JPS63202381A - Stabilization of enzyme - Google Patents

Stabilization of enzyme

Info

Publication number
JPS63202381A
JPS63202381A JP62034109A JP3410987A JPS63202381A JP S63202381 A JPS63202381 A JP S63202381A JP 62034109 A JP62034109 A JP 62034109A JP 3410987 A JP3410987 A JP 3410987A JP S63202381 A JPS63202381 A JP S63202381A
Authority
JP
Japan
Prior art keywords
pullulanase
glucoamylase
acid
enzyme
dicarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62034109A
Other languages
Japanese (ja)
Other versions
JPH0236234B2 (en
Inventor
Hitoshi Iwahashi
均 岩橋
Yoshiyuki Takasaki
高崎 義幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62034109A priority Critical patent/JPS63202381A/en
Publication of JPS63202381A publication Critical patent/JPS63202381A/en
Publication of JPH0236234B2 publication Critical patent/JPH0236234B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain pullulanase stable within a suitable action range of glucoamylase, by treating pullulanase with a dicarboxylic acid. CONSTITUTION:0.5-5mM 5-10C dicarboxylic acid (e.g. adipic acid) is added and reacted with 1 unit pullulanase produced by a microorganism (e.g. Klebsiella pneumonia) belonging to the genus Bacillus, Klebsiella or Streptomyces to afford pullulanase capable of effectively acting at pH4.3-4.5 and 57-60 deg.C which are suitable acting conditions of glucoamylase of Aspergillus niger.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、プルラナーゼの安定化方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for stabilizing pullulanase.

〔従来技術〕[Prior art]

プルラナーゼは、プルランのα−1,6−グルコシド結
合を切断し、最終的にマルトトリオースを生成する酵素
であり、これまで種々の細菌、放線菌など多種類の微生
物により生産されることが知られている。
Pullulanase is an enzyme that cleaves the α-1,6-glucoside bond of pullulan and ultimately produces maltotriose, and it has been known that it is produced by many types of microorganisms, including various bacteria and actinomycetes. It is being

プルラナーゼは、アミロペクチン、澱粉、あるいはこれ
らの微生物に存在するα−1,6−グルコシド結合も分
解することができるため、α−1,6−グルコシド結合
分解能を持たないβ−アミラーゼや各種のα−1,6−
アミラーゼなどと併用して澱粉に作用させると、これら
アミラーゼを単独に作用させる場合よりも高い収量で各
アミラーゼの生産物を得ることができる0例えば、β−
アミラーゼを単独に澱粉に作用させたときのマルトース
の収量は約55%であるが、プルラナーゼの存在下で作
用させると、約90%の極めて高い収量でマルトースを
生産できる。
Pullulanase can also decompose α-1,6-glucoside bonds present in amylopectin, starch, or these microorganisms, so it cannot be used with β-amylase or various α-amylases that do not have the ability to decompose α-1,6-glucoside bonds. 1,6-
When these amylases are used together to act on starch, the products of each amylase can be obtained in higher yields than when these amylases are used alone.For example, β-
When amylase is used alone on starch, the yield of maltose is about 55%, but when it is used in the presence of pullulanase, maltose can be produced with an extremely high yield of about 90%.

最近、プルラナーゼはグルコアミラーゼと併用すると、
グルコアミラーゼ単独の場合よりも高い収量でグルコー
スが生産できることが明らかになった(特公昭54−2
9570、特公昭57−39、特公昭57−17408
9他)。
Recently, when pullulanase is used in combination with glucoamylase,
It became clear that glucose could be produced in a higher yield than when glucoamylase was used alone (Special Publication No. 54-2
9570, Special Publication No. 57-39, Special Publication No. 57-17408
9 and others).

この場合のプルラナーゼは、グルコアミラーゼの持つα
−1,6−グルコシド結合切断能を補うことにより、澱
粉糖化反応を促進し、グルコースの増収に有効な働きを
するものと考えられている。
In this case, pullulanase is α of glucoamylase.
It is believed that by supplementing the ability to cleave -1,6-glucoside bonds, it promotes the starch saccharification reaction and acts effectively in increasing the yield of glucose.

しかしながら、グルコアミラーゼは微生物起源によって
も、若干、異なるが一般的にはpH4〜5、温度55〜
60℃の範囲において、最も効率的に作用する酵素であ
る。これに対し、これまで知られている多くのプルラナ
ーゼは、pH6〜7、温度50〜55℃に最適作用域が
あるため、グルコアミラーゼの作用域と一致しない、こ
のため、いずれかの酵素活性を犠牲にして反応しなけれ
ばならなかった。
However, glucoamylase generally has a pH of 4-5 and a temperature of 55-55, although it varies slightly depending on the microbial origin.
It is an enzyme that works most efficiently in the 60°C range. On the other hand, many of the pullulanases known so far have an optimal action range at pH 6-7 and temperature 50-55°C, which does not match the action range of glucoamylase. I had to sacrifice and react.

