JPS63211775A - Compound semiconductor solar cell - Google Patents

Compound semiconductor solar cell

Info

Publication number
JPS63211775A
JPS63211775A JP62045638A JP4563887A JPS63211775A JP S63211775 A JPS63211775 A JP S63211775A JP 62045638 A JP62045638 A JP 62045638A JP 4563887 A JP4563887 A JP 4563887A JP S63211775 A JPS63211775 A JP S63211775A
Authority
JP
Japan
Prior art keywords
compound semiconductor
layer
semiconductor layer
conductivity type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62045638A
Other languages
Japanese (ja)
Inventor
Toshio Murotani
室谷 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62045638A priority Critical patent/JPS63211775A/en
Publication of JPS63211775A publication Critical patent/JPS63211775A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PURPOSE:To print an interconnector instead of wire connection when solar battery cells are mounted on a paddle, by providing electrodes formed in grooves and bus electrodes connecting said electrodes, and forming an antireflection film on the rear of a single crystal substrate. CONSTITUTION:A single crystal substrate 11 (referred to as a transparent substrate hereinafter), which is transparent to light having a wavelength region of 0.4-0.9mum, is, e.g., a sapphire substrate or a II-VI compound semiconductor substrate of ZnS, ZnSe and the like. A first conductivity type first compound semiconductor layer 4, which is epitaxially grown on the surface of the transparent substrate 11, is, e.g., a P-type AlGaAs layer. A second compound semiconductor layer, e.g., a P-type GaAs layer 3, is provided on the layer 4. A second conductivity type compound semiconductor layer, e.g., an N-type GaAs layer 2, is provided on the layer 3. An antireflection film 5 is provided on the rear (incident sunlight side) of the substrate 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、p電極およびn電極の両電極を太陽光受光
面と反対側から同一方向に取り出せるようにした高性能
な化合物半導体太陽電池に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a high-performance compound semiconductor solar cell in which both the p-electrode and the n-electrode can be taken out in the same direction from the side opposite to the sunlight-receiving surface. It is something.

〔従来の技術〕[Conventional technology]

第2図は従来のGaAs太陽電池のセル構造を示す図で
ある。この図において、1はn形GaAs結晶基板、2
はこのn形GaAs結晶基板1の表面にエピタキシャル
成長したn形GaAs層、3はp形GaAs層、4は前
記p形GaAs層3で発生した電子が表面再結合により
消滅するのを防ぐためのp形AjGaAs層、5は前記
p形GaAs層3表面より太陽光の反射を防ぐための反
射防止膜、6はグリッド電極(pm極)、7は前記n形
GaAs結晶基板1の裏面全面に形成されたn電極、8
はバス電極で、アセンブリ時にワイヤをはんだ付けした
り、溶接したりするための電極である。
FIG. 2 is a diagram showing the cell structure of a conventional GaAs solar cell. In this figure, 1 is an n-type GaAs crystal substrate, 2 is
is an n-type GaAs layer epitaxially grown on the surface of this n-type GaAs crystal substrate 1, 3 is a p-type GaAs layer, and 4 is a p-type GaAs layer for preventing electrons generated in the p-type GaAs layer 3 from disappearing due to surface recombination. 5 is an anti-reflection film for preventing reflection of sunlight from the surface of the p-type GaAs layer 3, 6 is a grid electrode (pm pole), and 7 is formed on the entire back surface of the n-type GaAs crystal substrate 1. n-electrode, 8
is a bus electrode, which is used for soldering or welding wires during assembly.

次に動作について説明する。Next, the operation will be explained.

