JPS63204229A - Lens for sight correction - Google Patents

Lens for sight correction

Info

Publication number
JPS63204229A
JPS63204229A JP3571187A JP3571187A JPS63204229A JP S63204229 A JPS63204229 A JP S63204229A JP 3571187 A JP3571187 A JP 3571187A JP 3571187 A JP3571187 A JP 3571187A JP S63204229 A JPS63204229 A JP S63204229A
Authority
JP
Japan
Prior art keywords
refractive index
lens
contact lens
peripheral part
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3571187A
Other languages
Japanese (ja)
Other versions
JPH0541969B2 (en
Inventor
Yutaka Mizutani
豊 水谷
Jun Mizutani
潤 水谷
Isato Yunoki
勇人 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Menicon Co Ltd
Original Assignee
Nippon Contact Lens Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Contact Lens Co Ltd filed Critical Nippon Contact Lens Co Ltd
Priority to JP3571187A priority Critical patent/JPS63204229A/en
Publication of JPS63204229A publication Critical patent/JPS63204229A/en
Publication of JPH0541969B2 publication Critical patent/JPH0541969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

PURPOSE:To permit formation of a minus type lens for sight correction to a relatively small thickness in the peripheral part and to a lighter weight by forming the lens in such a manner that the refractive index thereof changes in the direction intersecting with the optical axis. CONSTITUTION:A rod 1 consisting of a transparent polymer constituted in such a manner that the refractive index increases nearly continuously from the central part toward the peripheral part 1b is used as a base material and is worked in the same manner as in the stage for working an ordinary minus contact lens. A contact lens 2 for near-sightedness constituted by using the material having the refractive index increasing nearly continuously from the central part to the peripheral part in such a manner that the refractive index changes in the direction intersecting with the optical axis (the axis shown by an alternate long and short sash line) is obtd. This contact lens for near-sightedness has the refractive index increasing from the central part toward the peripheral part of the material of said lens. The thickness in the peripheral part of the lens is thereby reduced and the wearing feel is improved by the reduced weight.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば近視用の視力矯正用レンズに関するも
のである。
The present invention relates to a vision correction lens for, for example, myopia.

【従来技術とその問題点】[Prior art and its problems]

現在作られているコンタクトレンズは、そのほとんどの
ものが外径15mm以下のものである。そして、この限
られた寸法の範囲内のもので任意のパワーのコンタクト
レンズを得る為、レンズデザインを含めて一つ一つ複雑
な計算をしている。 このようなコンタクトレンズにおける中でも、近視用の
コンタクトレンズ、すなわちマイナス型のコンタクトレ
ンズにおけるハイパワーなものは、制約条件が多く、結
果的には周辺部の厚みが厚い形になってしまう。 試みに、ポリメチルメタクリレート等の材料で構成され
たマイナス型のコンタクトレンズにおけるパワーと周辺
部の最大厚みとの関係を記すと、表1に示すような結果
となり、ハイパワーになればなる程コンタクトレンズの
周辺部の厚みは著しいことが理解されるであろう。 表1 そして、このようにコンタクトレンズの周辺部における
厚みが厚くなることは、 ■ コンタクトレンズ自体の重量増加になり、その結果
として、装用感は大巾に低下。 ■ コンタクトレンズの周辺部における厚みが増加する
と、装用時における異物感がそれだけ大きくなり、結果
として装用感は大巾に低下。 ■ コンタクトレンズ装用時におけるムービング不良と
なり、視野がそれだけ悪くなり、視力補正が悪い。 といった欠点をもたらすことになる。
Most contact lenses currently manufactured have an outer diameter of 15 mm or less. In order to obtain a contact lens of any power within this limited range of dimensions, complicated calculations are made one by one, including lens design. Among such contact lenses, high-power contact lenses for myopia, that is, negative-type contact lenses, have many restrictive conditions, and as a result, the peripheral portions are thick. As an attempt, we recorded the relationship between the power and the maximum thickness of the peripheral area in negative-type contact lenses made of materials such as polymethyl methacrylate, and the results are shown in Table 1.The higher the power, the stronger the contact lens. It will be appreciated that the peripheral thickness of the lens is significant. Table 1 This increase in thickness around the periphery of the contact lens results in an increase in the weight of the contact lens itself, and as a result, the comfort of wearing the lens is greatly reduced. ■ As the thickness of the contact lens periphery increases, the sensation of a foreign body increases when the contact lens is worn, resulting in a significant drop in comfort. ■ Poor movement when wearing contact lenses, resulting in poor visual field and poor vision correction. This will result in drawbacks such as:

