JPS63200632A - Space light communication equipment - Google Patents

Space light communication equipment

Info

Publication number
JPS63200632A
JPS63200632A JP62032898A JP3289887A JPS63200632A JP S63200632 A JPS63200632 A JP S63200632A JP 62032898 A JP62032898 A JP 62032898A JP 3289887 A JP3289887 A JP 3289887A JP S63200632 A JPS63200632 A JP S63200632A
Authority
JP
Japan
Prior art keywords
light
optical communication
satellite
sunlight
sun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62032898A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mizushima
宜彦 水島
Sadahisa Warashina
禎久 藁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP62032898A priority Critical patent/JPS63200632A/en
Publication of JPS63200632A publication Critical patent/JPS63200632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce the consumed electric energy while reducing the weight of a satellite mount device by collecting the sun ray and using the ray as the light source for the inter-satellite optical communication system. CONSTITUTION:The wavelength of the sun ray collected by a tracking light collection optical system 12 collecting the sun ray in tracing the sun 11 is selected by an optical filter 13 and the ray is radiated to a YAG laser 17 as the light source laser of the optical communication carrier light as a pumping light. The light generated from the YAG laser 17 is preferably pulsized and a double or triple harmonic processing is applied as required by a harmonic generator 18. Then the light subject to wavelength conversion is modulated by using a signal from a signal source 15 in the modulator 16 and radiated. When the satellite comes behind the shadow of the earth, no sun ray is obtained, but this time is not much in a year, a standby power supply on the satellite is used in this case. Thus, the weight of the satellite mount device is reduced and the electric consumed energy is decreased.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は宇宙通信、特に人工衛星間の通信に使用して効
果のある宇宙光通信装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a space optical communication device that is effective when used for space communication, particularly for communication between artificial satellites.

〔従来の技術〕[Conventional technology]

近年、国際間の通信はもとより国内における通信にも人
工衛星が利用されるようになり、今後ますます衛星宇宙
通信が盛んになろうとしている。
In recent years, artificial satellites have come to be used not only for international communications but also for domestic communications, and satellite space communications are expected to become even more popular in the future.

そして人工衛星の数が増え、有人衛星が打ち上げられる
昨今では衛星間通信も盛んになろうとしている。
Nowadays, as the number of artificial satellites increases and manned satellites are launched, inter-satellite communication is also becoming more popular.

第5図はこのような人工衛星を利用した宇宙通信の様子
を示す図で、人工衛星1.2間、或いは人工衛星と地球
間における通信には、従来電波が使用されていた。
FIG. 5 is a diagram showing space communication using such artificial satellites. Conventionally, radio waves have been used for communication between artificial satellites 1 and 2, or between an artificial satellite and the earth.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

しかしながら、衛星間の距離が長い場合などでは、搭載
アンテナの指向性の関係で空間伝播損失が増大してしま
う。そこで、波長が短く指向性を鋭くすることができる
光を使用した通信が考えられており、光波術の進歩とと
もにその可能性が増しているが、いまだ確実な案は得ら
れてないのが実情である。さらに、衛星搭載通信機器は
その重量が厳しく制限されており、その具体的実現には
なお多くの困難が付随している。
However, when the distance between satellites is long, spatial propagation loss increases due to the directivity of the onboard antenna. Therefore, communication using light that has a short wavelength and sharp directivity has been considered, and the possibilities are increasing with the progress of light wave technology, but the reality is that no reliable plan has been obtained yet. It is. Furthermore, the weight of satellite-mounted communication equipment is severely limited, and there are still many difficulties involved in its practical implementation.

本発明は上記問題点を解決するためのもので、太陽光を
利用して光通信を行うようにすることにより、特に衛星
間の光通信を可能とする宇宙光通信装置を提供すること
を目的とする。
The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to provide a space optical communication device that enables optical communication between satellites by performing optical communication using sunlight. shall be.