表面より入射した太陽光によって、p形GaAs層3.
n形GaAs層2およびn形GaAs結晶基板1の各半
導体層中に電子と正孔が発生し、電子はn形GaAs層
2の方へ、正孔はp形GaAs層3の万へ、それぞれ逆
方向に拡散し、太陽光による光起電力が発生する。ここ
で、p形AjGaAs層4の役割は、GaAsよりバン
ドギャップの大きい半導体をペテロ接合することにより
表面への電子の拡散を防止して、p形GaAs層3で発
生した電子が表面再結合により消滅してしまうことを防
ぐためのものである。
The p-type GaAs layer 3.
Electrons and holes are generated in each semiconductor layer of the n-type GaAs layer 2 and the n-type GaAs crystal substrate 1, and the electrons are directed toward the n-type GaAs layer 2, and the holes are directed toward the p-type GaAs layer 3, respectively. It diffuses in the opposite direction and generates photovoltaic force due to sunlight. Here, the role of the p-type AjGaAs layer 4 is to prevent the diffusion of electrons to the surface by forming a petrojunction with a semiconductor whose band gap is larger than that of GaAs, and to prevent the electrons generated in the p-type GaAs layer 3 from recombining on the surface. This is to prevent it from disappearing.

また、反射防止膜5の役割は、太陽光が半導体表面より
反射されることを防いで、有効に太陽光を半導体層中に
入射させることを助けるためのものである。太陽光電流
はグリッド電極6およびn電極7より取り出す。この時
、グリッド電極6の真下の半導体層では太陽光が遮蔽さ
れるので無効部分となる。したがって、抵抗が増加しな
いように、かつグリッド電極6の面積をできるだけ少な
くして、有効に太陽光電流を捕集するためのグリッドパ
ターンの設計が種々なされている。
Further, the role of the antireflection film 5 is to prevent sunlight from being reflected from the semiconductor surface and to help sunlight to effectively enter the semiconductor layer. Solar current is extracted from the grid electrode 6 and the n-electrode 7. At this time, the semiconductor layer directly under the grid electrode 6 blocks sunlight and becomes an ineffective portion. Therefore, various designs of grid patterns have been made in order to effectively collect solar current by minimizing the area of the grid electrode 6 without increasing the resistance.

し発明が解決しようとする問題点〕 従来のGaAs太陽電池は以上のように両面から電極を
取り出せるように構成されているため、これを実際のシ
ステム、例えば人工衛星の太陽電池パドルに実装する際
には多数のGaAs太陽電池セルを配置し、セル間をワ
イヤで接続するので配線が複雑であり、実装する時の作
業が煩雑であったり、レイダウンの自動化が容易でなく
、アセンブリコストが大となったり、また、パドルの展
開時のワイヤ断線などの事故に対しても特別の配慮を払
う必要があるなど多゛くの問題点があった。
[Problems to be Solved by the Invention] Conventional GaAs solar cells are configured so that electrodes can be taken out from both sides as described above, so when implementing this into an actual system, such as a solar cell paddle of an artificial satellite, Since a large number of GaAs solar cells are arranged and the cells are connected with wires, the wiring is complicated, the mounting work is complicated, the laydown is not easy to automate, and the assembly cost is high. There were many problems, such as the need to pay special attention to accidents such as wire breakage when the paddles were deployed.

この発明は、上記のような問題点を解消するためになさ
れたもので、太陽電池セルをパドルに実装する際、ワイ
ヤ接続の代わりにインクコネクタのプリント化を行うこ
とができる化合物半導体太陽電池を得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and it is a compound semiconductor solar cell that can print ink connectors instead of wire connections when mounting solar cells on paddles. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る化合物半導体太陽電池は、波長が0.4
〜0.9−の範囲の光に対して透明な単結晶基板の表面
上に順次エピタキシャル成長により形成した第1導電形
゛の第1の化合物半導体層。
The compound semiconductor solar cell according to the present invention has a wavelength of 0.4
A first compound semiconductor layer of a first conductivity type formed by sequential epitaxial growth on the surface of a single crystal substrate transparent to light in the range of ~0.9-.

第1導電形の第2の化合物半導体層、第2導電形の化合
物半導体層を備え、この第2導電形の化合物半導体層上
の一部に形成された電極と、第2導電形の化合物半導体
層表面より第1導電形の第2の化合物半導体層に届く深
さまで選択的にエツチングして形成した所要数の溝と、
これらの溝内に形成された電極およびこれらの電極を接
続するバス電極を備え、単結晶基板の裏面に反射防止膜
を形成したものである。
a second conductivity type compound semiconductor layer; a second conductivity type compound semiconductor layer; an electrode formed on a portion of the second conductivity type compound semiconductor layer; and a second conductivity type compound semiconductor layer. a required number of grooves formed by selectively etching from the layer surface to a depth reaching the second compound semiconductor layer of the first conductivity type;
It includes electrodes formed in these grooves and bus electrodes connecting these electrodes, and an antireflection film is formed on the back surface of a single crystal substrate.