【発明の開示】[Disclosure of the invention]

本発明者は、近視用の視力矯正用レンズに対する研究を
鋭意押し進めた結果、多官能性単量体を用いて構成した
ある値の屈折率のプレポリマーロッドを、前記プレポリ
マーロッドの屈折率より大きな屈折率をもたらすように
なるモノマーの溶液中に浸漬(必要に応じて加熱)して
該モノマーを周辺から拡散含浸せしめ、このモノマーが
周囲がら拡散含浸せしめられた前記プレポリマーロッド
に加=4− 熱等の手段で重合反応を進行させることによって構成し
た例えば棒状の素材は、その中心部から周辺部に移るに
したがって屈折率が連続的又は不連続的に大きくなって
いることに注目し、このような材料を用いてマイナスの
レンズ形状に構成した場合には、従来のような形状に構
成しなくても、すなわち周辺部の厚みをそれ程厚くしな
くても、良好なるハイパワーな近視用の視力矯正用レン
ズが得られるのではないかとの啓示を得た。 そこで、単連、上記のような連続的又は不連続的に屈折
率が中心部から周辺部に向かって増大するように構成さ
れた透明なポリマー材料の円柱状のブロックを通常のマ
イナスのコンタクトレンズ形状に加工して近視用のコン
タクトレンズを製造したところ、このコンタクトレンズ
は近視用コンタクトレンズの機能を充分に発揮するもの
であり、しかもハイパワーなものを得る場合でもその形
状はその周辺部における厚みがそれ程厚いものでなくて
もよく、従って装用感が良く、特に口蓋が接触するよう
になる周辺部の厚みが薄いことから装用時の異物感はよ
り一層少なくなって装用感向上度は著しく、かつ、レン
ズ径が従来のものと同じ寸法であっても光学径は大きな
ものになり、従って視野が広いものになることを見出し
たのである。 尚、中心部から周辺部に移るにしたがって屈折率が連続
的又は不連続的に増大したような構成のロッドは、上記
以外の方法によっても得ることができ、例えばある値の
屈折率のプレポリマーロッドをより一層高屈折率を示す
ようになるモノマーガス中にさらし、あるいはモノマー
ミスト中にさらし、該モノマーをプレポリマーロッド中
に周囲から拡散含浸(尚、必要に応じて、この拡散含浸
時には加熱、紫外線照射を行なう)せしめ、その後プレ
ポリマーロッド中に拡散含浸した高屈折率を示すように
なるモノマーを加熱、あるいは紫外線照射等の手段で重
合せしめることによっても得られ、又、一つの容器に数
種類のモノマーを混合し、それぞれの重合速度の違いか
らポリマー濃度に差をつける方法によっても得られる。 又、例えばジエチレングリコールビスアリルカ−ホネー
ト、フタル酸ジアリル、イソフタル酸ジアリル、メタク
リル酸ビニル、アクリル酸ジビニル、エチレングリコー
ルジメタクリレート、アジピン酸ジビニル、メタクリル
酸2,3.3)リフルオロアリル、メタクリル酸2−ト
リフルオロメチル3.3−ジフルオロアリル、アクリル
酸2,3.3)リフルオロアリル、3,3,4.4テト
ラフルオロアジピン酸ジビニル、メタクリル酸2,2−
ジフルオロビニル、アクリル酸2,2−ジフルオロビニ
ル等の群より選ばれる少なくとも一種以上といった多官
能性単量体を用いて構成した比較的高屈折率のプレポリ
マーロッドに対して、メタクリル酸トリフルオロエチル
、アクリル酸トリラルオロエチル、アクリル酸ペンタデ
カフルオロオクチル、アクリル酸ウンデカフルオロヘキ
シル、アクリル酸へブタフルオロブチル、アクリル酸オ
クタフルオロペンチル、アクリル酸ノナフルオロペンチ
ル、酢酸トリフルオロビニル等の含フツ素アルコールの
メタクリル酸エステル、含フツ素アルコールのアクリル
酸エステルあるいはフッ素を含む脂肪酸ビニルエステル
=7= といつた群より選ばれる少なくとも一種以上の低屈折率
を示すようになるモノマーの溶液中に浸漬(必要に応じ
て加熱)して該モノマーを周辺から拡散含浸せしめ、こ
のモノマーが周囲から拡散含浸せしめられた前記プレポ
リマーロッドに加熱等の手段で重合反応を進行させるこ
とによって構成(例えばジエチレングリコールビスアリ
ルカーボネート等の多官能性単量体10重量部と過酸化
ベンゾイル等の重合開始剤0.02重量部との混合物を
、内径7mm、長さ130mmのテフロン管に注入し、
窒素置換の後、90℃で40分間加熱して得たプレポリ
マー(不完全重合物)よりなるロッドを作成し、このロ
ッドを例えばメタクリル酸トリフルオロエチル等の比較
的低屈折率のモノマーに浸漬してこれを周辺から拡散含
浸せしめ、その後熱処理して重合を完結することによっ
て構成)した例えば棒状の素材は、その仮想中心軸から
周辺部に移るにしたがって屈折率が連続的又は不連続的
に小さくなっていることに注目し、このような材料を用
いて屈折率の変化方向が光軸に対して交鎖する方向であ
るようにプラスのコンタクトレンズ形状に構成した場合
には、従来のような形状に構成しなくても、すなわち中
心部の厚みをそれ程厚くしなくても、良好なるハイパワ
ーの遠視用コンタクトレンズが得られる。 尚、周辺部から中心部に移るにしたがって屈折率が連続
的又は不連続的に増大したような構成のロッドは、上記
以外の方法によっても得ることができ、例えば比較的高
屈折率のプレポリマーロッドを低屈折率を示すようにな
るモノマーガス中にさらし、あるいはモノマーミスト中
にさらし、該モノマーをプレポリマーロッド中に周囲か
ら拡散含浸(尚、必要に応じて、この拡散含浸時には加
熱、紫外線照射を行なう)せしめ、その後プレポリマー
ロッド中に拡散含浸した低屈折率を示すようになるモノ
マーを加熱、あるいは紫外線照射等の手段で重合せしめ
ることによっても得られ、あるいは反応速度が異なる二
種類以上のモノマーの混合溶液を加熱又は紫外線照射等
の手段で活性化させてプレポリマーロッドを作成した後
、反応速度の遅いまだ重合にあずからないモノマーを周
辺より揮発させ、その後重合を完了させることによって
も得られる6 又、比較的高屈折率を与えるモノマーと比較的低屈折率
を与えるモノマーを各々少なくとも一種類以上用意し、
回転させられている注型用テフロン管に低屈折率のモノ
マーから順に高屈折率のモノマーを少量ずつ配合した混
合モノマーを注ぎ込み重合を開始させると、注入モノマ
ーは順に管壁に接触するような形態で重合が進行し、こ
のようにして得られたロッドも、これまた周辺部から中
心部にかけて屈折率が増大したものになっている。