〔問題点を解決するための手段〕 そのために本発明は、太陽を追尾して太陽光を集光する
追尾集光手段と、集光した太陽光を変調して送信用信号
光を出力する光送信部を備えた宇宙光通信装置、及び太
陽を追尾して太陽光を集光する追尾集光手段と、集光し
た太陽光で光ポンピングされるレーザー発振器と、レー
ザー発振器出力光を変調して送信用信号光を出力する光
送信部を備えた宇宙光通信装置、及び太陽を追尾して太
陽光を集光する追尾集光手段と、集光した太陽光で光ポ
ンピングされるレーザー発振器と、レーザー発振器出力
光と受信光とを混合する混合器と、混合器出力光から所
定波長成分を抽出するフィルターとを備えた宇宙光通信
装置を特徴とする。
[Means for Solving the Problems] To this end, the present invention provides a tracking and condensing means for tracking the sun and concentrating the sunlight, and a light source for modulating the condensed sunlight and outputting signal light for transmission. A space optical communication device equipped with a transmitter, a tracking and focusing means that tracks the sun and focuses the sunlight, a laser oscillator that is optically pumped by the focused sunlight, and a laser oscillator that modulates the output light of the laser oscillator. A space optical communication device equipped with an optical transmitter that outputs a signal light for transmission, a tracking and condensing means that tracks the sun and condenses the sunlight, and a laser oscillator that is optically pumped by the concentrated sunlight; The space optical communication device is characterized by a mixer that mixes laser oscillator output light and received light, and a filter that extracts a predetermined wavelength component from the mixer output light.

〔作用〕[Effect]

本発明の宇宙光通信装置は、太陽を追尾して太陽光を集
光し、集光した太陽光、或いは集光した太陽光で光ポン
ピングしたレーザー発振器出力光を搬送波光として変調
して送信用信号光を得、また集光した太陽光で光ポンピ
ングしたレーザー発振器を局部発振器として利用するこ
とによりヘテロゲイン受信機を構成し、衛星通信におけ
る衛星搭載機器の重量を軽減すると共に、機器使用電力
量を軽減し、さらに搭載機器中の発光素子等の信顧性の
向上を図ることが可能となる。
The space optical communication device of the present invention tracks the sun, collects sunlight, and modulates the focused sunlight or the output light of a laser oscillator optically pumped with the focused sunlight as carrier wave light for transmission. By obtaining a signal light and using a laser oscillator that is optically pumped with concentrated sunlight as a local oscillator, a hetero gain receiver is constructed, which reduces the weight of satellite equipment in satellite communications and reduces the amount of power used by the equipment. This makes it possible to reduce the amount of damage and further improve the reliability of light-emitting elements, etc. in the on-board equipment.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.

第1図は本発明による宇宙光通信装置の一実施例を示す
図で、太陽光を搬送波光として直接利用したものである
。図中、11は太陽、12は追尾集光光学系、13は光
学フィルター、14は光送信部、15は信号源、16は
変調器である。
FIG. 1 is a diagram showing an embodiment of a space optical communication device according to the present invention, which uses sunlight directly as carrier wave light. In the figure, 11 is the sun, 12 is a tracking and focusing optical system, 13 is an optical filter, 14 is an optical transmitter, 15 is a signal source, and 16 is a modulator.

図において、追尾集光光学系12は、受光した太陽光の
強度をモニターする受光素子と、常に受光強度が最大と
なるように太陽を追尾する装置を備えており、太陽を光
学的に常時自動追尾する。
In the figure, the tracking and condensing optical system 12 is equipped with a light receiving element that monitors the intensity of received sunlight and a device that tracks the sun so that the intensity of the received light is always at its maximum. Track.