〔作用〕[Effect]

この発明においては、太陽光受光面と反対側の同一面上
にp電極とn電極を配置したことから、ワイヤを使わず
プリント基板に実装してアセンブリが可能である。
In this invention, since the p-electrode and the n-electrode are arranged on the same surface opposite to the sunlight-receiving surface, it is possible to assemble the device by mounting it on a printed circuit board without using wires.

〔実施例〕〔Example〕

この発明の一実施例を第1図について説明する。 An embodiment of the invention will be described with reference to FIG.

第1図はこの発明の一実施例を示す化合物半導体太陽電
池の構造を示す図である。
FIG. 1 is a diagram showing the structure of a compound semiconductor solar cell showing one embodiment of the present invention.

第1図において、11は波長が0.4〜0.9−の領域
の光に対して透明な単結晶基板(以下透明基板という)
であり、例えばサファイヤ基板。
In Fig. 1, 11 is a single crystal substrate that is transparent to light in the wavelength range of 0.4 to 0.9- (hereinafter referred to as a transparent substrate).
For example, a sapphire substrate.

あるいはZ ns 、 Z ns eなどの■−■族化
合物半導体基板である。4はこの透明基板11の表面に
エピタキシャル成長された第1導電形の第1の化合物半
導体層である、例えばp形AJIGaAs層、3はこの
p形Aj’GaAs層4上に形成された第1導電形の第
2の化合物半導体層である、例えばp形GaAs層、2
は前記p形GaAs層3上に形成された第2導電形の化
合物半導体層である、例えばn形G &A s@、5は
前記透明基板11の裏面(太陽光入射側)に形成された
反射防止膜、8はバス電極、12は前記n形GaAs層
2の表面よりp形GaAs層3に届く深さまで選択エツ
チングして形成した溝、13は前記n形GaAs層2上
に形成されたグリッド状のn電極、14は前記溝12内
に形成したグリッド状のp電極、15は前記n形GaA
s層2とp電極14とを絶縁ずろための絶縁膜である。
Alternatively, it is a ■-■ group compound semiconductor substrate such as Zns and Znse. 4 is a first compound semiconductor layer of a first conductivity type epitaxially grown on the surface of this transparent substrate 11, for example, a p-type AJIGaAs layer; 3 is a first conductivity type formed on this p-type AJ'GaAs layer 4; A second compound semiconductor layer of the type, for example a p-type GaAs layer, 2
5 is a compound semiconductor layer of the second conductivity type formed on the p-type GaAs layer 3, for example, an n-type G&A s@, and 5 is a reflective layer formed on the back surface (sunlight incident side) of the transparent substrate 11. 8 is a bus electrode, 12 is a groove formed by selective etching from the surface of the n-type GaAs layer 2 to a depth reaching the p-type GaAs layer 3, and 13 is a grid formed on the n-type GaAs layer 2. 14 is a grid-shaped p electrode formed in the groove 12, 15 is the n-type GaA
This is an insulating film for insulating the s-layer 2 and the p-electrode 14.

この発明の化合物半導体太陽電池の動作は、透明基板1
1の裏面より入射した太陽光によって、p形G aA 
s層3.n形GaAs層2の各半導体層中に電子と正孔
が発生し、電子はn形GaAs層2の方へ、正孔はp形
GaAs層3の方へ、それぞれ逆方向に拡散し、正負両
電荷が分離されて光起電力が発生する。ここで、p形A
l!GaAs層4および反射防止膜5の役割は従来例と
同じである。電流の取出しは、グリッド状のn電極13
およびグリッド状のp電極14で行う。
The operation of the compound semiconductor solar cell of this invention is as follows:
Due to sunlight incident from the back surface of 1, p-type GaA
s layer 3. Electrons and holes are generated in each semiconductor layer of the n-type GaAs layer 2, and the electrons diffuse in opposite directions toward the n-type GaAs layer 2 and the holes toward the p-type GaAs layer 3. Both charges are separated and a photovoltaic force is generated. Here, p-type A
l! The roles of the GaAs layer 4 and the antireflection film 5 are the same as in the conventional example. The current is taken out using a grid-shaped n-electrode 13.
and a grid-like p-electrode 14.

