JPS6320638B2 - - Google Patents

Info

Publication number
JPS6320638B2
JPS6320638B2 JP58146558A JP14655883A JPS6320638B2 JP S6320638 B2 JPS6320638 B2 JP S6320638B2 JP 58146558 A JP58146558 A JP 58146558A JP 14655883 A JP14655883 A JP 14655883A JP S6320638 B2 JPS6320638 B2 JP S6320638B2
Authority
JP
Japan
Prior art keywords
axis table
laser beam
work
speed
positioning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58146558A
Other languages
Japanese (ja)
Other versions
JPS6040682A (en
Inventor
Teizo Sekya
Kazuo Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58146558A priority Critical patent/JPS6040682A/en
Publication of JPS6040682A publication Critical patent/JPS6040682A/en
Publication of JPS6320638B2 publication Critical patent/JPS6320638B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/007Marks, e.g. trade marks

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Automatic Focus Adjustment (AREA)
  • Laser Beam Processing (AREA)
  • Printers Characterized By Their Purpose (AREA)

Abstract

PURPOSE:To enable laser marking with a simple construction at a high speed with high accuracy by mounting a device which positions a work in a small movable range at a high speed with high accuracy on a rough positioning device which moves over a wide range at a low speed. CONSTITUTION:A titled device consists of a positioning device 18 which moves over a wide range at a low speed and positions a work 6 with rough accuracy, a device 26 which is supported by said device 18 and positions the work in a small movable range at a high speed with high accuracy a driving device 23, a sensor 32 which measures the distance between said work and a condenser lens 12 and three control devices which hold the work 6 at the focal length of the lens 12. Said control devices drive the devices 18, 26 to perform marking operation and control the decive 23 by the feedback signal outputted from the sensor 32. The work 6 is marked at a high speed with high accuracy by the above- mentioned device.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はレーザ光によるマーキング装置に係
り、特に大物被マーキング材のレーザ光マーキン
グ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a laser beam marking device, and particularly to a laser beam marking device for large objects to be marked.

(従来の技術) 従来のレーザ光によるマーキング装置には、照
射部を固定してマーキング対象物(以下、対象物
という。)をXYテーブル等に載せて動かすもの
と、対象物を固定して照射部を動かすものの二つ
がある。このうち後者は移動機構部が対象物の重
量の影響を受けないので高速でマーキングでき、
全体の設置場所も小さくてすむ。この方法をビー
ムスキヤナ方式といい、ガルバノ式スキヤナと
XYスキヤナがある。
(Prior art) Conventional marking devices using laser light include those with a fixed irradiation unit and a marking target (hereinafter referred to as the target) placed on an XY table and moved, and those with a fixed irradiation unit and those with a fixed irradiation unit. There are two things that move the department. The latter allows for high-speed marking because the moving mechanism is not affected by the weight of the object.
The overall installation space is also small. This method is called a beam scanner method, and is called a galvano scanner method.
There is an XY scanner.

第1図はガルバノ式を示し、駆動装置1とこれ
に取付られて回る反射ミラー2と、駆動装置3と
これに取付られ反射ミラー2と直交する回転軸で
回る反射ミラー4と、光軸の入射角にかかわらず
ある一定距離の平面上に焦点を結ぶ集光レンズ5
(いわゆるfθレンズ)がある。そして、反射ミラ
ー2でレーザ光を受け、回転角を駆動装置1で制
御してX方向に走査し、反射ミラー4に送る。反
射ミラー4は駆動装置3で反射ミラー2と直交す
る方向に回転制御され、Y方向に走査してレンズ
5に送る。レンズ5は、反射ミラー1,2でXY
方向に走査されたレーザ光を対象物6の表面に集
光する。しかし、この機構は駆動部の慣性が小さ
くて速くマーキングできるが、レンズ5の大きさ
で範囲は限られる。
Fig. 1 shows a galvano type, which includes a driving device 1, a reflecting mirror 2 attached to it and rotating, a driving device 3, a reflecting mirror 4 attached to it and rotating around a rotation axis perpendicular to the reflecting mirror 2, and an optical axis. A condenser lens 5 that focuses on a plane at a certain distance regardless of the incident angle
(so-called f-theta lens). Then, the laser beam is received by the reflection mirror 2, and the rotation angle is controlled by the drive device 1 to scan in the X direction, and the laser beam is sent to the reflection mirror 4. The reflecting mirror 4 is controlled to rotate in a direction perpendicular to the reflecting mirror 2 by a driving device 3, and is scanned in the Y direction and sent to the lens 5. Lens 5 is XY with reflecting mirrors 1 and 2.
The laser beam scanned in the direction is focused on the surface of the object 6. However, although this mechanism has a small inertia of the drive unit and can mark quickly, the range is limited by the size of the lens 5.