集光した太陽光は光学フィルター13で波長選択をする
。送信部14は信号源15と変調器16を有しており、
変調器16において波長選択された所定波長の搬送波光
を信号源15からの信号により変調し、送信用信号光と
して送信する。このように太陽光を直接搬送波光として
変調することにより、光源が著しく簡素化されると共に
、光波多重方式を行う場合には任意の波長を選び出して
多重化することが容易となる。また、送信用光ビームの
空間伝播においては、損失を減少させるためにビーム開
き角をできるだけ小さく、平行ビームとする必要があり
、そのためには一般に光源の輝度が高く点光源とみなせ
ることが重要であるが、太陽光はその点極めて好ましい
性質を有している。
The wavelength of the concentrated sunlight is selected by an optical filter 13. The transmitter 14 has a signal source 15 and a modulator 16,
A modulator 16 modulates carrier light of a predetermined wavelength selected by a signal from a signal source 15, and transmits it as a transmission signal light. By directly modulating sunlight as carrier wave light in this way, the light source is significantly simplified, and when performing a light wave multiplexing method, it becomes easy to select and multiplex arbitrary wavelengths. In addition, in the spatial propagation of a transmission optical beam, it is necessary to make the beam aperture as small as possible and make it a parallel beam in order to reduce loss, and for this purpose, it is generally important that the light source has high brightness and can be regarded as a point light source. However, sunlight has extremely favorable properties in this respect.

さらに集光性光学系により光ビーム幅を最適化すること
ができる。その結果、本実施例によれば高輝度で集束性
の良好な光ビームで送信することが可能となる。
Furthermore, the light beam width can be optimized by the condensing optical system. As a result, according to this embodiment, it is possible to transmit a light beam with high brightness and good focusing.

第2図は本発明による宇宙光通信装置の他の実施例を示
す図で、太陽光を光通信用搬送波光の光源レーザーのポ
ンピング光として利用したものである。図中、第1図と
同一番号は同一内容を示しており、17はYAGレーザ
−,18は高調波発生器である。この場合レーザーは、
モードロック共振器等の周期パルス発生用装置を含むも
のとする。これは通信においては光パルスが必要である
からである。なお、ここでいうYAGレザーとは、Nd
をを含有するガラス等、同−範晴の機構のレーザーを含
むものとする。
FIG. 2 is a diagram showing another embodiment of the space optical communication device according to the present invention, in which sunlight is used as pumping light for a light source laser of carrier wave light for optical communication. In the figure, the same numbers as in FIG. 1 indicate the same contents, 17 is a YAG laser, and 18 is a harmonic generator. In this case, the laser
It shall include a device for generating periodic pulses such as a mode-locked resonator. This is because optical pulses are necessary for communication. In addition, the YAG leather referred to here is Nd
glass, etc. containing a laser with the same mechanism.

図において、集光した太陽光は光学フィルター13によ
り波長選択され、光通信用搬送波光の光源レーザーとし
てのYAGレーザ−17にポンピング光として照射され
る。この場合光学フィルター13は光ポンピングに有効
でない近赤外以上の長波長光、及び可視光よりも短波長
の光を遮断してレーザーパルスの無駄な温度上昇や損傷
を防ぎ、かつ集光鏡の負担を軽くするようにしている。
In the figure, the wavelength of the concentrated sunlight is selected by an optical filter 13 and is irradiated as pumping light to a YAG laser 17 serving as a light source laser for carrier wave light for optical communication. In this case, the optical filter 13 blocks wavelengths longer than near-infrared light, which are not effective for optical pumping, and light with wavelengths shorter than visible light, thereby preventing unnecessary temperature rise and damage to the laser pulse, and preventing damage to the condensing mirror. I'm trying to lighten the burden.

YAGレーザ−17から発生した光はパルス化するのが
好ましく、必要に応じて高調波発生器18により倍調波
ないしは3倍調波にする。この波長変換は送信光ビーム
の広がり角の制限、及びバンクグラウンド光とのコント
ラストを考えて適当な波長のものを選ぶための処理であ
る。波長変換された光は変調器16において信号源15
からの信号により変調を受けた後放射され送信される。
The light emitted from the YAG laser 17 is preferably pulsed, and if necessary is converted into harmonics or triple harmonics by a harmonic generator 18. This wavelength conversion is a process for selecting an appropriate wavelength by considering the limit on the spread angle of the transmitted light beam and the contrast with the background light. The wavelength-converted light is sent to a signal source 15 in a modulator 16.
After being modulated by the signal from the source, it is radiated and transmitted.