ここで、透明基板11としては、GaAsの活性領域で
ある波長0.4〜0.9囮の光に対して透明であること
の他に、高品質で大面積のウェハが安価に入手できろ乙
と、結晶系がGaAsの閃亜鉛鉱型に近く容易にエピタ
キシャル成長が可能であることなどが必要である。これ
らの条件を満たす単結晶基板として、サファイヤ基板お
よびZnS。
Here, as for the transparent substrate 11, in addition to being transparent to light having a wavelength of 0.4 to 0.9, which is the active region of GaAs, a high-quality, large-area wafer can be obtained at low cost. Second, it is necessary that the crystal system be close to the zinc blende type of GaAs and that epitaxial growth can be easily performed. Sapphire substrates and ZnS are single-crystal substrates that meet these conditions.

Zn5eなどの■−■族化合物半導体基板がある。There is a ■-■ group compound semiconductor substrate such as Zn5e.

Zn5eの場合、格子定数がGaAsに近いためエピタ
キシャル成長が容易で最も望ましいが、バンドギャップ
エネルギーは2.83eV(λ=0.44μm)である
ため太陽電池の効果はわずか低めとなる。サファイヤ基
板やZnS  の場合、完全に透明が望ましいが、Ga
ASとの格子定数の差はそれぞれ12%、4%と大きい
。しかし、最近格子定数が大きく異なる基板上に良質の
エピタキシャル膜を得る技術が進んできているため、こ
れらの成長は可能である。
In the case of Zn5e, the lattice constant is close to that of GaAs, making it easy to epitaxially grow, making it the most desirable material. However, since the band gap energy is 2.83 eV (λ=0.44 μm), the effectiveness of the solar cell is slightly lower. In the case of a sapphire substrate or ZnS, completely transparent is desirable, but Ga
The difference in lattice constant from AS is as large as 12% and 4%, respectively. However, these growths are now possible because technology for producing high-quality epitaxial films on substrates with significantly different lattice constants has recently progressed.

なお、上記実施例では透明基板11の上に順次p形Aj
GaAs層’LPP形GaAs層3およびn形GaAs
層2を成長した結晶上に太陽電池を形成したものについ
て示したが、導電形を変えて透明基板11の上に順次n
形AJGaAs層、n形GaAs層およびp形GaAs
、liiを成長した結晶上に太陽電池を形成しても良く
、上記実施例と同様の効果を奏する。
In the above embodiment, p-type Aj is sequentially formed on the transparent substrate 11.
GaAs layer 'LPP type GaAs layer 3 and n type GaAs
Although the solar cell is shown as having been formed on the crystal grown layer 2, the conductivity type is changed and the layer 2 is sequentially formed on the transparent substrate
type AJGaAs layer, n-type GaAs layer and p-type GaAs
.