As a result of intensive research into lenses for vision correction for myopia, the present inventor has developed a prepolymer rod with a refractive index of a certain value, which is constructed using a polyfunctional monomer, with a refractive index that is higher than that of the prepolymer rod. Diffusion impregnation of the monomer from the periphery by immersing (heating if necessary) in a solution of a monomer that provides a large refractive index, and adding this monomer to the prepolymer rod diffusely impregnated from the periphery. - Noting that, for example, a rod-shaped material constructed by advancing a polymerization reaction by means such as heat, the refractive index increases continuously or discontinuously as it moves from the center to the periphery, When such a material is used to construct a negative lens shape, it is possible to achieve good high-power myopia without having to configure it in the conventional shape, that is, without making the peripheral part so thick. I received a revelation that it might be possible to obtain lenses for vision correction. Therefore, a cylindrical block of a transparent polymer material constructed such that the refractive index increases continuously or discontinuously from the center to the periphery as described above is used as a regular negative contact lens. When a contact lens for myopia was manufactured by processing it into a shape, it was found that this contact lens fully demonstrated the function of a contact lens for myopia, and even when obtaining a high-power lens, the shape of the contact lens was The thickness does not have to be very thick, so the feeling of wearing is good, and since the thickness is especially thin around the area where the roof of the mouth comes into contact, the feeling of a foreign body when wearing is even less, and the degree of improvement in the feeling of wearing is significant. Moreover, they discovered that even if the lens diameter is the same as that of a conventional lens, the optical diameter becomes larger, and therefore the field of view becomes wider. Note that a rod having a structure in which the refractive index increases continuously or discontinuously from the center to the periphery can also be obtained by a method other than the above, for example, by using a prepolymer with a refractive index of a certain value. The rod is exposed to a monomer gas or monomer mist that exhibits an even higher refractive index, and the monomer is diffused and impregnated into the prepolymer rod from the surrounding area (if necessary, heating is applied during this diffusion impregnation). It can also be obtained by polymerizing a monomer that exhibits a high refractive index by diffusing and impregnating it into a prepolymer rod by heating or UV irradiation. It can also be obtained by mixing several types of monomers and varying their polymer concentrations based on their different polymerization rates. Also, for example, diethylene glycol bisallyl carbonate, diallyl phthalate, diallyl isophthalate, vinyl methacrylate, divinyl acrylate, ethylene glycol dimethacrylate, divinyl adipate, 2,3.3)lifluoroallyl methacrylate, 2-methacrylate. -trifluoromethyl 3.3-difluoroallyl, 2,3.3-trifluoroallyl acrylate, divinyl 3,3,4.4-tetrafluoroadipate, 2,2- methacrylate