第2図の実施例によれば、従来、YAGレーザーのポン
ピングには多大の電力を要し、それを供給するための電
源装置が大型化するため装置を軽量化することができな
かったが、この電源装置が不要となるために軽量化が可
能となり、また従来励起用ランプの寿命が短く問題であ
ったが、この点も完全に解消される。このように、送信
機の軽量化、所要電力の低減と、これによって強力なレ
ーザーパルスを使用しうる光源を信号光用に使用するこ
とが可能となる。また一般的に、通常励起用ランプはC
Wの場合0.1kw以上が必要であるが、この関係の設
備を不要にすることができる。
According to the embodiment shown in FIG. 2, pumping a YAG laser conventionally requires a large amount of electric power, and the power supply device for supplying it becomes large, making it impossible to reduce the weight of the device. Since this power supply device is not required, the weight can be reduced, and the short lifespan of conventional excitation lamps, which was a problem, is completely resolved. In this way, it becomes possible to reduce the weight of the transmitter, reduce the required power, and thereby use a light source capable of using powerful laser pulses for the signal light. In general, the excitation lamp is C
In the case of W, 0.1 kW or more is required, but this related equipment can be made unnecessary.

第3図は本発明による宇宙光通信装置の他の実施例を示
す図で、第2図と同一番号は同一内容を示している。図
中、19は半導体レーザーである。
FIG. 3 is a diagram showing another embodiment of the space optical communication device according to the present invention, and the same numbers as in FIG. 2 indicate the same contents. In the figure, 19 is a semiconductor laser.

図において、YAGレーザーの代わりに半導体レーザー
を用いた点が第1図の場合と異なっており、半導体レー
ザーの光ポンピングに太陽光を使用している。通信半導
体レーザーはPN接合により電流注入を行ってポンピン
グ、及び変調を行うが、このことは本質的条件ではない
。特に高速光変調器を別途使用する場合または変調を必
要としない後述する受信用ヘテロゲインの局部発振器の
ためには光ポンピングが有効である。これらのための光
ポンピング半導体レーザーはその構造が電流注入のよう
に複雑な積層構造を必要とせず、簡単な構造をとり得る
ため、放熱のための熱抵抗を小さくして大きな出力を取
出しうる利点が生ずる。
The figure differs from the case in Figure 1 in that a semiconductor laser is used instead of a YAG laser, and sunlight is used for optical pumping of the semiconductor laser. Although communication semiconductor lasers perform pumping and modulation by injecting current through a PN junction, this is not an essential condition. Optical pumping is particularly effective when separately using a high-speed optical modulator or for a receiving heterogain local oscillator that does not require modulation, which will be described later. Optical pumping semiconductor lasers for these purposes do not require a complicated laminated structure like current injection, and can have a simple structure, so they have the advantage of reducing thermal resistance for heat dissipation and producing large output. occurs.

第4図は本発明の宇宙光通信装置に使用される半導体レ
ーザーを用いたヘテロゲイン受信器の実施例を示す回で
、第3図と同一番号は同一内容を示している。図中、2
0は集光レンズ、21は光学フィルター、22は混合器
、23は光学フィルター、24は信号検出系である。
FIG. 4 shows an embodiment of a heterogain receiver using a semiconductor laser used in the space optical communication device of the present invention, and the same numbers as in FIG. 3 indicate the same contents. In the figure, 2
0 is a condenser lens, 21 is an optical filter, 22 is a mixer, 23 is an optical filter, and 24 is a signal detection system.