また、上記実施例では、化合物半導体としてGaAsを
用いたものを示したが、GaAsの代わりに他の化合物
半導体であるInP やCdTeを用いてもよい。
Further, in the above embodiment, GaAs was used as the compound semiconductor, but other compound semiconductors such as InP or CdTe may be used instead of GaAs.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、波長が0.4〜0.9
μmの範囲の光に対して透明な単結晶基板の表面上に順
次エピ“タキシャル成長により形成した第1導電形の第
1の化合物半導体層、第1導電形の第2の化合物半導体
層、第2導電形の化合物半導体層を備え、この第2導電
形の化合物半導体層上の一部に形成された電極と、第2
導電形の化合物半導体層表面より第1導電形の第2の化
合物半導体層に届(深さまで選択的にエツチングして形
成した所要数の溝と、これらの溝内に形成された電極お
よびこれらの電極を接続するパス電極を備え、単結晶基
板の裏面に反射防止膜を形成したので、化合物半導体太
陽電池の出力の取出し用のnp P両電極を同一方向か
ら取り出すことができろ。したがって、この化合物半導
体太陽電池を実装する際、ワイヤ接続の代わりにインタ
コネクタのプリント化を行うことができ、煩雑なレイダ
ウンの作業を軽減し、また、自動化を行うことでアセン
ブリコストが著しく軽減できる。また、太陽光を電極金
属と反対側より入射させるので、変換効率の高い高性能
な化合物半導体太陽電池が得られる効果がある。
As explained above, this invention has a wavelength of 0.4 to 0.9.
A first compound semiconductor layer of a first conductivity type, a second compound semiconductor layer of a first conductivity type, and a second compound semiconductor layer of a first conductivity type are formed sequentially by epitaxial growth on the surface of a single crystal substrate transparent to light in the μm range. A second conductivity type compound semiconductor layer is provided, and an electrode formed on a part of the second conductivity type compound semiconductor layer, and a second conductivity type compound semiconductor layer are provided.
From the surface of the compound semiconductor layer of conductivity type to the second compound semiconductor layer of first conductivity type, a required number of grooves formed by selective etching to a depth, electrodes formed in these grooves, and Since a pass electrode is provided to connect the electrodes and an antireflection film is formed on the back surface of the single crystal substrate, both the np and p electrodes for extracting the output of the compound semiconductor solar cell can be taken out from the same direction. When mounting compound semiconductor solar cells, interconnectors can be printed instead of wire connections, reducing the complicated laydown work, and automation can significantly reduce assembly costs. Since sunlight is incident from the side opposite to the electrode metal, a high-performance compound semiconductor solar cell with high conversion efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乙の発明の一実施例を示す化合物半導体太陽電
池の構造を示す図、第2図は従来のGaAs太陽電池の
セル構造を示す図である。 図において、2はn形GaAs層、3はp形GaAs層
、4はp形AlGaAs層、5は反射防止膜、8はバス
電極、11は透明基板、12は溝、13はn電極、14
はp電極、15は絶縁膜である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)ヘのぐ−の U]\丁Cつ(N で−し) 手続補正書(自発) 1、事件の表示   特願昭62−45638号2、発
明の名称   化合物半導体太陽電池3、補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号。 名 称  (601)三菱電機株式会社代表者志岐守哉 4、代理人 住 所    東京都千代田区丸の内二丁目2番3号へ
・、〉 5、補正の対象 明細書の特許請求の範囲の欄および発明の詳細な説明の
欄 3、補正の内容 (1)  明細書の特許請求の範囲を別紙のように補正
する。 (2)  明細書第8頁4行の「が望ましいが、」を、
[であるため望ましいが、]と補正する。 以  上 2、特許請求の範囲 (1)波長が0.4〜0.9μmの範囲の光に対して透
明な単結晶基板の表面上に順次エピタキシャル成長によ
り形成した第1導電形の第1の化合物半導体層、第1導
電形の第2の化合物半導体層。 第2導電形の化合物半導体層を備え、この第2導電形の
化合物半導体層上の一部に形成された電極と、前記第2
導電形の化合物半導体層表面より前記第1導電形の第2
の化合物半導体層に届く深さまで選択的にエツチングし
て形成した所要数の溝と、これらの溝内に形成された電
極およびこれらの電極を接続するバス電極を備え、前記
単結晶基板の裏面に反射防止膜を形成したことを特徴と
する化合物半導体太陽電池。 (2)透明な単結晶基板は、II−VI族化合物半導体
であることを特徴とする特許請求の範囲第(1)項記載
の化ば物半導体太陽電池。
FIG. 1 is a diagram showing the structure of a compound semiconductor solar cell according to an embodiment of the invention of B, and FIG. 2 is a diagram showing the cell structure of a conventional GaAs solar cell. In the figure, 2 is an n-type GaAs layer, 3 is a p-type GaAs layer, 4 is a p-type AlGaAs layer, 5 is an antireflection film, 8 is a bus electrode, 11 is a transparent substrate, 12 is a groove, 13 is an n-electrode, 14
is a p-electrode, and 15 is an insulating film. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Henogu no U]\Ding Ctsu (N de-shi) Procedural amendment (spontaneous) 1. Indication of the case Japanese Patent Application No. 62-45638 2. Invention Name Compound Semiconductor Solar Cell 3, Relationship to the Amended Person Case Patent Applicant Address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo. Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki 4, Agent Address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo 5. Claims column of the specification to be amended and Detailed Description of the Invention Column 3, Contents of Amendment (1) The scope of claims in the specification is amended as shown in the attached sheet. (2) “However,” on page 8, line 4 of the specification,
[It is preferable because it is, but it is corrected as]. 2. Claims (1) A first compound of a first conductivity type formed by sequential epitaxial growth on the surface of a single crystal substrate that is transparent to light having a wavelength in the range of 0.4 to 0.9 μm. a semiconductor layer, a second compound semiconductor layer of a first conductivity type; a compound semiconductor layer of a second conductivity type; an electrode formed on a part of the compound semiconductor layer of the second conductivity type;
from the surface of the compound semiconductor layer of the conductivity type to the second conductivity type of the first conductivity type.
a required number of grooves formed by selective etching to a depth that reaches the compound semiconductor layer of the single crystal substrate, electrodes formed in these grooves, and bus electrodes connecting these electrodes; A compound semiconductor solar cell characterized by forming an antireflection film. (2) The chemical semiconductor solar cell according to claim (1), wherein the transparent single crystal substrate is a II-VI group compound semiconductor.