〔目的及び効果〕[Purpose and effect]

本発明者らは、グルコアミラーゼの好適作用域で、プル
ラナーゼを作用させるためのプルラナーゼの安定化方法
について、種々、検討を加えてきた結果、プルラナーゼ
を炭素数5以上10以下のジカルボン酸、特に炭素数6
個のアジピン酸(ヘキサンジオイック アシド)で処理
すると、プルラナ−ゼが顕著に安定されることを認めた
0本発明は、この知見に基づいてなされたものである。
The present inventors have conducted various studies on methods for stabilizing pullulanase to allow pullulanase to act in the preferred action range of glucoamylase. As a result, the present inventors have determined that pullulanase is a dicarboxylic acid having 5 to 10 carbon atoms, particularly carbon Number 6
It was recognized that pullulanase was significantly stabilized when treated with adipic acid (hexanedioic acid).The present invention was made based on this finding.

〔構成〕〔composition〕

すなわち、本発明はプルラナーゼをジカルボン酸で処理
することを特徴′どするプルラナーゼの安定化法に関す
るものである。
That is, the present invention relates to a method for stabilizing pullulanase, which is characterized by treating pullulanase with a dicarboxylic acid.

以下に、本発明の内容を更に具体的に説明する。The contents of the present invention will be explained in more detail below.

本発明を、例えばグルコアミラーゼと併用するプルラナ
ーゼに通用する場合、プルラナーゼとしては、少なくと
も最適温度が50℃以上(1%プルラン濃度) 、pu
sにおいても作用することが要求される。このような酵
素は、バシルス属、クレプシラ(ニーロバフタ)属、ス
トレプトマイセス属など種々の微生物により生産され、
例えば、クレブシラ・ニューモニア(Klebsill
a pneumonia)のプルラナーゼやバシルス・
ズプチルス(Bacillussubtilis)のプ
ラナーゼが使用される。
For example, when the present invention is applicable to pullulanase used in combination with glucoamylase, the optimum temperature for pullulanase is at least 50°C or higher (1% pullulan concentration), pu
It is also required to act on s. Such enzymes are produced by various microorganisms such as Bacillus, Klepsilla, and Streptomyces.
For example, Klebscilla pneumonia
a pneumonia) pullulanase and Bacillus.
Bacillus subtilis planase is used.

本発明において使用されるジカルボン酸は、例えば、ア
ジピン酸(炭素数6)、ピメリン酸(炭素数7)、スペ
リン酸(炭素数8)、アゼライン酸(炭素数9)、ゼバ
シン酸(炭素数10)など、一般式CnHxn(Coo
H)zで表される飽和ジカルボン酸であり、炭素数とし
て5〜10程度のものが有効であるが、特に、アジピン
酸は効果的である。
Examples of dicarboxylic acids used in the present invention include adipic acid (6 carbon atoms), pimelic acid (7 carbon atoms), superric acid (8 carbon atoms), azelaic acid (9 carbon atoms), and zebacic acid (10 carbon atoms). ), etc., the general formula CnHxn(Coo
It is a saturated dicarboxylic acid represented by H)z, and those having about 5 to 10 carbon atoms are effective, and adipic acid is particularly effective.

プルラナーゼのアジピン酸による処理は、通常該酵素1
単位当り0.5〜5ミリモル量のジカルボン酸を加えて
、あらかじめプルラナーゼ剤を処理するか、あるいは該
酵素反応液中に添加される。
Treatment of pullulanase with adipic acid usually results in the enzyme 1
A dicarboxylic acid in an amount of 0.5 to 5 mmol per unit is added to pre-treat the pullulanase agent or added to the enzyme reaction solution.

このような処理をされたプルラナーゼ剤はグルコアミラ
ーゼ、特にアスペルギルス・ニガー(Aspergil
lus  niger)のグルコアミラーゼの好適な作
用条件である、pH4,3〜4,5、温度57〜60℃
において有効に作用し、無処理のプルラナーゼに比ペブ
ルコースを0.5〜3%増収することができる。
Such treated pullulanase agents contain glucoamylase, especially Aspergillus niger.
lus niger) glucoamylase, pH 4.3 to 4.5 and temperature 57 to 60°C.
It can increase the yield of pebulose by 0.5 to 3% compared to untreated pullulanase.