Trifluoroethyl methacrylate is used as a prepolymer rod with a relatively high refractive index composed of at least one polyfunctional monomer selected from the group of difluorovinyl, 2,2-difluorovinyl acrylate, etc. , triraloloethyl acrylate, pentadecafluorooctyl acrylate, undecafluorohexyl acrylate, hebutafluorobutyl acrylate, octafluoropentyl acrylate, nonafluoropentyl acrylate, trifluorovinyl acetate, etc. Immersion in a solution of at least one monomer that exhibits a low refractive index selected from the group of methacrylic esters of alcohols, acrylic esters of fluorine-containing alcohols, or fluorine-containing fatty acid vinyl esters = 7= The monomer is diffused and impregnated from the periphery by heating if necessary, and the prepolymer rod, into which the monomer is diffused and impregnated from the periphery, is allowed to undergo a polymerization reaction by heating or other means (for example, diethylene glycol bisallyl). A mixture of 10 parts by weight of a polyfunctional monomer such as carbonate and 0.02 parts by weight of a polymerization initiator such as benzoyl peroxide is injected into a Teflon tube with an inner diameter of 7 mm and a length of 130 mm.
After nitrogen purge, a rod made of a prepolymer (incompletely polymerized product) obtained by heating at 90°C for 40 minutes is created, and this rod is immersed in a relatively low refractive index monomer such as trifluoroethyl methacrylate. For example, a rod-shaped material (constructed by diffusion impregnation from the periphery and then heat treatment to complete polymerization) has a refractive index that changes continuously or discontinuously as it moves from its virtual central axis to the periphery. Noting that, if such a material is used to form a positive contact lens shape so that the direction of change in refractive index is intersecting with the optical axis, it will be smaller than the conventional one. A good high-power contact lens for hyperopia can be obtained even if the contact lens is not configured in a specific shape, that is, the thickness of the center portion is not so thick. Note that rods with a structure in which the refractive index increases continuously or discontinuously from the periphery to the center can also be obtained by methods other than the above, such as using a prepolymer with a relatively high refractive index. The rod is exposed to a monomer gas or monomer mist that exhibits a low refractive index, and the monomer is diffused and impregnated into the prepolymer rod from the surrounding area. It can also be obtained by polymerizing a monomer exhibiting a low refractive index that is diffused and impregnated into a prepolymer rod by heating or UV irradiation, or by polymerizing two or more types with different reaction rates. After creating a prepolymer rod by activating a mixed solution of monomers by means such as heating or UV irradiation, monomers that have a slow reaction rate and have not yet participated in polymerization are volatilized from the surrounding area, and then the polymerization is completed. Also, at least one type of monomer giving a relatively high refractive index and at least one type of monomer giving a relatively low refractive index is prepared,
When a monomer mixture containing small amounts of monomers with a low refractive index and monomers with a high refractive index is poured into a rotating Teflon casting tube to start polymerization, the injected monomers come into contact with the tube wall in order. Polymerization proceeds, and the rod thus obtained also has a refractive index that increases from the periphery to the center.