Claims (2)

【特許請求の範囲】[Claims] (1)波長が0.4〜0.9μmの範囲の光に対して透
明な単結晶基板の表面上に順次エピタキシャル成長によ
り形成した第1導電形の第1の化合物半導体層、第1導
電形の第2の化合物半導体層、第2導電形の化合物半導
体層を備え、この第2導電形の化合物半導体層上の一部
に形成された電極と、前記第2導電形の化合物半導体層
表面より前記第1導電形の第2の化合物半導体層に届く
深さまで選択的にエッチングして形成した所要数の溝と
、これらの溝内に形成された電極およびこれらの電極を
接続するバス電極を備え、前記単結晶基板の裏面に反射
防止膜を形成したことを特徴とする化合物半導体太陽電
池。
(1) A first compound semiconductor layer of a first conductivity type formed by sequential epitaxial growth on the surface of a single crystal substrate transparent to light having a wavelength in the range of 0.4 to 0.9 μm; a second compound semiconductor layer, a compound semiconductor layer of a second conductivity type; an electrode formed on a part of the compound semiconductor layer of the second conductivity type; A required number of grooves formed by selective etching to a depth reaching the second compound semiconductor layer of the first conductivity type, electrodes formed in these grooves, and a bus electrode connecting these electrodes, A compound semiconductor solar cell characterized in that an antireflection film is formed on the back surface of the single crystal substrate.
(2)透明な単結晶基板は、II−VI族化合物半導体であ
ることを特徴とする特許請求の範囲第(1)項記載の化
合物半導体太陽電池。
(2) The compound semiconductor solar cell according to claim (1), wherein the transparent single crystal substrate is a II-VI group compound semiconductor.
JP62045638A 1987-02-27 1987-02-27 Compound semiconductor solar cell Pending JPS63211775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62045638A JPS63211775A (en) 1987-02-27 1987-02-27 Compound semiconductor solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62045638A JPS63211775A (en) 1987-02-27 1987-02-27 Compound semiconductor solar cell

Publications (1)

Publication Number Publication Date
JPS63211775A true JPS63211775A (en) 1988-09-02

Family

ID=12724905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62045638A Pending JPS63211775A (en) 1987-02-27 1987-02-27 Compound semiconductor solar cell

Country Status (1)