第2図はXYスキヤナを示し、位置決め機構7
はガイドレール8でX軸方向に動き、位置決め機
構9は位置決め機構7,7間のガイドレール10
でY軸方向に動く。11は位置決め機構9に取付
られたレーザ照射部で、対象物6上をXY方向に
動く。
Figure 2 shows the XY scanner, positioning mechanism 7
moves in the X-axis direction on a guide rail 8, and the positioning mechanism 9 moves on a guide rail 10 between the positioning mechanisms 7, 7.
to move in the Y-axis direction. Reference numeral 11 denotes a laser irradiation unit attached to the positioning mechanism 9, which moves over the object 6 in the XY directions.

第3図はレーザ照射部11の拡大断面図で、集
光レンズ12と酸素の取り入れ口13があり、下
端開口部から対象物6に酸素を吹きつけて照射す
る。この方法は、ガルバノ式に比べて酸素を使う
のでより深くマーキングできるが、マーキング範
囲が広くなると機構が大形になり慣性で高精度、
高速のマーキングは難しい。
FIG. 3 is an enlarged sectional view of the laser irradiation unit 11, which includes a condenser lens 12 and an oxygen intake port 13, and irradiates the object 6 by spraying oxygen from the lower end opening. This method uses oxygen and can mark deeper than the galvano type, but the larger the marking range, the larger the mechanism, and the inertia and high precision.
High-speed marking is difficult.

本発明の目的は、大きい材料の複数箇所のマー
キングを構造が簡単で高速、高精度にできるレー
ザ光マーキング装置を得ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a laser beam marking device that has a simple structure, can mark multiple locations on a large material, and can do so at high speed and with high accuracy.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用) 本発明は大きな可動範囲を粗い位置決め精度の
位置決め装置を設けて広いマーキングエリアを確
保し、この位置決め装置の位置誤差を、小さな可
動範囲を高速かつ高精度で位置決めする位置決め
装置で補正して所定のマーキング精度と速度を実
現させ、又、集光レンズを支持した駆動装置をセ
ンサからの信号で上下に制御する機構を設けて、
被加工物を確実に集光レンズの焦点位置に保持し
たレーザ光マーキング装置である。
(Means and effects for solving the problem) The present invention secures a wide marking area by providing a positioning device with coarse positioning accuracy for a large movable range, and eliminates the positional error of this positioning device by moving a small movable range at high speed and high speed. A positioning device that performs positioning with precision is used to correct the marking accuracy and speed, and a mechanism is provided to control the driving device that supports the condensing lens up and down using signals from the sensor.
This is a laser beam marking device that reliably holds the workpiece at the focal position of the condenser lens.

(実施例) 以下、本発明の一実施例を図面で説明する。 (Example) An embodiment of the present invention will be described below with reference to the drawings.

本発明のレーザ光マーキング装置の斜視図を示
す第4図において、対象物6は搬送コンベア14
で搬送、位置決めされ、搬送コンベア14の上方
に直交して設けられたガータ15には、詳細を後
述するビームスキヤナ16が取付られている。1
7はケーブルラツクで、ビームスキヤナ16の各
駆動部へのケーブルとレーザ光伝送用のフアイバ
ケーブルがある。
In FIG. 4 showing a perspective view of the laser beam marking device of the present invention, the object 6 is shown on the conveyor 14.
A beam scanner 16, which will be described in detail later, is attached to a gutter 15, which is conveyed and positioned at right angles, and is provided perpendicularly above the conveyor 14. 1
A cable rack 7 includes cables to each driving section of the beam scanner 16 and fiber cables for laser beam transmission.