第3図と同様に太陽光で光ポンピングされた半導体レー
ザーは局部発振器として使用され、混合器22において
集光レンズ21、光学フィルター22からの受信光と混
合され、光学フィルター23で所定波長成分が抽出され
て信号検出系24へ導かれる。
Similarly to FIG. 3, the semiconductor laser optically pumped by sunlight is used as a local oscillator, and is mixed with the received light from the condensing lens 21 and the optical filter 22 in the mixer 22, and the predetermined wavelength component is separated by the optical filter 23. The signal is extracted and guided to the signal detection system 24.

このように太陽光で光ポンピングした半導体レーザーを
ヘテロゲイン受信器の局部発振器とじて利用可能である
In this way, a semiconductor laser optically pumped by sunlight can be used as a local oscillator of a heterogain receiver.

なお以上の実施例において、衛星が地球の陰影にはいる
場合には、太陽光が得られないが、年間を通してこの時
間は長くないので、この場合は衛星上の予備電源を利用
するようにすればよい。また、光通信路の延長上に太陽
がきた場合には入射信号に背景光が混入して信号対雑音
比が劣化する場合があるが、この場合には送信光の光量
を高くすると共に、波長フィルターを使用して特定波長
選択をするようにすればよい。特に光量に関しては送信
光のビーム広がりが重要であり、これに関しては本来の
太陽光がほとんど平行光であって集束により高輝度光源
を作りうるので他の光源に比して極めて有利となる。
In the above example, if the satellite enters the earth's shadow, sunlight cannot be obtained, but this time is not long throughout the year, so in this case, the backup power supply on the satellite should be used. Bye. In addition, if the sun comes on an extension of the optical communication path, background light may mix into the incident signal, degrading the signal-to-noise ratio. A filter may be used to select a specific wavelength. In particular, the beam spread of the transmitted light is important with regard to the amount of light, and in this regard, since sunlight is essentially parallel light, it is possible to create a high-intensity light source by focusing, which is extremely advantageous compared to other light sources.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、太陽光を集光し、特に衛
星間光通信方式の光源として使用することにより、衛星
搭載機器の重量の軽減と共に、機器使用電力量を大幅に
低減化することができ、また、搭載機器中の発光素子等
の信頼性を向上させることが可能となり、宇宙光通信に
おいて多大の効果が得られ、産業上極めて有益である。
As described above, according to the present invention, by concentrating sunlight and using it particularly as a light source for inter-satellite optical communication system, it is possible to reduce the weight of satellite-mounted equipment and to significantly reduce the power consumption of the equipment. In addition, it becomes possible to improve the reliability of light emitting elements, etc. in onboard equipment, which has great effects in space optical communications, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は太陽光を搬送波光とした本発明による宇宙光通
信装置の一実施例を示す図、第2図は太陽光で光ポンピ
ングされるYAGレーザー光を搬送波光とした本発明に
よる宇宙光通信装置の他の実施例を示す図、第3図は太
陽光で光ポンピングされる半導体レーザー光を搬送波光
とした本発明による宇宙光通信装置の他の実施例を示す
図、第4図は太陽光で光ポンピングされる半導体レーザ
ーを局部発振器とした本発明による宇宙光通信装置に使
用されるヘテロダイン受信器の一実施例を示す図、第5
図は衛星間通信の様子を説明するための図である。 1.2・・・人工衛星、11・・・太陽、12・・・追
尾集光光学系、13・・・光学フィルター、14・・・
送信部、15・・・信号源、16・・・変調器、17・
・・YAGレーザ−,18・・・高調波発生器、19・
・・半導体レーザー、20・・・集光レンズ、21・・
・光学フィルター、22・・・混合器、23・・・光学
フィルター、24・・・検出系。
Fig. 1 is a diagram showing an embodiment of the space optical communication device according to the present invention using sunlight as the carrier wave light, and Fig. 2 shows the space light according to the present invention using YAG laser light optically pumped by sunlight as the carrier wave light. FIG. 3 is a diagram showing another embodiment of the communication device, and FIG. 3 is a diagram showing another embodiment of the space optical communication device according to the present invention using semiconductor laser light pumped by sunlight as carrier wave light. FIG. 5 is a diagram showing an embodiment of a heterodyne receiver used in a space optical communication device according to the present invention using a semiconductor laser optically pumped by sunlight as a local oscillator; FIG.
The figure is a diagram for explaining the state of inter-satellite communication. 1.2...Artificial satellite, 11...Sun, 12...Tracking and focusing optical system, 13...Optical filter, 14...
Transmission unit, 15... signal source, 16... modulator, 17.
...YAG laser, 18...harmonic generator, 19.
...Semiconductor laser, 20...Condensing lens, 21...
- Optical filter, 22... Mixer, 23... Optical filter, 24... Detection system.