【実施例】【Example】

第1図及び第2図は本発明に係る視力矯正用レンズの1
実施例を示すもので、第1図は中心から周辺に向かって
屈折率がほぼ連続的に大きく変化するように構成された
透明なロッドの平面図、第2図は第1図に示したロッド
を輪切りにしてマイナスのコンタクトレンズに研磨加工
して得たコンタクトレンズの概略断面図である。 各図中、1は、例えばいわゆる2段階重合法といった手
段によって、中心部1aから周辺部1bに向かって屈折
率がほぼ連続的に大きくなるように構成された透明なポ
リマーよりなるロッドである。 このロッド1は、例えばジエチレングリコールビスアリ
ルカーボネート等の多官能性単量体10重量部と過酸化
ベンゾイル等の重合開始剤0,5重量部の混合物を内径
10mm、長さ200mmのテフロン管に注入し、窒素
置換の後、90℃で80分間加熱することによって得た
プレポリマーロッドを、例えばメタクリル酸フェニルあ
るいはビニルベンゾレート等の比較的高屈折率のモノマ
ーに浸漬して周辺から拡散含浸せしめ、′その後熱処理
して重合を完結することにより得られたものである。 尚、第1図中、一点鎖線で示す同心円は、便宜上屈折率
が変化していく様子を示したものである。 そして、このようにして得られたロッド1を基にして、
通常のマイナスのコンタクトレンズの加工工程と同様な
加工工程を経ると、第2図にその断面(第1図はこのコ
ンタクトレンズの平面図に相当)を示すような近視用の
コンタクトレンズ2が得られたのである。 すなわち、屈折率の変化方向が光軸(第2図中一点鎖線
で示す軸)に対して交鎖する方向となるよう、中心部か
ら周辺部にかけてほぼ連続的に屈折率が増大する材料を
用いて構成された近視用のコンタクトレンズ2が得られ
たのである。 上記のように構成させた近視用のコンタクトレンズは、
このコンタクトレンズの材料が中心部より周辺部にうつ
るにつれてその屈折率は大きくなるものであるから、そ
の周辺部の厚みを従来のものよりも薄くできており、そ
の結果コンタクトレンズの重量の軽減によって装用感は
向上し、又、厚みが薄くなったこと自体によって装用時
の異物感(抵抗感)が減少するから装用感は向上し、特
に口蓋が接触するようになる周辺部の厚みが薄いことか
ら装用時の異物感はより一層少なくなり、又、コンタク
トレンズ自体の大きさが同じであっても光学径は大きく
なっており、従って視野はそれだけ拡大し、さらには視
力も安定するものである。
FIG. 1 and FIG. 2 show one of the vision correction lenses according to the present invention.
1 is a plan view of a transparent rod configured so that the refractive index changes largely continuously from the center to the periphery, and FIG. 2 is a plan view of the rod shown in FIG. 1. FIG. 2 is a schematic cross-sectional view of a contact lens obtained by cutting into rings and polishing them into negative contact lenses. In each figure, 1 is a rod made of a transparent polymer, which is constructed so that its refractive index increases almost continuously from a central portion 1a toward a peripheral portion 1b, for example, by means of a so-called two-step polymerization method. This rod 1 is made by injecting a mixture of 10 parts by weight of a polyfunctional monomer such as diethylene glycol bisallyl carbonate and 0.5 parts by weight of a polymerization initiator such as benzoyl peroxide into a Teflon tube with an inner diameter of 10 mm and a length of 200 mm. After nitrogen purging, the prepolymer rod obtained by heating at 90° C. for 80 minutes is immersed in a relatively high refractive index monomer such as phenyl methacrylate or vinyl benzolate to diffuse impregnation from the periphery. It was obtained by heat treatment to complete the polymerization. In addition, in FIG. 1, concentric circles indicated by dashed-dotted lines indicate how the refractive index changes for convenience. Based on the rod 1 obtained in this way,
By going through the same processing steps as those for normal negative contact lenses, a contact lens 2 for myopia, the cross section of which is shown in FIG. 2 (FIG. 1 corresponds to a plan view of this contact lens), is obtained. It was done. In other words, a material whose refractive index increases almost continuously from the center to the periphery is used so that the direction of change in the refractive index is in a direction that intersects the optical axis (the axis indicated by the dashed line in Figure 2). Thus, a contact lens 2 for myopia constructed with the following structure was obtained. Contact lenses for myopia configured as above are
The refractive index of the contact lens material increases as it moves from the center to the periphery, so the thickness of the periphery can be made thinner than conventional lenses, resulting in a reduction in the weight of the contact lens. The feeling of wearing is improved, and the thinner thickness itself reduces the feeling of foreign body (resistance) when wearing, so the feeling of wearing is improved, especially the thinner thickness around the area where the roof of the mouth comes into contact. The feeling of a foreign body when wearing the contact lens is further reduced, and even if the size of the contact lens itself is the same, the optical diameter is larger, so the field of vision is expanded accordingly, and furthermore, the visual acuity is stabilized. .