次に、実施例により、本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

〈実施例 l〉 可溶性澱粉2%、尿素0.35%、XJPOe 0.0
5%Mg5Oa ’ IHzOO,05%、にc z 
o、s%、MnCJz5X10−’M、CaCJ gl
Xlo−’Mからなる培地50m Itを200m j
!容三角フラスコに入れ、常法により殺菌後、クレブシ
ラ・ニューモニア(Klebsiella  pneu
monia@) FERMP−7387を接種し、30
℃で2日間振盪培養した。培養後、遠心分離して得た上
澄のプルラナーゼ活性は、培地1wj!当たり6.0単
位であった。
<Example l> Soluble starch 2%, urea 0.35%, XJPOe 0.0
5%Mg5Oa 'IHzOO,05%, c z
o, s%, MnCJz5X10-'M, CaCJ gl
200 m j of 50 m It of medium consisting of Xlo-'M
! Pour into an Erlenmeyer flask, sterilize it by a conventional method, and then kill Klebsiella pneumonia.
monia@) Inoculated with FERMP-7387, 30
The cells were cultured with shaking at ℃ for 2 days. After culturing, the pullulanase activity of the supernatant obtained by centrifugation was 1wj! It was 6.0 units per unit.

該プルラナーゼ1単位当たり、アジピン酸を2ミリモル
量加え、室温で30分間処理した後、糖化反応用酵素と
して使用した。
Adipic acid was added in an amount of 2 mmol per unit of pullulanase, treated at room temperature for 30 minutes, and then used as an enzyme for saccharification reaction.

市販デキストリン(参松工業株式会社製 粉末水飴S 
L D) 3.8g、グルコアミラーゼ(デンマーク 
ノボ社製アミログルコシダーゼA M C300)2.
2X10−”mA!、塩化カルシウムI Xl0−”M
、上記のアジピン酸処理、または無処理のプルラナーゼ
を澱粉g当たり0675単位を加え、水で全量10m 
j!とじ、ptta、s、温度60℃で反応を行った。
Commercially available dextrin (Sanmatsu Kogyo Co., Ltd. powder starch syrup S)
L D) 3.8g, glucoamylase (Denmark)
Amyloglucosidase A MC300 (manufactured by Novo) 2.
2X10-”mA!, Calcium Chloride I Xl0-”M
, add 0675 units of the above adipic acid-treated or untreated pullulanase per g of starch, and dilute the total amount with water to 10 m
j! The reaction was carried out at a temperature of 60°C.

反応開始後、55時間目におけるグルコースの収量を高
速液体クロマトグラフで分析した結果は第1表に示す通
りであった。
The yield of glucose 55 hours after the start of the reaction was analyzed by high performance liquid chromatography, and the results are shown in Table 1.

く以下余白〉 第1表 表から明らかなように、アジピン酸処理したプルラナー
ゼは無処理のものに比ベグルコースの増収に対し顕著な
効果を示した。
As is clear from Table 1, the pullulanase treated with adipic acid had a remarkable effect on increasing the yield of beglucose compared to the untreated pullulanase.

〈実施例 2〉 大豆粕5%、コーン・ステイープ・リカー0.6%肉エ
キス0.4%、リン酸二カリ0.3%、硫酸マグネシウ
ム(7水塩)0.1%、可溶性澱粉2%、尿素0.3%
、ソデイウム・ドデシル・サルフェート0.1%、硫e
II銅5 xlO−’M、硫酸亜鉛I Xl0−’M、
 硫p鉄I X10−’Mからなる培地(pH7,2)
30mfを20h l容三角フラスコに入れ、常法によ
り殺菌後、バシルス・ズブチルスTLI (Bacil
lus  5ubtilis TU)(FERM  B
P684)を接種し、30℃で4日間培養した。培養後
、遠心分離して得た上澄中のプルラナーゼ活性は、培地
1 m 110.5単位であった。
<Example 2> Soybean meal 5%, corn steep liquor 0.6%, meat extract 0.4%, dipotassium phosphate 0.3%, magnesium sulfate (heptahydrate) 0.1%, soluble starch 2 %, urea 0.3%
, sodium dodecyl sulfate 0.1%, sulfur e
II copper 5 xlO-'M, zinc sulfate I Xl0-'M,
Medium consisting of p-iron sulfate I X10-'M (pH 7.2)
Pour 30 mf into a 20 h L Erlenmeyer flask, sterilize it by a conventional method, and then add Bacillus subtilis TLI.
lus 5ubtilis TU) (FERM B
P684) was inoculated and cultured at 30°C for 4 days. After culturing, the pullulanase activity in the supernatant obtained by centrifugation was 110.5 units per 1 m of medium.