第5図はビームスキヤナ16の詳細斜視図で、
位置決め装置18はガータ15に設けられたガイ
ドレール19で支持され、位置決め装置18に固
定されたフレーム20に取付られたモータ21の
ギヤーは、ガータ15に取付られた搬送コンベア
の幅長の横行ギア43と噛み合つてガイドレール
19上をX方向に動く。又、位置決め装置22
は、位置決め装置18に積載され、位置決め装置
22に取付られたモータ23と位置決め装置18
に取付られたギア24とガイドレール25でY方
向に動く。
FIG. 5 is a detailed perspective view of the beam scanner 16.
The positioning device 18 is supported by a guide rail 19 provided on the garter 15, and the gear of a motor 21 attached to a frame 20 fixed to the positioning device 18 is a transverse gear with a long width of the conveyor attached to the garter 15. 43 and moves on the guide rail 19 in the X direction. Moreover, the positioning device 22
is loaded on the positioning device 18 and the motor 23 attached to the positioning device 22 and the positioning device 18
It moves in the Y direction with a gear 24 and a guide rail 25 attached to it.

又、位置決め装置26は位置決め装置22上に
設けられ、位置決め装置26に固定されたモータ
27と位置決め装置22に取付られたギア28と
ガイドレール29でX方向に動く。この結果、位
置決め装置22と26で小形で慣性の小さいXY
テーブルとなる。
Further, the positioning device 26 is provided on the positioning device 22 and moves in the X direction by a motor 27 fixed to the positioning device 26, a gear 28 attached to the positioning device 22, and a guide rail 29. As a result, the positioning devices 22 and 26 are compact and have low inertia.
It becomes a table.

次に、位置決め装置26の中間には加工ヘツド
30が縦に取付られ、位置決め装置26に取付ら
れたモータ31と加工ヘツド30に取付られたギ
ア29で上下に動く。
Next, a processing head 30 is installed vertically in the middle of the positioning device 26, and is moved up and down by a motor 31 attached to the positioning device 26 and a gear 29 attached to the processing head 30.

第6図は加工ヘツド30の詳細図で、側面には
支持具を介してギア33が縦に取付られ、モータ
31で上下に動く。32はハイトセンサで、支持
具35と押しねじ36で加工ヘツド30に固定さ
れる。又、内側には集光レンズ12が、上端には
光フアイバ用アダプタがある。
FIG. 6 is a detailed view of the machining head 30, in which a gear 33 is vertically attached to the side via a support and is moved up and down by a motor 31. A height sensor 32 is fixed to the processing head 30 with a support 35 and a set screw 36. Further, there is a condensing lens 12 on the inside, and an optical fiber adapter on the top end.

第7図は本実施例の制御装置のブロツク図を示
す。同図において、駆動制御部38には論理判断
ユニツト39、データ記憶ユニツト40とセンサ
解析ユニツト41がある。42はモータ駆動ユニ
ツト、44は速度検出器、45は位置検出器、4
6はレーザ制御部である。そしてこのレーザ光マ
ーキング装置の駆動方式はサーボ制御方式であ
る。
FIG. 7 shows a block diagram of the control device of this embodiment. In the figure, the drive control section 38 includes a logic judgment unit 39, a data storage unit 40, and a sensor analysis unit 41. 42 is a motor drive unit, 44 is a speed detector, 45 is a position detector, 4
6 is a laser control section. The driving method of this laser beam marking device is a servo control method.

すなわち、データ記憶ユニツト40に格納され
た連続するマーキング座標を論理判断ユニツト3
9に順次取り出し、この目標座標データと現在座
標の差を計算して、この差に対応してあらかじめ
設定された速度指令値を選択してモータ駆動ユニ
ツト42に伝達する。モータ駆動ユニツト42
は、モータ21,23,27の回転速度を速度検
出器44からの信号で制御する。更に論理判断ユ
ニツト39は、位置検出器45からのフイードバ
ツク信号を受けて先に計算した目標座標と現在座
標の差が0となると(すなわち目標座標への移動
が完了すると)ユニツト42に伝達した速度指令
を中止し、位置決めを完了する。又、センサ解折
ユニツト41はハイトセンサ32の出力を受け、
集光レンズ12の焦点距離に対象物6が来るよ
う、速度指令をモータ駆動ユニツト42に伝達し
てモータ31を駆動し、加工ヘツド30の動きを
制御する。
That is, the continuous marking coordinates stored in the data storage unit 40 are processed by the logical judgment unit 3.
9, the difference between this target coordinate data and the current coordinate is calculated, and a preset speed command value corresponding to this difference is selected and transmitted to the motor drive unit 42. Motor drive unit 42
controls the rotational speed of the motors 21, 23, and 27 using a signal from the speed detector 44. Further, the logical judgment unit 39 receives the feedback signal from the position detector 45 and determines the speed transmitted to the unit 42 when the difference between the previously calculated target coordinates and the current coordinates becomes 0 (that is, when movement to the target coordinates is completed). Abort the command and complete positioning. Further, the sensor decomposition unit 41 receives the output of the height sensor 32,
A speed command is transmitted to the motor drive unit 42 to drive the motor 31 so that the object 6 comes within the focal length of the condensing lens 12, thereby controlling the movement of the processing head 30.