【効果】【effect】

本発明に係る視力矯正用レンズは、少なくとも光学領域
においては中心部より周辺部の方が屈折率は大きな透明
材料で構成されたマイナス型の視力矯正用レンズであっ
て、このマイナス型の視力矯正用レンズの屈折率の変化
方向が光軸に対して交鎖する方向であるよう構成してな
るので、これまでのレンズに比べてその周辺部における
厚みを薄くでき、すなわちハイパワーのものを得る場合
にあっても周辺部における厚みを比較的薄くでき、従っ
て軽量化が図れるから装用感は向上し、又、これまでの
レンズと大きさが同じでも光学径は大きくなり、従って
視野は拡大する等の特長を有する。
The vision correction lens according to the present invention is a negative vision correction lens made of a transparent material whose refractive index is larger in the peripheral part than in the center at least in the optical region. The lens is constructed so that the direction of change in the refractive index is intersecting with the optical axis, so the thickness at the periphery can be made thinner than conventional lenses, which means that high power can be obtained. In some cases, the thickness at the periphery can be made relatively thinner, making it lighter and therefore more comfortable to wear.Also, even if the size is the same as a conventional lens, the optical diameter is larger, so the field of vision is expanded. It has the following features.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る視力矯正用レンズの1
実施例を示すもので、第1図は連続的又は不連続的に屈
折率が中心部より周辺部に向かって増大する透明材料の
ロッドの平面図、第2図はこの第1図のロッドをマイナ
スのコンタクトレンズへ加工した本発明になる視力矯正
用レンズの断面図である。 1・・・ロッド、1a・・・中心部、1b・・・周辺部
、2・・・コンタクトレンズ。
FIG. 1 and FIG. 2 show one of the vision correction lenses according to the present invention.
Fig. 1 is a plan view of a rod made of a transparent material whose refractive index increases continuously or discontinuously from the center toward the periphery, and Fig. 2 is a plan view of the rod of Fig. 1. FIG. 2 is a cross-sectional view of a vision correction lens according to the present invention that has been processed into a negative contact lens. 1... Rod, 1a... Center part, 1b... Peripheral part, 2... Contact lens.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも光学領域においては中心部より周辺部の方が
屈折率は大きな透明材料で構成されたマイナス型の視力
矯正用レンズであって、このマイナス型の視力矯正用レ
ンズの屈折率の変化方向が光軸に対して交鎖する方向で
あるよう構成したことを特徴とする視力矯正用レンズ。
At least in the optical field, this is a minus-type vision correction lens made of a transparent material with a larger refractive index in the peripheral area than in the center, and the direction of change in the refractive index of this minus-type vision correction lens is A vision correction lens characterized in that the lens is configured to be oriented in a direction intersecting an axis.
JP3571187A 1987-02-20 1987-02-20 Lens for sight correction Granted JPS63204229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3571187A JPS63204229A (en) 1987-02-20 1987-02-20 Lens for sight correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3571187A JPS63204229A (en) 1987-02-20 1987-02-20 Lens for sight correction