該プルラナーゼ1単位当り、アジピン酸、ピメリン酸、
スペリン酸、アゼライン酸、ゼバシン酸を各4ミリモル
量添加し、室温で30分間処理した後、糖化に使用した
per unit of pullulanase, adipic acid, pimelic acid,
Speric acid, azelaic acid, and zebacic acid were added in amounts of 4 mmol each, treated at room temperature for 30 minutes, and then used for saccharification.

澱粉糖化反応は、上記プルラナーゼを用いる以外、実施
例1に記載の方法と同じ組成で、pH4,460℃で反
応を行った。
The starch saccharification reaction was carried out at pH 4, 460° C. using the same composition as in Example 1 except for using the above-mentioned pullulanase.

糖化開始後53時間目におけるグルコースの収量を高速
液体クロマトグラフ法により測定した結果は、第2表に
示す通りであった。
The yield of glucose measured 53 hours after the start of saccharification by high performance liquid chromatography was as shown in Table 2.

く以下余白〉 第2表 表から明らかなように、各ジカルボン酸処理したものは
、無処理のものに比べ有効性が認められ、特にアジピン
酸処理したものは顕著な効果を示した。
As is clear from Table 2, those treated with each dicarboxylic acid were found to be more effective than those without treatment, and those treated with adipic acid showed particularly remarkable effects.

〈実施例 3〉 実施例2で調製した酵素液各1単位に、アジピン酸をそ
れぞれ1.2.3.4ミリモル量添加し、室温で30分
間処理後、実施例1と同様の組成、pt+4.4.60
℃で2日間反応を行った。得られた糖化液の糖組成は第
3表に示す通りであった。
<Example 3> Adipic acid was added in an amount of 1, 2, and 3.4 mmol to each unit of the enzyme solution prepared in Example 2, and after treatment at room temperature for 30 minutes, the same composition as in Example 1, pt+4 .4.60
The reaction was carried out at ℃ for 2 days. The sugar composition of the obtained saccharified liquid was as shown in Table 3.

〈以下余白〉<Margin below>

Claims (1)

【特許請求の範囲】[Claims] プルラナーゼをジカルボン酸で処理することを特徴とす
るプルラナーゼの安定化方法。
A method for stabilizing pullulanase, which comprises treating pullulanase with a dicarboxylic acid.
JP62034109A 1987-02-17 1987-02-17 Stabilization of enzyme Granted JPS63202381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62034109A JPS63202381A (en) 1987-02-17 1987-02-17 Stabilization of enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034109A JPS63202381A (en) 1987-02-17 1987-02-17 Stabilization of enzyme

Publications (2)

Publication Number Publication Date
JPS63202381A true JPS63202381A (en) 1988-08-22
JPH0236234B2 JPH0236234B2 (en) 1990-08-16

Family

ID=12405110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034109A Granted JPS63202381A (en) 1987-02-17 1987-02-17 Stabilization of enzyme

Country Status (1)

Country Link
JP (1) JPS63202381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627075A (en) * 1993-06-21 1997-05-06 Boehringer Mannheim Corporation Stable diagnostic reagent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627075A (en) * 1993-06-21 1997-05-06 Boehringer Mannheim Corporation Stable diagnostic reagent

Also Published As

Publication number Publication date
JPH0236234B2 (en) 1990-08-16

Similar Documents

Publication Publication Date Title
JPS6318480B2 (en)
JPH0118717B2 (en)
Weinhäusel et al. A new maltodextrin-phosphorylase from Corynebacterium callunae for the production of glucose-1-phosphate
JPS63202381A (en) Stabilization of enzyme
JPH05236959A (en) Pullulanase, its production and saccharification of starch using the same
JP3761236B2 (en) Novel β-glucosidase, production method and use thereof
JP2964042B2 (en) Maltotriose-forming amylase, its production and use
JPH10271992A (en) Purified alpha-amylase stable to acid and obtained from fungi
JP2001069975A (en) Chitosanase
JPS61202700A (en) Production of maltotetraose
JP4576031B2 (en) Novel α-glucosidase
JPH0681598B2 (en) Method for producing glucose by saccharification of starch
JPS6225977A (en) Novel amylase
JPH01104173A (en) Stabilization of amylase
JPH0246195B2 (en)
JPH0329391B2 (en)
JPS61162169A (en) Novel bacillus subtilis tu strain
JPH0369510B2 (en)
JP2843110B2 (en) Pullulanase
Odibo et al. Purification and Characterization of a β‐Amylase of Hendersonula toruloidea
JP4759028B2 (en) Method for producing non-reducing disaccharide containing α-galactosyl group
JP2866460B2 (en) Saccharification method of polysaccharide
JPH0351398B2 (en)
JPH01104171A (en) Stabilization of alpha-1,6-glucosidase
JPH01104174A (en) Stabilization of cellulase

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term