with rotational symmetry and a linear accelerator using a superconducting accelerator tube as an accelerator tube.
JP5078887A 1987-03-05 1987-03-05 Superconductive sor generation device Pending JPS63218200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5078887A JPS63218200A (en) 1987-03-05 1987-03-05 Superconductive sor generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5078887A JPS63218200A (en) 1987-03-05 1987-03-05 Superconductive sor generation device

Publications (1)

Publication Number Publication Date
JPS63218200A true JPS63218200A (en) 1988-09-12

Family

ID=12868550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5078887A Pending JPS63218200A (en) 1987-03-05 1987-03-05 Superconductive sor generation device

Country Status (1)

Country Link
JP (1) JPS63218200A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US9920455B2 (en) 2001-09-21 2018-03-20 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208403B2 (en) 2001-09-21 2019-02-19 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
US9920455B2 (en) 2001-09-21 2018-03-20 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
USRE48317E1 (en) 2007-11-30 2020-11-17 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US11717700B2 (en) 2014-02-20 2023-08-08 Mevion Medical Systems, Inc. Scanning system
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US11786754B2 (en) 2015-11-10 2023-10-17 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
US11717703B2 (en) 2019-03-08 2023-08-08 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Similar Documents

Publication Publication Date Title
JPS63218200A (en) Superconductive sor generation device
Bryant A brief history and review of accelerators
JPH11513528A (en) Method for extracting charged particles from isochronous cyclotron and apparatus applying this method
Okumura et al. High power negative ion sources for fusion at the Japan Atomic Energy Research Institute
Ben-Zvi et al. Proposed UV-FEL user facility at BNL
JP4056448B2 (en) Multiple beam simultaneous acceleration cavity
JP2904308B2 (en) Method for increasing the efficiency of a gyrotron and gyrotron implementing the method
Sauer et al. Beam dynamics design of a superconducting 175 MHz CH-Linac for IFMIF
Olsen et al. The histrap proposal: Heavy-ion storage ring for atomic physics
Mizumoto et al. A proton accelerator for neutron science project at JAERI
Yamamoto et al. Linear Colliders
Cole et al. Recent Progress In Particle Accelerators
Ivanov Accelerator complex U70 of IHEP: status and upgrades
Kimura TRISTAN-the Japanese electron-proton colliding beam project
Xie State of the art of ECR ion sources
Wenander An EBIS as heavy ion source for the LHC pre-injector
Shimano et al. Design study of a superconducting SOR facility
Ratzinger et al. Low energy DTL sections for intense Bi1+ beams
Teng Perspectives of future accelerators and colliders
Bradbury et al. Light ion linacs for medical applications
Weiland et al. Status and future developments of the wake field transformer experiment
Tanabe Status of the TARN II project
Dolbilov Electrodynamic structure of two-beam induction accelerator
Browne A brief history of high power RF proton linear accelerators
Oyamada et al. The Tohoku University Stretcher-Booster Ring