Country Link
JP (1) JPS63211775A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US20100132781A1 (en) * 2007-06-28 2010-06-03 Xgroup S.P.A. Back-Contacted Photovoltaic Device
CN102257636A (en) * 2008-10-23 2011-11-23 奥塔装置公司 Photovoltaic device with back side contacts
CN102257628A (en) * 2008-10-23 2011-11-23 奥塔装置公司 Integration of a photovoltaic device
US20120204942A1 (en) 2008-10-23 2012-08-16 Alta Devices, Inc. Optoelectronic devices including heterojunction and intermediate layer
CN105938855A (en) * 2016-06-27 2016-09-14 山东浪潮华光光电子股份有限公司 Sapphire substrate single-junction solar cell structure and preparation method thereof
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US10326033B2 (en) 2008-10-23 2019-06-18 Alta Devices, Inc. Photovoltaic device
US10615304B2 (en) 2010-10-13 2020-04-07 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
US11271133B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device with group IV semiconductor as a bottom junction

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US20100132781A1 (en) * 2007-06-28 2010-06-03 Xgroup S.P.A. Back-Contacted Photovoltaic Device
US10326033B2 (en) 2008-10-23 2019-06-18 Alta Devices, Inc. Photovoltaic device
US10797187B2 (en) * 2008-10-23 2020-10-06 Alta Devices, Inc. Photovoltaic device with back side contacts
US20120204942A1 (en) 2008-10-23 2012-08-16 Alta Devices, Inc. Optoelectronic devices including heterojunction and intermediate layer
US9029680B2 (en) * 2008-10-23 2015-05-12 Alta Devices, Inc. Integration of a photovoltaic device
US9029687B2 (en) * 2008-10-23 2015-05-12 Alta Devices, Inc. Photovoltaic device with back side contacts
US20150243815A1 (en) * 2008-10-23 2015-08-27 Alta Devices, Inc. Photovoltaic device with back side contacts
US9136418B2 (en) 2008-10-23 2015-09-15 Alta Devices, Inc. Optoelectronic devices including heterojunction and intermediate layer
US9178099B2 (en) 2008-10-23 2015-11-03 Alta Devices, Inc. Methods for forming optoelectronic devices including heterojunction
CN102257628A (en) * 2008-10-23 2011-11-23 奥塔装置公司 Integration of a photovoltaic device
US10505058B2 (en) 2008-10-23 2019-12-10 Alta Devices, Inc. Photovoltaic device
CN102257636A (en) * 2008-10-23 2011-11-23 奥塔装置公司 Photovoltaic device with back side contacts
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
US11271133B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device with group IV semiconductor as a bottom junction
US10615304B2 (en) 2010-10-13 2020-04-07 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
US10008628B2 (en) 2012-01-19 2018-06-26 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
US11942566B2 (en) 2012-01-19 2024-03-26 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
CN105938855A (en) * 2016-06-27 2016-09-14 山东浪潮华光光电子股份有限公司 Sapphire substrate single-junction solar cell structure and preparation method thereof

Similar Documents

Publication Publication Date Title
US6359210B2 (en) Solar cell having an integral monolithically grown bypass diode
US20090025782A1 (en) Solar cell and method for manufacturing the same
JPS63211775A (en) Compound semiconductor solar cell
JP2001189483A (en) Solar battery cell with bypass function, multi-junction laminating type solar battery cell with bypass function, and their manufacturing method
MX2012001218A (en) Solar cell and method of fabrication thereof.
JPH02135786A (en) Solar battery cell
EP1443566B1 (en) Solar cell having an integral monolithically grown bypass diode
KR20110073600A (en) Integration of a photovoltaic device
WO1999062125A1 (en) Solar cell having an integral monolithically grown bypass diode
JP4846551B2 (en) Solar cell and method for manufacturing the same
JPS63211773A (en) Compound semiconductor sloar cell
JP3269668B2 (en) Solar cell
Smith Review of back contact silicon solar cells for low-cost application
JPH0661513A (en) Laminated solar battery
JPH01205472A (en) Solar battery cell
JP4606959B2 (en) Solar cell with bypass diode
JP4986056B2 (en) Condensing photoelectric converter
JPH11266029A (en) Solar cell, manufacture and connection thereof
US20140251422A1 (en) Solar cell with doping blocks
JPH0955522A (en) Tunnel diode
JPS61135167A (en) Thin-film solar cell
JP2000261025A (en) Light receiving device
JPH09181343A (en) Photoelectric conversion device
JPH0548134A (en) Solar battery and its manufacture
Masu et al. A monolithic GaAs solar cell array