次に、このように構成したレーザ光マーキング
装置の制御動作を第8図のフローチヤートで説明
する。
Next, the control operation of the laser beam marking device configured as described above will be explained with reference to the flowchart shown in FIG.

まず、搬送コンベア14にマーキング対象物6
が置かれ、所定の位置に位置決めされてマーキン
グ動作が開始する。
First, the object 6 to be marked is placed on the conveyor 14.
is placed and positioned at a predetermined position, and the marking operation begins.

すなわち、ステツプ(以下、Sと記す。)47で
加工ヘツド30を下ろし、S48で対象物6が集光
レンズ12の焦点に位置決めされるまでのサイ
クルを繰り返す。位置決めが終つたらS49でレー
ザ光を出す。S50で座標データを読み出し、S51
でデータ終了か否かを監視して、終了ならばへ
分岐してS63でレーザ出力を中止し、S64で加工
ヘツドを引き上げる。データがあれば、S52で座
標データを現在位置と比べて、X軸とY軸の移動
量を計算して、X軸移動カウンタへ格納する。
That is, in step (hereinafter referred to as S) 47, the processing head 30 is lowered, and in S48, the cycle is repeated until the object 6 is positioned at the focal point of the condenser lens 12. When positioning is complete, emit a laser beam with S49. Read the coordinate data with S50, and S51
The process monitors whether the data has ended or not, and if it has, branches to step S63 to stop laser output, and then pulls up the processing head in S64. If there is data, the coordinate data is compared with the current position in S52, the amount of movement on the X-axis and the Y-axis is calculated, and the amount is stored in the X-axis movement counter.

S53でX軸移動カウンタと位置決め装置26の
最大移動量を比較し、もしX軸移動カウンタの内
容が小さければ、S54で位置決め装置22,26
に移動指令を出す。S55で移動量を累計し、S56
で移動カウンタと比較され、移動完了を監視し、
移動が完了するまでのサイクルを繰り返す。移
動が完了するとS57で現在座標を更新し、へ戻
つてマーキング動作を繰り返す。もし、S53でX
軸移動カウンタの内容が位置決め装置26の最大
移動量より大きいと、S58で位置決め装置26を
原点に復帰させ、S59で移動装置22,18に移
動指令を出す。S60で移動量を累計し、S61で残
り移動量を計算する。
In S53, the X-axis movement counter and the maximum movement amount of the positioning device 26 are compared, and if the content of the X-axis movement counter is small, the positioning device 22, 26 is moved in S54.
Issue a movement command to. Accumulate the amount of movement in S55, and
is compared with the movement counter to monitor movement completion,
Repeat the cycle until the movement is complete. When the movement is completed, the current coordinates are updated in S57, and the process returns to repeat the marking operation. If it is S53,
If the content of the axis movement counter is larger than the maximum movement amount of the positioning device 26, the positioning device 26 is returned to the origin in S58, and a movement command is issued to the moving devices 22 and 18 in S59. The amount of movement is accumulated in S60, and the remaining amount of movement is calculated in S61.

次いで、S62で残り移動量と位置決め装置18
の最小移動量を比較し、もし残り移動量の内容が
小であればへ分岐して、位置決め装置22,2
6の移動を開始する。残り移動量が大きいとき
は、のサイクルを繰り返す。ここで、位置決め
装置18の最小移動量は、位置決め精度で決め、
この誤差は位置決め装置26の移動の際この精度
で補間する。すなわち、位置決め装置26の停止
精度は位置決め装置18よりも充分高くする。
Next, in S62, the remaining movement amount and the positioning device 18 are determined.
, and if the content of the remaining movement amount is small, branch to the positioning device 22,
6 starts moving. If the amount of remaining movement is large, repeat the cycle. Here, the minimum movement amount of the positioning device 18 is determined by the positioning accuracy,
This error is interpolated with this accuracy when the positioning device 26 moves. That is, the stopping accuracy of the positioning device 26 is made sufficiently higher than that of the positioning device 18.