Claims (7)

【特許請求の範囲】[Claims] (1)太陽を追尾する追尾集光手段と、太陽光を変調し
て送信用信号光を出力する光送信部を備えた宇宙光通信
装置。
(1) A space optical communication device equipped with a tracking concentrator that tracks the sun and an optical transmitter that modulates sunlight and outputs signal light for transmission.
(2)太陽を追尾する追尾集光手段と、太陽光で光ポン
ピングされるレーザー発振器と、レーザー発振器出力光
を変調して送信用信号光を出力する光送信部を備えた宇
宙光通信装置。
(2) A space optical communication device that includes a tracking light condenser that tracks the sun, a laser oscillator that is optically pumped by sunlight, and an optical transmitter that modulates the output light of the laser oscillator and outputs a signal light for transmission.
(3)前記レーザー発振器が、モードロック機構を含む
YAGレーザーである特許請求の範囲第2項記載の宇宙
光通信装置。
(3) The space optical communication device according to claim 2, wherein the laser oscillator is a YAG laser including a mode-locking mechanism.
(4)前記レーザー発振器が、半導体レーザーである特
許請求の範囲第2項記載の宇宙光通信装置。
(4) The space optical communication device according to claim 2, wherein the laser oscillator is a semiconductor laser.
(5)前記レーザー発振器出力の変調は、レーザー発振
器出力の高調波を変調することからなる特許請求の範囲
第2項記載の宇宙光通信装置。
(5) The space optical communication device according to claim 2, wherein the modulation of the laser oscillator output comprises modulating harmonics of the laser oscillator output.
(6)前記ポンピング光は、太陽光の所定波長成分から
なる特許請求の範囲第2項記載の宇宙光通信装置。
(6) The space optical communication device according to claim 2, wherein the pumping light comprises a predetermined wavelength component of sunlight.
(7)太陽を追尾する追尾集光手段と、太陽光で光ポン
ピングされるレーザー発振器と、レーザー発振器出力光
と受信光とを混合する混合器と、混合器出力光から所定
波長成分を抽出するフィルターとを備えた宇宙光通信装
置。
(7) A tracking concentrator that tracks the sun, a laser oscillator that is optically pumped by sunlight, a mixer that mixes the laser oscillator output light and the received light, and extracts a predetermined wavelength component from the mixer output light. A space optical communication device equipped with a filter.
JP62032898A 1987-02-16 1987-02-16 Space light communication equipment Pending JPS63200632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032898A JPS63200632A (en) 1987-02-16 1987-02-16 Space light communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032898A JPS63200632A (en) 1987-02-16 1987-02-16 Space light communication equipment

Publications (1)

Publication Number Publication Date
JPS63200632A true JPS63200632A (en) 1988-08-18

Family

ID=12371713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032898A Pending JPS63200632A (en) 1987-02-16 1987-02-16 Space light communication equipment

Country Status (1)