Publications (2)

Publication Number Publication Date
JPS63204229A true JPS63204229A (en) 1988-08-23
JPH0541969B2 JPH0541969B2 (en) 1993-06-25

Family

ID=12449444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3571187A Granted JPS63204229A (en) 1987-02-20 1987-02-20 Lens for sight correction

Country Status (1)

Country Link
JP (1) JPS63204229A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089711A (en) * 1997-11-05 2000-07-18 Blankenbecler; Richard Radial gradient contact lenses
CN104950470A (en) * 2014-03-28 2015-09-30 埃西勒国际通用光学公司 Ophthalmic lens and process for manufacturing such a lens
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11931296B2 (en) 2019-04-05 2024-03-19 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295001A (en) * 1986-06-14 1987-12-22 Nippon Sheet Glass Co Ltd Multi-focus spherical lens made of synthetic resin and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295001A (en) * 1986-06-14 1987-12-22 Nippon Sheet Glass Co Ltd Multi-focus spherical lens made of synthetic resin and its production

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089711A (en) * 1997-11-05 2000-07-18 Blankenbecler; Richard Radial gradient contact lenses
CN104950470A (en) * 2014-03-28 2015-09-30 埃西勒国际通用光学公司 Ophthalmic lens and process for manufacturing such a lens
EP2923826A1 (en) * 2014-03-28 2015-09-30 Essilor International (Compagnie Generale D'optique) Ophthalmic lens and method for manufacturing such a lens
US10146066B2 (en) 2014-03-28 2018-12-04 Essilor International Process for manufacturing an ophthalmic lens using voxels and the lens thus obtained
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11931296B2 (en) 2019-04-05 2024-03-19 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing

Also Published As

Publication number Publication date
JPH0541969B2 (en) 1993-06-25

Similar Documents

Publication Publication Date Title
US3776230A (en) Method of rapidly reshaping the cornea to eliminate refractive errors
US3660545A (en) Method of centrifugally casting thin edged corneal contact lenses
US4143017A (en) Process of producing soft contact lenses
US3831604A (en) Method of reshaping the cornea
US4166255A (en) Hybrid corneal contact lens
SU558248A1 (en) Combined contact lens and method of its manufacture
US4943150A (en) Method of making variable modulus lenses
DE1570359A1 (en) Process for the manufacture of soft, pliable contact lenses
EP0214744A2 (en) Surface-treated contact lens
JPS63204229A (en) Lens for sight correction
US5069542A (en) Contact lens
JP4614271B2 (en) Compound contact lens and lens material manufacturing method
US3841985A (en) Irradiated composition for soft contact lens
JP2543335B2 (en) High water content contact lens
CN101855256A (en) Hydrogel with high water content and stability
JPH01298312A (en) Contact lens formed with finer pores and its production
US4231905A (en) Polymethylmethacrylate cellulosic copolymer lens material
KR102006918B1 (en) Method for manufacturing silicon-containing soft contact lens and Soft contact lens manufactured by the method and Composition for molding the soft contact lens
EP0064381A2 (en) Soft contact lenses and manufacture thereof
JPS6227362B2 (en)
JPH0577487B2 (en)
JPS6361225A (en) Production of lens for eyes
KR100210348B1 (en) Soft contact lens
JPS63204228A (en) Lens for presbyopia
JPH06230320A (en) Soft contact lens superior in wearing feeling