〔発明の効果〕〔Effect of the invention〕

以上、本発明のレーザ光マーキング装置によれ
ば、慣性が小さくて高速、高精度に移動する小さ
な可動範囲の位置決め機構を、大きな可動範囲を
低速で粗い位置決め精度で動く位置決め機構に積
載し、これの最大移動量よりも指令値が大きい場
合、すなわち大きな作画指令の場合は低速で精度
の粗い位置決め機構を動かす。そして、この最小
移動量、すなわち精度限界の最大許容値の手前で
移動指令を高精度な機構に切替えることにより、
鋼板材等大きなマーキング範囲の材料の複数箇所
のマーキングを簡単且つ高精度に加工できるレー
ザ光マーキング装置を得ることができる。
As described above, according to the laser beam marking device of the present invention, a positioning mechanism with a small movable range that has small inertia and moves at high speed and high precision is mounted on a positioning mechanism that moves over a large movable range at low speed and with coarse positioning accuracy. When the command value is larger than the maximum movement amount, that is, when the drawing command is large, the positioning mechanism is moved at low speed and with low precision. Then, by switching the movement command to a highly accurate mechanism before this minimum movement amount, that is, the maximum allowable value of the accuracy limit,
It is possible to obtain a laser beam marking device that can easily and accurately mark multiple locations on a material with a large marking range, such as a steel plate material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガルバノスキヤナの機構を示す
図、第2図は従来のXYスキヤナの機構を示す
図、第3図は第2図の一部断面図、第4図は本発
明の一実施例を示すレーザ光マーキング装置の斜
視図、第5図は第4図の部分詳細図、第6図は第
5図の要部を示す図、第7図は制御装置のブロツ
ク図、第8図は第7図の動作内容を示すフローチ
ヤートである。 6……マーキング対象物、14……搬送コンベ
ア、18,22,26……位置決め装置、21,
23,27,31……モータ、30……加工ヘツ
ド、32……ハイトセンサ、38……駆動制御
部、42……モータ駆動ユニツト、44……速度
検出器、45……位置検出器。
Fig. 1 is a diagram showing the mechanism of a conventional galvano scanner, Fig. 2 is a diagram showing the mechanism of a conventional XY scanner, Fig. 3 is a partial sectional view of Fig. 2, and Fig. 4 is an embodiment of the present invention. 5 is a partial detail view of FIG. 4, FIG. 6 is a diagram showing the main parts of FIG. 5, FIG. 7 is a block diagram of the control device, and FIG. 7 is a flowchart showing the operation contents of FIG. 7. 6... Marking object, 14... Conveyor, 18, 22, 26... Positioning device, 21,
23, 27, 31... motor, 30... machining head, 32... height sensor, 38... drive control section, 42... motor drive unit, 44... speed detector, 45... position detector.

Claims (1)

【特許請求の範囲】 1 コンベアで搬送されたワークにレーザ光を照
射してマーキングするレーザ光マーキング装置に
おいて、 前記コンベア上に設けられ前記コンベアと直角
に前記コンベア幅間を移動し、位置検出器が設け
られた第1のX軸テーブルと、 前記第1のX軸テーブル上に設けられ位置検出
器のあるY軸テーブルと、 前記Y軸テーブル上に設けられ前記第1のX軸
テーブルより小範囲・高精度に位置決めされ位置
検出器のある第2のX軸テーブルと、 前記第2のX軸テーブルに上下移動自在に設け
られ、前記ワーク間の距離を検出するセンサが取
付られたレーザ加工ヘツドと、 前記第1のX軸テーブル、Y軸テーブル、第2
のX軸テーブル及びレーザ加工ヘツドをそれぞれ
駆動する速度検出器付のモータと、 前記各速度検出器からの信号で前記各モータの
速度をそれぞれ制御するモータ駆動ユニツトと、 前記センサと前記各位置検出器の信号により前
記モータを駆動して前記加工ヘツドと前記各テー
ブルを設定位置に制御する駆動制御部と、 よりなることを特徴とするレーザ光マーキング
装置。
[Scope of Claims] 1. A laser beam marking device that marks a workpiece conveyed by a conveyor by irradiating a laser beam with the laser beam, the laser beam marking device is provided on the conveyor and moves between the widths of the conveyor at right angles to the conveyor, and includes a position detector. a first X-axis table provided with a position detector; a Y-axis table provided on the first X-axis table with a position detector; and a Y-axis table provided on the Y-axis table and smaller than the first X-axis table. A second X-axis table that is positioned with high range and high precision and has a position detector, and a sensor that is movable up and down on the second X-axis table and that detects the distance between the workpieces is attached to the laser processing. a head, the first X-axis table, the Y-axis table, and the second
a motor with a speed detector that drives the X-axis table and the laser processing head, respectively; a motor drive unit that controls the speed of each of the motors using signals from each of the speed detectors; 1. A laser beam marking device comprising: a drive control section that controls the processing head and each of the tables to set positions by driving the motor in response to a signal from a laser beam marking device.
JP58146558A 1983-08-12 1983-08-12 Marking device with laser light Granted JPS6040682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146558A JPS6040682A (en) 1983-08-12 1983-08-12 Marking device with laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146558A JPS6040682A (en) 1983-08-12 1983-08-12 Marking device with laser light