Country Link
JP (1) JPS63200632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299048A (en) * 1989-08-31 1994-03-29 Fujitsu Limited Optical amplifier and optical communication system provided with the optical amplifier
JP2007227406A (en) * 2005-11-24 2007-09-06 Okamoto Kogaku Kakosho:Kk Sunlight-excited laser device
EP3407509A1 (en) * 2017-05-26 2018-11-28 Vestel Elektronik Sanayi ve Ticaret A.S. Communication system and communication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068683A (en) * 1973-10-18 1975-06-09
JPS60148800A (en) * 1984-01-17 1985-08-06 日本電気株式会社 Despun solar cell device for spin stabilizing satellite
JPS61252727A (en) * 1985-05-01 1986-11-10 Canon Inc Electronic appliance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068683A (en) * 1973-10-18 1975-06-09
JPS60148800A (en) * 1984-01-17 1985-08-06 日本電気株式会社 Despun solar cell device for spin stabilizing satellite
JPS61252727A (en) * 1985-05-01 1986-11-10 Canon Inc Electronic appliance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299048A (en) * 1989-08-31 1994-03-29 Fujitsu Limited Optical amplifier and optical communication system provided with the optical amplifier
US5510931A (en) * 1989-08-31 1996-04-23 Fujitsu Limited Optical amplifier and optical communication system with optical amplifier using pumping right beam
US5521737A (en) * 1989-08-31 1996-05-28 Fujitsu Limited Optical amplifier and optical communication system with optical amplifier using pumping light beam
US5526163A (en) * 1989-08-31 1996-06-11 Fujitsu Limited Optical amplifier and optical communication system with optical amplifier using pumping light beam
US5535050A (en) * 1989-08-31 1996-07-09 Fujitsu Limited Optical amplifier and optical communication system with optical amplifier using pumping light beam
US5546213A (en) * 1989-08-31 1996-08-13 Fujitsu Limited Optical amplifier and optical communication system provided with the optical amplifier
JP2007227406A (en) * 2005-11-24 2007-09-06 Okamoto Kogaku Kakosho:Kk Sunlight-excited laser device
EP3407509A1 (en) * 2017-05-26 2018-11-28 Vestel Elektronik Sanayi ve Ticaret A.S. Communication system and communication method

Similar Documents

Publication Publication Date Title
Braun et al. Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking
US3933323A (en) Solid state solar to microwave energy converter system and apparatus
US20050242287A1 (en) Optical terahertz generator / receiver
Kuri et al. Fiber-optic millimeter-wave uplink system incorporating remotely fed 60-GHz-band optical pilot tone
CN101551517A (en) Coherent laser communication system based on wavefront correction
US7894128B2 (en) Real-time terahertz imaging system for the detection of concealed objects
US20020149822A1 (en) Optical commuincation system for a portable computing device and method of use
CN112532318B (en) Resource-saving laser radio frequency integrated communication load
JPS63200632A (en) Space light communication equipment
Telle et al. Comparison of pump-laser characteristics for producing a mesospheric sodium guidestar for adaptive optical systems on large-aperture telescopes
Marshalek et al. Comparison of optical technologies for intersatellite links in a global telecommunications network
Panahi et al. High speed laser communication network for satellite systems
CN114865443A (en) Single-frequency laser device
Johann et al. Free-space laser communication test-bed based on coherent diode-pumped Nd: YAG laser technology
De Carlo et al. Intersatellite link for earth observation satellites constellation
Chan et al. Coherent optical intersatellite crosslink systems
Braun et al. Microwave generation and transmission using optical heterodyning or optical upconversion technique
Chan Intersatellite optical heterodyne communication systems
Donghong et al. Modulation and demodulation method for satellite laser communication system
Ross Optical communications in space
CHEN et al. Portable Atmospheric Transfer of Microwave Signal Using Diode Laser with Timing Fluctuation Suppression
Begley et al. Solid‐state laser cross‐link systems and technology
CN116707652A (en) Movable self-protection wireless digital-energy simultaneous transmission system
Arrigoni et al. Optical intersatellite link with direct detection: The laser diode‐pumped Nd laser option
Ahmed et al. Millimeter-wave (37 GHz) transmission of data (up to 500 Mb/s) in an optically fed wireless link incorporating a hybrid mode-locked monolithic DBR laser