Publications (2)

Publication Number Publication Date
JPS6040682A JPS6040682A (en) 1985-03-04
JPS6320638B2 true JPS6320638B2 (en) 1988-04-28

Family

ID=15410383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146558A Granted JPS6040682A (en) 1983-08-12 1983-08-12 Marking device with laser light

Country Status (1)

Country Link
JP (1) JPS6040682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832086A (en) * 2014-02-27 2014-06-04 苏州爱光激光科技有限公司 Carbon dioxide laser marking machine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211650A (en) * 1985-07-10 1987-01-20 Fuji Kikai Kogyo Kk Apparatus for printing register plate
JPS63168277A (en) * 1986-12-29 1988-07-12 Toshiba Corp Packaging device for electronic parts
JPS63168085A (en) * 1986-12-29 1988-07-12 株式会社東芝 Electronic parts solderer
JPH02178046A (en) * 1988-12-28 1990-07-11 Nissha Printing Co Ltd Printing pressure adjustment device
US5109148A (en) * 1990-01-26 1992-04-28 Mitsubishi Denki Kabushiki Kaisha Positioning device for a machining apparatus
JPH09201691A (en) * 1996-01-24 1997-08-05 Fanuc Ltd Laser beam machine
US5837962A (en) * 1996-07-15 1998-11-17 Overbeck; James W. Faster laser marker employing acousto-optic deflection
AU2002357016A1 (en) 2001-11-28 2003-06-10 James W. Overbeck Scanning microscopy, fluorescence detection, and laser beam positioning
JP4259820B2 (en) * 2002-07-29 2009-04-30 セントラル硝子株式会社 Method and apparatus for marking on substrate
CN104245332B (en) * 2012-04-20 2016-12-28 芬欧汇川集团 For the method and apparatus manufacturing the marking in mobile web

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832086A (en) * 2014-02-27 2014-06-04 苏州爱光激光科技有限公司 Carbon dioxide laser marking machine

Also Published As

Publication number Publication date
JPS6040682A (en) 1985-03-04

Similar Documents

Publication Publication Date Title
US4687901A (en) Machine tool for cutting or the like
KR970010889B1 (en) Laser beam machine and method for setting focus of laser beam machine
JPH03151180A (en) Joint chasing type precision laser welding system
JP2798530B2 (en) Laser processing machine
JPS6320638B2 (en)
JP3180194B2 (en) Laser processing machine
JP2000202655A (en) Laser marking device
JPH0732183A (en) Co2 laser beam machine
CN112264723A (en) Laser micropore machining equipment and machining method suitable for small-sized complex curved surface part
JPH0757427B2 (en) Laser cutting machine
JP2000317657A (en) Laser beam marking device
JPH09123033A (en) Nc machining device
WO2020065997A1 (en) Laser machining apparatus
JP2014174047A (en) Measuring device, measurement method and article manufacturing method
JP2908607B2 (en) Laser processing equipment
JPS61147988A (en) Laser beam processing device
JPH10216981A (en) Optical axis moving type laser bean machine
JPH0985470A (en) Laser beam marking device
JPH0724589A (en) Method and device for adjusting automatic alignment of laser beam robot
JP2686814B2 (en) Tool core height adjustment method
NL193239C (en) Device for performing operations using a laser beam.
JP3010769B2 (en) Method and apparatus for assembling optical element module
JP2582807B2 (en) Work line teaching method for industrial robots
JP2686286B2 (en) Three-dimensional laser controller
JPH06679A (en) Laser beam machine